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Abstract: Diabetic nephropathy (DN) represents the most common microvascular complication in
patients with diabetes. This progressive kidney disease has been recognized as the major cause of
end-stage renal disease with higher morbidity and mortality. However, its tangled pathophysiology
is still not fully known. Due to the serious health burden of DN, novel potential biomarkers have
been proposed to improve early identification of the disease. In this complex landscape, several
lines of evidence supported a critical role of microRNAs (miRNAs) in regulating posttranscriptional
levels of protein-coding genes involved in DN pathophysiology. Indeed, intriguing data showed
that deregulation of certain miRNAs (e.g., miRNAs 21, -25, -92, -210, -126, -216, and -377) were
pathogenically linked to the onset and the progression of DN, suggesting not only a role as early
biomarkers but also as potential therapeutic targets. To date, these regulatory biomolecules represent
the most promising diagnostic and therapeutic options for DN in adult patients, while similar
pediatric evidence is still limited. More, findings from these elegant studies, although promising,
need to be deeper investigated in larger validation studies. In an attempt to provide a comprehensive
pediatric overview in the field, we aimed to summarize the most recent evidence on the emerging
role of miRNAs in pediatric DN pathophysiology.
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1. Introduction

As the increasing prevalence of diabetes worldwide [1–3], its cardiometabolic conse-
quences have received remarkable scientific attention since childhood [4–6]. In particular,
diabetic nephropathy (DN) represents one of the most important long-term complications
of diabetes [7,8], and is currently recognized as the major cause of end-stage renal disease
(ESRD) with high morbidity and mortality rates [1,4,9].

Both persistent albuminuria and reduced glomerular filtration rate (eGFR) represent
the main clinical features of the disease. In the early stages of DN, microalbuminuria
(defined as the presence of 30–300 mg a day of albumin in urine) is detected in these patients,
while albuminuria (>300 mg/day) appeared during the progression of the disease [10].
Various pathophysiological mechanisms have been supposed in DN development including
hyperglycemia, inflammation, oxidative stress, advanced glycation end products, protein
kinase C, and poly(ADP-ribose) polymerase activation [11–13] (Figure 1). Taken together,
these factors are responsible for the morphological impairments occurring at renal site in
DN, such as glomerular mesangium hypertrophy, podocytes dysfunction, and extracellular
matrix proteins accumulation [13,14]. From a molecular perspective, different cellular
and inflammatory signaling pathways such as transforming growth factor-β (TGF-β),
Phosphoinositide 3-kinase-protein kinase B (PI3K-Akt), Mitogen-activated protein kinase
(MAPK) family including P38, extracellular signal-regulated kinases (ERK), Nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), and c-Jun N-terminal kinases
(JNKs) have been implied in DN pathogenesis [13,15].
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Figure 1. The role of miRNAs in the pathophysiology of diabetic nephropathy. Abbreviations: ECM:
extracellular matrix; GFR: glomerular filtration rate; TGF-β: transforming growth factor-β.

Given the serious cardiometabolic burden of DN, research efforts are recently focusing
on novel potential biomarkers to improve early identification of the disease [10,16–18].

Besides classical markers (e.g., urinary cystatin C) [10,19–21], novel promising options
are emerging in this research area [14,20,22]. In this framework, a pathogenic role for
microRNAs (miRNAs) as biomolecules regulating up to 30% of the protein-coding genes in
the human genome has been also proposed [23–26]. To date, miRNAs represent the most
attractive candidates as potential diagnostic, prognostic, and therapeutic DN tool [27–29].

Similar to other conditions (including non-Alcoholic fatty liver disease (NAFLD),
etc.) [30,31], miRNAs up-regulation has been supposed to contribute to the development
and progression of the disease [29,32]. Particularly, several different miRNAs, such as
miRNA-21, -25, -29, -210, -216, -126, -377, and -92 have been pathogenically linked to
DN [33–35].

To date, most evidence in this attractive research area is based on adult [36–40] and
in vitro studies [27,28,41,42], while similar pediatric data are still limited [43–47]. Due to
the urgent need for early identification of DN and of the fragmentariness of data in the
field in childhood, we attempted to provide a comprehensive pediatric overview on the
challenging role of miRNAs in DN.

2. Evidence on the Role of miRNAs -21, -126, -216, and -377 in DN Pathogenesis

Recent advances have reported the pivotal role of certain miRNAs in DN pathogene-
sis [43,45,46,48] (Table 1).

These biomolecules—transported by macrovesicles, exosomes, and transmembrane
proteins—are involved in the regulation of different pathways promoting fibrosis and
inflammation especially in the heart and the kidney [12,20,24]. As the lack of influence of
glomerular filtration on their urinary levels unlike serum creatinine [49], miRNAs can be
used as innovative biomarker for DN even at the preclinical stage [25,27,28].

MiRNA-21, a well-known type 2 diabetes (T2D)-associated miRNA [50,51], is a sig-
nificant microRNA particularly involved in cardiac [52] and renal fibrosis [53–57]. Up-
regulation of its levels has been detected in human renal diseases [53,54] by promoting
TGF-β-mediated effects on endothelial-to-mesenchymal transition [55]. In this context,
a large amount of data focused on dysregulation of miRNA-21 in diabetes and kidney
injury [45,56–59], suggesting its potential role as accessible biomarker and novel target for
diagnosis and treatment of T2D renal consequences [56].
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Table 1. Main findings of the studies on the role of miRNAs377, -126, and -21 in DN.

miRNA References Study Design Population Main Findings

miRNA 377
[43] Cross-sectional study

70 children and adolescent with
T1D from Diabetes, Endocrine
and Metabolism Pediatric Unit
(DEMPU) Children Hospital,

Cairo University.
Mean age 13.21 ± 3.66 years.

-25 without DN
-45 with DN

Serum miRNA377 was
significantly higher in patients
with DN than in those without

DN and it was positively
correlated with LDL cholesterol.

[46] Cross-sectional study

50 patients with T1D compared
to 50 healthy controls

from Pediatric Diabetes Clinic, of
Pediatric Hospital, Ain Shams

University.
Mean age 13.7 ± 3.3 years.

T1D patients were divided in
two groups:

-group A: 26 normoalbuminuric
diabetic patients without

nephropathy.
-group B: 24 diabetic patients

with nephropathy.

Compared to healthy controls,
both patients with and without

DN had significantly higher
urinary miRNA-377 levels
(p ≤ 0.05). In the analyzed

diabetic cohort, urinary miR-377
expression was considerably

higher in the group B
(p ≤ 0.001).

miRNA-126
[48] Cross-sectional nested

case-control study

455 patients with T1D. Case
subjects (n = 312): patients with
≥1 complications of diabetes;

control subjects (n = 143):
individuals with no evidence of

any complication.

miRNA-126 was negatively
linked to each

micro-/macrovascular
complication that was

independently analyzed and
with all complications

(OR = 0.85, 95% CI 0.75–0.96).

[45]
Cross-sectional

observational cohort
study

-68 young patients with T1D
(age 6–18 years) and 79 age- and

gender-matched healthy
subjects.

Patients with T1D had
considerably lower urinary

miRNA-126 levels than age- and
gender-matched controls. There

was a negative correlation
between HbA1c mean and

miRNA-126 levels.

miRNA-21
[45]

Cross-sectional
observational cohort

study

68 patients with T1D
Age 6–18 years, duration of

disease >1 year, C-peptide < 0.3
nmol/L, and intensive insulin
treatment with either multiple

daily insulin injections or
continuous subcutaneous insulin

infusion for at least 6 months.

A significant increase in
miRNA-21 in plasma (p = 0.008)

and urine (p ≤ 0.0001) of
patients with T1D was found.

A positive correlation between
urinary miRNA-21 and CRP

(r = 0.298, p = 0.029) was
showed.

[43] Cross-sectional study 70 children and adolescents with
T1D.

miRNA-21 was positively
correlated with urinary levels of
cystatin c (r = 0.6, p = 0.01) and

negatively correlated with eGFR
using cystatin c (r = −0.6,

p = 0.01).

Abbreviations: T1D: type 1 diabetes; T2D: type 2 diabetes; miRNA: microRNA; DN: Diabetic Nephropathy; ACR:
albumin creatinine ratio; HbA1c: Glycosylated hemoglobin; CRP: C-reactive protein; eGFR: Estimated Glomerular
Filtration Rate.

Preclinical studies have attempted to explain which pathways are modified by miRNA
in kidney disease [57–59]. Dey et al. [57] showed that miRNA-21 downregulated the
Target of rapamycin complex 1 (TORC1)-pathway in a type 1 diabetes (T1D) mouse model
with renal disease during hyperglycemia. Wang et al. [58] suggested that renal fibrosis
in T2D mice was the effect of modulated metallopeptidase. In particular, miRNA-21
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contributed to renal fibrosis downregulating matrix metallopeptidase9 (MMP9)/tissue
inhibitor matrix metalloproteinase-1 (TIMP-1) [58]. Zhong et al. [59] demonstrated that
renal miRNA-21 expression was upregulated in T2D mice models and was linked to the
onset of microalbuminuria, renal fibrosis, and inflammation. Remarkably, transfer of
miRNA-21 knockdown plasmids into the diabetic kidneys of db/db mice resulted in a
significant decrease in renal fibrosis and inflammation [59]. Moreover, decapentaplegic
homolog 7 (SMAD7), a protective factor in renal fibrosis and inflammation through TGF-ß
and NF-κB pathways suppression, was inversely linked to miRNA-21. In db/db mice,
it was found to be significantly decreased during diabetic renal damage and partially
improved when miRNA-21 was suppressed [59].

On the other hand, two cross-sectional observational cohort study [45,51] investigated
the role of different miRNAs, such as miRNA-21, miRNA-126, and miRNA-210, in a
large cohort of children with T1D [45], and with T2D [51]. Compared to pre-clinical data,
Osipova et al. [45] reported a significant upregulation of plasma and urinary miRNA-21
and miRNA-210 levels in a population of 68 children and adolescents aged 6–18 years
with T1D compared to 79 age- and gender-matched healthy subjects without relevant
cardiovascular risk factors [45]. Both plasma and urinary miRNA-21 and miRNA-210 levels
were found to be increased in patients with T1D than in healthy subjects (p = 0.008 and
p = 0.0001 for plasma values, respectively; p < 0.0001 and p = 0.002 for urinary values,
respectively) [45]. In contrast with previous clinical evidence for T2D [60], no difference in
plasma miR-126 levels were found [45], whereas urinary miRNA-126 concentrations were
significantly decreased in these patients (p = 0.016) [45]. Moreover, a significant association
between glycated hemoglobin (HbA1c) mean and urinary miRNA-126 concentrations in
subjects with T1D was demonstrated (r = −0.286, p = 0.042) [45].

As potential indicator of persistent renal inflammation in patients with T1D, a pos-
itive correlation between C-reactive protein (CRP) and urinary miRNA-21 levels was
also reported [45]. In line with previous data supporting early diabetes-related endothe-
lial dysfunction in children with T1D [54,55,58], authors suggested that dysregulation of
miRNA-21 in young patients with TD1 may serve as a marker of already existing renal
fibrotic remodeling [45].

In fact, miRNA-126 is highly enriched in endothelial cells and platelets and can
regulate VEGF-mediated effects, such as vascular integrity, angiogenesis, and wound
repair [61]. It was demonstrated that miRNA-126 is expressed in glomerular and peritubular
endothelial cells targeting Sprouty-related EVH1 domain containing protein (SPRED1)
and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2), a negative VEGF pathway
repressor [9]. In light of this, miRNA-126 has been considered as candidate marker of
potential diabetes-related damage due to long-term high plasma glucose exposure [45,61].

Olivieri et al. [51] examined the deregulation of miRNA21-5p and 126-3p in 193 Italian
patients with T2D and 107 healthy subjects, and further analyzed circulating levels of
both miRNAs according to the presence of diabetic complications. Worthy of note, both
miRNA levels dramatically decreased from controls to T2D patients without and with
complications [51]. Interestingly, significantly greater levels of miRNA-21-5p and lower
levels of miRNA-126-3p were demonstrated in patients with specific diabetic consequences
such as myocardial infarction [45,51,59].

Importantly, research evidence has demonstrated that miRNA-126 was negatively
linked to all diabetic consequences [62–66]. A cross-sectional nested case-control study [66]
analyzed miRNA-126 expression in a cohort of 455 patients with T1D including 312 patients
(as subjects with one or more complications of diabetes) and 143 control subjects (with
no evidence of any complication). A significant correlation of miRNA-126 levels with
each micro-/macrovascular diabetic complication was found, particularly for proliferative
retinopathy [66].

Recently, a pathophysiological role for miRNA-377 has been reported in the onset of
diabetes-related endothelial dysfunction [67,68]. Indeed, it may promote the expression of
fibronectin in mesangial cells in hyperglycemic-induced oxidative stress [69].



J. Clin. Med. 2023, 12, 1447 5 of 11

In line with these data, El-Samahy et al. [46] compared urinary levels of mi-RNA216a
and of miRNA-377 in 50 patients with T1D and 50 healthy controls. Patients with T1D
were further divided into two groups according to urinary albumin-creatinine ratio as
normoalbuminuric and with microalbuminuria. Both groups had significantly higher
urinary miRNA-377 levels (p < 0.05) [46]. In particular, considerably higher concentrations
were reported in the microalbuminuric group compared to normoalbuminuric patients
(p = 0.001) [46]. Another elegant study on 70 children and adolescent with T1D demon-
strated a significant increase in miRNA-377 levels in patients with DN [43]. Patients with
DN also showed a significantly negative correlation between of miRNA-216a with creati-
nine (p = 0.049), while a positive correlation with eGFR when estimation was done using
creatinine (p = 0.03) was described. This is in line with previous research supporting the
occurrence of decreased urinary miRNA-216a levels in T1D patients with DN [46].

3. Evidence on the Role of mi-RNAs 25, -93, -210, -29, and -192 in DN Pathogenesis

Additional miRNAs have been found to contribute to DN development [42,43,62,68]
(Table 2). In a recent study, the role of miRNA-25 has been investigated in a cohort of
70 pediatric patients with T1D that were divided into two groups: with or without DN
(defined as increased or normal albumin creatinine ratio (ACR)) [43]. Authors found a
statistically significant upregulation of miRNA-25 expression in the group without DN
(p = 0.01), and its downregulation in the group with DN (p = 0.01) [43]. Moreover, miRNA-
25 was reported to be negatively associated with ACR [43], suggesting a reno-protective
for this miRNA through NADPH oxidase 4 (Nox4) inhibition [28,70]. Indeed, research
has supported a pathogenic involvement of miRNA-25 in renal dysfunction by promoting
oxidative stress [43,71].

Table 2. Main findings of the studies on the role of miRNAs 25, -93, -210, and -126 in DN.

miRNA Reference Study Design Population Main Findings

miRNA-25 [43] Hospital-based cohort
cross-sectional study

70 patients with T1D with a
5 years’ duration of diabetes

or more
-25 patients (16 males and

9 females) without DN
(normal ACR)

-45 patients (19 males and
26 females) with DN

(increased ACR).

miRNA-25 may have a
reno-protective role.
Negative correlation

between miRNA-25 and
ACR was found. miRNAs-25

levels were upregulated in
the group without DN and

downregulated in the group
with DN.

miRNA-93 [43] Hospital-based cohort

70 T1D patients with a 5 years’
duration of diabetes or more

-25 patients (16 males and
9 females) without DN

(normal ACR)
-45 patients (19 males and

26 females) with DN
(increased ACR).

A positive correlation
between miR-93 and HbA1c

and ACR was reported.
Up-regulation of miRNA-93

in the group with DN
compared to the group
without DN was found.

miRNA-210 [45]
Cross-sectional

observational cohort
study

68 patients with T1D
Age 6–18 years, duration

of disease > 1 year, C-peptide <
0.3 nmol/L, and intensive

insulin treatment with either
multiple daily insulin injections

or continuous subcutaneous
insulin infusion for at least

6 months.

Both plasma and urinary
miRNA-210 levels of patients
with T1D were higher than

controls.



J. Clin. Med. 2023, 12, 1447 6 of 11

Table 2. Cont.

miRNA Reference Study Design Population Main Findings

miRNA-126 [45]
Cross-sectional

observational cohort
study

68 patients with T1D
Age 6–18 years, duration

of disease > 1 year, C-peptide <
0.3 nmol/L, and intensive

insulin treatment with either
multiple daily insulin injections

or continuous subcutaneous
insulin infusion for at least

6 months.

No differences emerged in
plasmatic T1D sample, while

lower miRNA-126 levels
were confirmed in urine T1D

samples compared to
controls (p = 0.016). A

negative association between
urinary miRNA-126 levels

and HbA1c was found.

Abbreviations: T1D: type 1 diabetes; T2D: type 2 diabetes; miRNA: microRNA; DN: Diabetic Nephropathy; ACR:
albumin creatinine ratio; HbA1c: Glycosylated hemoglobin; CRP: C-reactive protein; eGFR: Estimated Glomerular
Filtration Rate.

Differently from miRNA-25, circulating plasma miRNA-93 levels were significantly up-
regulated (p = 0.02) and positively correlated with ACR (p = 0.004) and HbA1c (p = 0.04) in
patients with DN [43]. Interestingly, miRNA-93 was found to be a significant independent
factor for the onset of albuminuria, suggesting its pathophysiological involvement in DN
development [43]. In particular, studies revealed that overexpression of miRNA-93 might
inhibit TGF-β1, induce endothelial to mesenchymal transition, and halt renal fibrogenesis
via targeting ORAI 1 expression in human kidney 2 (HK2) cell lines [43,71,72]. Moreover,
miRNA-93 inhibitors have been found to increase vascular endothelial growth factor
(VEGF) secretion [72].

In the context of diabetes, miRNA-210 represents another circulating miRNA com-
monly known to be deregulated [45]. Indeed, it has been found to be upregulated under
hypoxic and high glucose conditions in vitro and in patients with T2D, while its relationship
with T1D still remains less defined [45,73].

In addition, other miRNAs have been involved in diabetic disease phenotypes. For
example, miRNA-29 family (consisting of miRNA-29a/b/c sharing the same seed sequence)
was largely investigated as a putative DN biomarker [28,45,70–72], since its protective role
in fibrotic disease including kidney fibrosis [73]. Higher MiR-29 expression has been demon-
strated in the main target tissues of insulin [74]. Both hyperglycemia and pro-inflammatory
cytokines overexpressed miRNA-29 family which in turn repressed insulin-stimulated glu-
cose uptake leading to insulin resistance [74]. In fact, its suppression with anti-miRNA-29
oligomers has been found to be protective against DN [73], further supporting miRNA-
29 as biomarker for DN and atherosclerosis in T2D [73]. In agreement with the study
by Wang et al. [75], it has been demonstrated that TGF-β1 reduced the expression of
the miR-29 family in proximal tubular cells in a hyperglycemic context resulting in the
classic epithelium-like to mesenchymal transition (EMT)-like morphologic changes, in-
cluding significantly increased expression of collagens I and IV [28]. An elegant study
by Chen et al. [12] concluded that miRNA-29b may have a protective effect in diabetic
kidney disease in db/db mice by inhibiting TGF-β/small mother against decapentaplegic
(SMAD) 3 signaling pathway and specific protein 1/NF-κB-driven renal inflammation [28].
Additional research corroborated the proposal of miRNA-29c as novel target in DN [76]
since its antifibrotic role inducing cell apoptosis and extracellular matrix protein accumu-
lation via TGF-β signaling pathway [76]. Taking into account the critical contribution of
endothelial-to-mesenchymal transition (EndMT) to the protective role of miRNAs in DN
development, interventions preventing this crosstalk are crucial for the treatment of the
disease [77,78]. For instance, Dipeptidyl Peptidase 4 (DPP-4) inhibitors have been proposed
as potential therapeutic options [77]. Indeed, their potential pathogenic role might be
attributable to the suppression of the EndMT-driven TGF-β signaling in diabetic kidneys
and the subsequent upregulation of miRNA-29 family expression [77].

Worthy of note, additional miRNAs pathogenically linked to DN have been suggested
as novel promising early biomarkers. Evidence on animal models and adult subjects with
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T2D demonstrated an inverse correlation of miRNA 146a expression with glomerular
damage, suggesting a potential protective role for podocytic miR-146a in DN develop-
ment [79,80]. Similarly, circulating miRNA-130b levels were found to be reduced in patients
with a more pronounced decrease in the subgroup with microalbuminuria [81], Besides,
upregulation of miRNA-424 expression was found to reduce pathological renal changes
(e.g., cellular apoptosis) occurring in DN [82].

In this tangled landscape, the role of miRNA-192 in DN progression needs to be also
considered [83–85]. miRNA-192 represents one of the most abundant miRNAs in the kidney
implicated in the development of matrix accumulation by controlling TGF-β-induced colla-
gen type 1 α-2 (COL1A1 and -2) expression through the downregulation of E-box repressors
zinc finger E-box-binding homeobox (ZEB)1 and 2 [86]. Evidence reported that miRNA-192
expression was significantly lower in patients with T2D compared to healthy controls and
in patients with microalbuminuria compared to those with normoalbuminuria [84]. A
recent pediatric work examined the role of miRNA-192 and its relationship with Serum
Klotho [KL] as potential target for DN treatment [47]. Alpha-Klotho is a co-receptor for
fibroblast growth factor (FGF)-23 involved in the regulation of oxidative stress, inflamma-
tion, and fibrosis by inhibiting insulin/insulin-like growth factor-1 (IGF-1) and TGF-β1
signaling pathways [87,88]. In the examined cohort, KL was significantly associated with
HbA1c at time of evaluation (p = 0.037), HbA1c mean over 2 years (p = 0.007), and diabetes
duration (p < 0.001) [47]. Serum miRNA-192 concentrations were negatively associated
with circulating KL levels in children with prolonged duration of diabetes, suggesting
a potential regulatory role for miRNA-192 in soluble KL expression [47]. Additionally,
given its role in modulating certain pathophysiological processes including oxidative stress,
senescence, and inflammation, in vitro evidence also supported a key role for miRNA-192
in diabetic complications [47,89].

4. Conclusions and Future Perspectives

Unravelling the underlying pathophysiological mechanisms of DN is essential to im-
prove the overall management of the disease through the identification of novel biomarkers
and insightful therapeutic targets. Although there is substantial evidence on the contri-
bution of certain miRNAs in DN development and progression, more scientific efforts
including validation with large-cohort prospective studies in future are needed to over-
come the challenge of a deeper understanding of their potential diagnostic, therapeutic, and
prognostic role, and of the translation of their therapeutic potential into clinical application.
On this basis, the large availability of adult evidence in the field might offer guidance for
meaningful pediatric studies. In light of the serious burden of DN since childhood, current
pediatric knowledge in the intricate research area of early diagnosis and targeted therapy
of DN needs to be expanded.

As a future insightful perspective, a whole miRNAs signature of DN in childhood
might pave the way for significant clinical improvements in the overall management of
these at-risk patients.
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