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Abstract: Recent technological advances in the field of artificial intelligence hold promise in address-
ing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination
and molecular profiling, prediction of lymph node metastases, and prognostication of treatment
response and probability of recurrence. Radiomics is a quantitative approach to medical imaging,
which aims to enhance the existing data available to clinicians by means of advanced mathematical
analysis using artificial intelligence. Various published studies from different fields in imaging have
highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe
the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning
radiomics. We present a typical workflow of a radiomics analysis and a practical “how-to” guide.
Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on
the most recent scientific literature to help researchers and clinicians gain fundamental knowledge
of this emerging technology. Alongside this, we discuss the current limitations of radiomics and
challenges of integration into clinical practice with conceptual consistency, data curation, technical
reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with
clinical, histopathological, and genomic information will enable physicians to move forward to a
higher level of personalized management of patients with breast cancer.

Keywords: breast cancer; radiomics; medicinal imaging; personalized medicine; quantitative
biomarkers; artificial intelligence

1. Introduction

Summary: this review summarizes the state of the art of radiomics in breast imaging
and provide clinicians and researchers with the basis for a practical approach to this
emerging field.

Key points:
- The current limitations in the diagnosis of breast cancer lie in not detecting valuable

prognostic and predictive information inherent in the heterogeneity of this disease;
- Thanks to the advancement in AI technologies, radiomics can extract qualitative and

quantitative information from images that can support clinicians in the management of
patient with breast cancer;

- Radiomics showed valuable applications in breast imaging distinguishing between
malignant and benign lesions, assessing the tumour subtype and its grade, molecular
expressions, and predict response to therapy and the risk of recurrence.
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Breast cancer (BC) is the most diagnosed tumour (excluding skin cancers), with an
increasing incidence, and is the second leading cause of death from malignancy among
females worldwide [1]. Though concerns regarding early detection and accurate diagnosis
have been raised, continued efforts are required towards application of precision medicine
in BC.

Currently, the diagnosis of early invasive BC relies on radiological evaluation; essen-
tially, based on mammography (with or without contrast) (Figure 1), breast ultrasound
(US) (Figure 2) and contrast-enhanced magnetic resonance imaging (MRI) (Figure 3), sup-
plemented by pathological confirmation of malignancy on radiologically obtained tissue
samples [2,3]. However, such diagnostic approach has major limitations. Firstly, the sensi-
tivity and positive predictive value are suboptimal [4]; secondly, biopsy is invasive and
uncomfortable for women; thirdly, there is a long turnaround time for test results [5].
Moreover, BC is a heterogeneous disease with a significant chance that some of its features,
including significant characteristics, remain undetected, meaning that valuable prognostic
and predictive information can be missed. Due to such heterogeneity and dynamic tumour
biology, indications for re-biopsy are increasing [6]. This is pertinent in the current era of
personalised medicine, which relies on early diagnosis of disease, in a patient with specific
characteristics, and the subsequent individually tailored treatments, aiming to deliver the
right treatment to the right patient at the right time. Accordingly, the ultimate goals of
the modern breast imaging are to detect BC as early as possible, then to classify the lesion
and predict its clinical course and its biological aggressiveness to optimise treatment in a
specific patient [7,8].
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Continued exponential growth of medical imaging has led to an advancement in
radiomics, which provides countless quantitative biomarkers extracted from modern diag-
nostic images, including detailed tumoral characterization of BC [9]. In particular, recent
technological advances in the field of artificial intelligence (AI) applied to image analysis,
via software based on machine learning (ML) and deep learning (DL), hold promise in
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addressing medical challenges in cancer detection, treatment assessment, prediction of
treatment response and monitoring of disease progression [9–18]. In the current breast
imaging practice, evaluation of BC is largely qualitative, including subjective evaluations
such as tumour morphology, enhancement curves, and anatomic relationship to the sur-
rounding tissues. However, to achieve the goal of personalised medicine, a quantitative
evaluation is also required [19,20]. Therefore, radiomics is an emerging field of extreme
interest, dealing with quantitative evaluation of images and extraction of designated fea-
tures [21–23]. Data derived from a radiomics investigation, such as intensity, shape, texture,
and wavelength [22,24–27], can be input to ML or DL algorithms, providing information
to differentiate malignant and benign tumours, assess cancer genetics, predict treatment
response, and contribute to more robust models that combine multidisciplinary informa-
tion [11,16,22,28–30].

This review discusses the state of the art of radiomics, in both research and clinical
applications, and its role in achieving personalised management in patients with BC. This
paper will also try to demystify radiomics for clinicians by illustrating its limitations
and challenges, as well as the opportunities it provides as a decision-support tool in
cancer management.

2. Strengths and Limitations of Current Breast Imaging Techniques

Breast cancer screening with mammography has significantly lowered the breast
cancer mortality rate; however, its sensitivity is limited in dense breasts. In this situation,
ultrasound is a helpful imaging modality to examine the glandular and ductal components,
investigate the axillary lymph nodes, and avoid the use of ionizing radiation. For these
reasons, ultrasound is the primary diagnostic imaging technique in women under the age
of 40.

Dynamic contrast-enhanced (DCE) MRI and contrast-enhanced spectral mammogra-
phy (CESM) offer the advantage of adding a functional evaluation to the morphological
data through the administration of contrast medium that exploits neo-angiogenesis oc-
curring in tumoral lesions [31–34]. Nowadays, MRI is accepted as the most sensitive
imaging technique for detecting and staging breast cancer and is of great help in the study
of particularly complex breasts, or of patients with an elevated hereditary–familial risk of
developing breast cancer [35]. With a similar performance to MRI, CESM can also visual-
ize microcalcifications and possibly reduce the rate of false-positive findings and benign
biopsies [32,36].

Radiomics features of BC can be extracted from MRI [37–53], US [54], PET/CT [55,56],
CEM and Mx and tomosynthesis images [51,57]. The most-used imaging biomarkers in
breast cancer are those derived from perfusion and diffusion imaging. The perfusion
imaging is both an MRI and CEM technique based on intravenously administered contrast
agents, that enables spatially resolved quantification of the hemodynamic status of tissue.
The first assumption is that the contrast media administration induces time-dependent
changes in tissue signal, which can be monitored by the dynamic acquisition of images be-
fore, during and after contrast media injection. The second postulation is that pathological
tissues have different hemodynamic properties from normal tissues, that can be depicted
by perfusion biomarkers [58]. Diffusion-weighted imaging (DWI) is an MRI technique that
uses quantitative estimation of random motion of water molecules as a surrogate for tissue
characterisation, and it can be successfully employed in oncology to detect pathological
structural changes [27,28,58].

Image guided percutaneous breast lesion biopsy can be performed using mammogra-
phy, US, or MRI visualisation. The choice of the biopsy method is generally dictated by the
imaging characteristics of the lesion, patient factors, and modality availability.

Compared to surgical biopsy, percutaneous imaging-guided biopsy is less invasive,
faster, more cosmetically satisfactory, and the recovery time is shorter [19,59,60]. In the case
of vacuum-assisted biopsies, the procedure may also be curative as small lesions can be
removed completely [61]. All these percutaneous procedures also allow the placement of
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a harmless lesion marker, which is useful for the recognition of the target lesion during
surgery or after neoadjuvant therapy (NAT—chemotherapy performed before surgery).
The NAT may lead to resolution of the tumour without detectable mass, and lesion markers
may be helpful to confirm complete treatment response [16,18,19].

Although percutaneous image-guided procedures are generally safe and highly ac-
curate, there is still the risk of infrequent (<1 in 1000) complications, which include pain,
bleeding, post procedural infections, and, rarely, pneumothorax and pseudoaneurysms [62].
In addition to relatively easily managed complications of haematomas and infections,
some complications such as an arterial pseudoaneurysm or a pneumothorax, may be more
difficult to manage. Although controversial, neoplastic seeding may occur, quoted in the
literature in up to 1–2 cases per 1000 US-guided biopsies [63]. Moreover, as percutaneous
biopsies only sample a part of the lesion, the examination may not be conclusive. In fact,
in 3–9% of cases the malignant potential of lesions is uncertain, and up to 33% of these
manifest eventually as clinically significant malignancy [63].

3. What Radiomics Is and How it Works in Breast Imaging Workflow

Radiomics assumes that radiological images contain more information than is visible to
human eyes. Thus, radiomics is a translational field of research aiming to find associations
between qualitative and quantitative information extracted from medical imaging and
clinical data, to support evidence-based clinical decision making [9]. The extraction of
quantitative features from radiological images allows the creation of high-dimensional
data with clinical data. This is followed by data mining to extract valuable information for
decision support models.

Radiomic workflow involves the following steps:

1. Images acquisition;
2. Images segmentation;
3. Features extraction;
4. Features selection;
5. Model construction.

Such steps are shown in Figure 4.
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In breast imaging, the pixel value of MRI, US, and mammography, does not express
physical properties of the tissue, such as Hounsfield Unit in computed tomography, but it
is dependent on acquisition parameters.

In addition, MRI signal may change even with the same reconstruction parameters
for two consecutive acquisitions, while US acquisition is also operator dependent [64,65].
To overcome this limitation, it is a good practice to acquire all imaging data using the
same device and imaging parameters to ensure the stability of the features and record the
parameters meticulously in order to facilitate the reproducibility of the study.

When this approach is not feasible, harmonization is mandatory to ensure robustness
of features and generalizability of the model obtained [66].

Image segmentation with delineation of Regions of Interest (ROI) is a crucial part
of the radiomic workflow. ROIs limit the area of analysis, and their delineation can be
obtained manually, in a semi-automatic or fully automatic way.

Manual segmentation may introduce observer-bias, as studies have shown that many
radiomic features are not robust against intra- and inter-observer variations concerning ROI
delineation [67]. Consequently, studies using manual image segmentation with manual
correction should perform assessments of intra- and inter-observer reproducibility of the
derived radiomic features and exclude non-reproducible features from further analyses [68].

Semi-automatic segmentation may potentially reduce these issues. It has been demon-
strated to work well for relatively homogeneous lesions; however, inhomogeneous lesions
with poorly defined boundaries require intensive user correction [65].

Fully automatic segmentation based on DL networks is rapidly emerging, and many
different algorithms have already been trained for image segmentation tasks of various
organs. Such algorithms need ad hoc training and quality control, with manually contoured
images as reference [9,69]. Generalizability of trained algorithms, however, is a major
drawback, given that applying those algorithms on a different dataset often results in
complete failure [9,68].

Feature extraction is the calculation of mathematical expressions used to quantify
characteristics of the grey levels within the ROIs. Since many ways and formulas exist
to calculate those features, adherence to the Image Biomarker Standardization Initiative
guidelines is recommended.

Features can be extracted either directly from the images or after applying different
filters, and they are usually categorised into the following subgroups:

Shape features describe the shape of the traced ROI and its geometric properties such
as volume, maximum diameter along different orthogonal directions, maximum surface,
tumour compactness, and sphericity.

First-order statistics features describe the distribution of individual voxel values
without concern for spatial relationships. These are histogram-based properties reporting
the mean, median, maximum, minimum values of the voxel intensities on the image, as well
as their skewness (asymmetry), kurtosis (flatness), uniformity, and randomness (entropy).

Second-order statistics features include the so-called textural features, which are
obtained by calculating the statistical inter-relationships between neighbouring voxels.
They provide a measure of the spatial arrangement of the voxel intensities and, hence, of
intra-lesion heterogeneity.

Higher-order statistics features are obtained by statistical methods after applying
filters or mathematical transforms to the images.

The subsequent step involves feature selection, in order to exclude all the features that
are either not reproducible or not strongly related to the outcome.

Selection can be made through statistical methods or through ML methods. The first
starts from all the features provided by the calculation tool and performs a preliminary
analysis to select the most repeatable and reproducible parameters and to subsequently
reduce them by correlation and redundancy analysis [70].
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Alternatively, ML techniques, underlying the idea that computers may learn from past
examples and detect hard-to-discern patterns from large and complex data sets, may lead
to the selection of appropriate features [71].

Finally, the remaining, non-correlated and highly relevant features can be used as input
to the model for the respective classification task (e.g., discriminate between malignant or
benign lesion).

Models are usually built by splitting the dataset into training and test sets, and most ro-
bust models are usually validated using a totally external dataset, to ensure generalizability
of the obtained results [72].

4. The Role of Artificial Intelligence and Big Data in Radiomics

Mammography was one of the first imaging modalities to incorporate AI techniques,
beginning with traditional computer-aided detection (CAD) [73]. CAD systems for
mammography have been available for over a decade, meaning that the application of
more recent ML and DL techniques to mammography has an existing benchmark for
comparison [73].

Since then, significant advances in imaging analysis and the development of high-
throughput methods have facilitated the rapid and simultaneous extraction and correlation
of multiple imaging parameters [74].

Artificial intelligence is often associated with radiomics, given that it can be exploited
in different steps of the radiomic workflow. For instance, AI can perform the task of
image segmentation, before radiomic features are extracted. However, this approach is
not often used, because with DL, the steps of image segmentation, feature extraction and
classification are usually performed as a unique task [75].

When handcrafted features are extracted, ML algorithms, such as random forests, neu-
ral networks, linear regression, logistic regression, least absolute shrinkage, and selection
operator, can help in feature selection before building the model [76].

AI studies must pass through rigorous validation steps including defining the imaging
data sets (training, validation, and test sets), defining the ‘ground truth’ reference standard,
having a detailed description of the training approach and metrics of model performance,
and having validation or testing of the algorithm with external data. Three independent
data sets (training, validation, and test sets) are needed: first, the AI algorithms are trained
on an initial set of images according to a reference standard; second, the final algorithm is
validated on a separate set of images; third, an external set of images is used to report the
final statistical results of the AI algorithm [77].

AI methods can relate imaging-based characteristics to clinical, histopathology, or
genomic data, contributing to precision medicine [9].

Moreover, currently unknown correlations between observed phenotypes and geno-
types may be discovered through the mappings between imaging data and genomic
data, providing possibilities to improve early detection and better management of the
disease [8,21–23].

5. Recent Radiomics’ Application in Breast Cancer Care

The recently developed AI algorithms on vast amounts of imaging data has led to
satisfactory models for the application of radiomics in breast cancer care, and even the
patients approve the introduction of AI in clinical practice although only as a support to
radiologist, and not in substitution thereof [78]. Indeed, radiomics already showed valuable
applications in breast imaging practice: it may distinguish between malignant and benign
lesions, assess the tumour subtype and its grade, assess the molecular expressions, and
predict response to therapy and the risk of recurrence [5,9,16–18,20]. With the ability to
infer the molecular profile of the tumour, a specific mutation or genotype, or even defining
treatment possibilities and prognosis in BC patients, radiomics data may substitute physical
breast biopsies in the near future [9,17,20].
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Although radiomics and radio-genomics have great potentialities and offer some
promising applications for personalised medicine [21,22], independent validation datasets
are still needed to confirm the diagnostic and prognostic value of such technologies. They
still need time before playing a significant practical role in cancer research and even more
time to reach clinical practice. This is essentially due to the limitations of the available
big data, which often lacks complete characterisation of the patients, poor integration of
individual datasets, and a widespread misperception about their use and sharing [79].

The following are the updated state of the art of radiomics’ application in breast
cancer care.

5.1. Radiomics as a Virtual Biopsy in Breast Cancer Diagnosis and Classification

The early detection and characterization of BC is crucial to improve outcomes in
women because small non-metastatic disease can be effectively treated with curative
intent [2,80,81]. The diagnosis of breast cancer currently relies on radiological and clinical
evaluation, confirmed by histopathological examination. However, such an approach has
limitations of suboptimal sensitivity, long turnaround time for test results, the invasiveness
of the procedure, and the risk that some features of target lesions may remain undetected,
requiring repeat biopsy.

Radiomics, through the extraction of quantitative peculiar features of BC from imaging
data, may identify diagnostic information of breast cancer, potentially reducing the need
for invasive biopsies, and facilitating an approach that is as personalised as possible for
each patient. From the perspective of truly personalised management of breast cancer,
based on early diagnosis and individually tailored treatments, radiomics is rising as a
means to obtain information from diagnosis to molecular profiling, and treatment response
assessment indeed, without the need of a physically biopsied tissue sample.

Zhou et al. [51] used 99 texture and histogram parameters from 133 patients who
underwent DCE-MRI to differentiate between benign and malignant BC with 91% of
accuracy. Xie et al. [82] analysed radiomics features extracted from 134 BC with similar
accuracy, comparing triple negative breast cancer (TNBC) to the non-TNBC at breast MRI.

In 2018, a retrospective study [83] analysed unenhanced DWI-based radiomics to
determine the malignant nature of suspicious breast lesions detected on screening mam-
mography, decreasing the false-positive results in lesions classified as BI-RADS 4 or 5 at
screening mammography while retaining sensitivity greater than 98%.

Li et al. [84] analysed the radiomic features from mammography in 182 patients
(106 malignant and 76 benign), showing that the performance of the combined lesion and
parenchyma classifier in the differentiation of malignant and benign findings was better
than that which only used the lesion features.

In 2019, a sub-study of a multi-centre and prospective study leaded by Tagliafico
et al. [85] applied a radiomics approach to tomosynthesis for the first time to differentiate
normal from malignant breast tissue in patients with dense breasts in a small number of
40 patients, showing encouraging results.

Luo et al. [86] used radiomics features extracted from breast US of 315 patients to
discriminate benign from malignant lesions.

In 2017, Fan et al. [43] analysed a combined model of DCE-MRI-based radiomics
features and clinical information to predict molecular subtype of BC, with 0.87 of AUC
value. Similar promising results were reported in the 2019 by Xie et al. [87] with texture
features extracted from unenhanced breast MRI, and the 2020 by Demircioglu et al. [88],
on a population of 98 women, showed the usability of a simplified and rapid approach to
tumour for MRI-based decoding and phenotyping of BC.

Despite such encouraging results, radiomics technology is still not ready to substitute
tissue biopsy in the near feature, and even then, they will require the aid of other parameters
to be correctly interpreted and acted upon [9,20].
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5.2. Prediction of Response to Neoadjuvant Chemotherapy

In the last decade, NAT has been increasingly used to treat operable BC, and it is
associated with a favourable treatment response in 30% of women with aggressive BC, and
decreases the rate of recurrence by up to 50% [2].

The achievement of pathological complete response (pCR) is a powerful prognostic
factor for long-term outcome, and it is considered as the only currently validated biomarker
of survival. However, it can only be assessed at surgery so far [89,90]. Therefore, ra-
diomics may allow a non-invasive and earlier detection of treatment resistant lesions, to
avoid the unnecessary toxicity of chemotherapy, and delayed access to other, potentially
effective, therapies.

Several recent studies proposed prediction models of pCR to NAT in BC based
on MRI [16,20,89,91–93], and valuating the pCR prediction by the extraction of
radiomics features from pre-NAT breast MRI, obtaining statistically significant
results [9,16,18,50,94–97].

In 2020, Choudhery et al. [97] used morphological and three-dimensional textural
features to predict the molecular subtype and the pCR in 259 BC patients treated with
NAT, showing significant association with pCR and residual cancer burden in BC. In 2017,
Braman et al. [96] evaluated radiomic features based of both peri- and intra-tumoral regions
on pre-treatment DCE-MRI to predict the pCR to NAT in 117 BC patients, demonstrating
that peri-tumoral radiomics contributed to the successful prediction of the pCR of BC
patients, yielding a maximum AUC of 0.74 within the testing set.

Previously, other authors [43,50,94,95,98] showed that quantitative analyses of ra-
diomic features from pre-treatment breast DCE-MRI data in BC patients could be used as
valuable image markers that are associated with pCR to NAT.

In the above-mentioned studies, DCE had been used more frequently than DWI to
extract radiomics feature as it can provide the tumour’s kinetic characteristics of the contrast
agent by producing pharmacokinetic maps.

In a multicentre study, Liu et al. [91] utilized multiple MRI sequences, including DWI,
to predict pCR to NAT in BC patients. A total of 586 patients were enrolled, and a radiomic
score was calculated using 13,950 features. Quantitative analyses extracted from MRI
provide a promising tool for predicting tumour response in patients with advanced BC and
show the potential and practical value in the clinic.

In 2021, our team performed a retrospective mono-centric study with the aim to assess
radiomics with MRI for the early prediction of pCR in 83 BC patients undergoing NAT,
investigating the correlation between pre-NAT radiomics with DCE-MRI features and
disease-free survival (DFS), and the correlation between post-NAT (residual BC tissue)
radiomics features and DFS [18]. Using 136 representative radiomics features selected
through cluster analysis from the 1037 extracted features, a radiomic score was calculated
to predict the response to NAT, with AUC of 0.64. After combining the clinical, biological
and radiomics models, the AUC was 0.83, showing that MRI-based radiomic features
slightly improved the pre-treatment prediction of pCR to NAT, in addiction to biological
characteristics. The identification of the non-pCR patients in high-risk subgroups (defined
by radiomics features), if confirmed on larger cohorts, could be helpful to identify such
patients, to avoid unnecessary treatment.

5.3. Radiomics for Predicting Lymph Node Metastasis

Axillary lymph node (ALN) status is among the most important breast cancer prog-
nostic factors [99,100]. Radiomics showed encouraging results in predicting the presence
of ALN metastasis. Accordingly, several studies aimed to develop and validate radiomic
nomograms as new tools based on radiomic signatures and clinical-pathologic risk factors
to stratify patients more precisely in risk categories [101–104].

Radiomic nomograms proved to be reliable either when radiomic signatures were
extracted from mammography (AUC up to 0.88) [101], CEM (AUC up to 0.79) [104] and
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MRI (AUC 0.89) [103]. In the latter, Yu et al. also assessed preoperative identification of
ALN metastases and individual DFS in patients with early-stage BC [103].

More recently, the same team [105] implemented the approach with a multi-omics
signature incorporating MRI multi-sequence key radiomic features of ALN and tumour
regions with clinicopathologic characteristics and molecular subtype.

Recurring limitations of the above-mentioned studies were reliance on the retrospec-
tive design of the studies themselves, the heterogeneity of imaging parameters, and the
absence of standardization in the extraction and developing of radiomic features, high-
lighting the common issues of radiomics studies. Cattell et al. [106] aimed to compare
the generalizability of conventional radiomics vs. deep learning based features (using
DCE-MRI) in an independent test set with dissimilar resolution, while developing a pre-
diction model for preoperative prediction of SLN metastases. Interestingly, the features
based on DL outperformed the conventional radiomic model accuracy, particularly in the
independent testing set of dissimilar resolution, indicating that such features can ultimately
result in a more generalizable model. Figure 5 shows the difference between ML and DL
approach, in which the steps of feature extraction, selection and classification are performed
as a unique task.
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5.4. Radiomics for Predicting Breast Cancer Recurrence

Recurrence is the principal cause of breast cancer-related death [107]. Radiomics may
play a role in the prediction of the risk of BC recurrence with the double potential benefits
to reduce overtreatment in the low-risk patients and to reduce the undertreatment in the
high-risk patients with BC.

Even for the prediction of BC recurrence, the most used imaging modality in the
field of radiomics is the breast MRI. Three recent studies [53,108,109] found a statistically
significant correlation between the risk of recurrence and radiomic features extracted
from pre-treatment breast DCE-MRI in patients with invasive BC. In 2018, Park et al. [53]
evaluated 294 MRI and drawn ROIs on entire tumour volume from each of the four distinct
dynamic-series resulting in a radiomic signature which was significantly associated with
worse DFS. In 2020, Chitalia et al. [108] analysed the MRI of 95 BC patients, extracting
radiomics features from the entire tumour volume using only the first and second post-
contrast images: 22 radiomics features were selected to create a tumour heterogeneity index
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that identified phenotypes of low, medium, and high intra-tumour heterogeneity with
statistically significant differences in 10-year recurrence-free survival across phenotypes. In
2019, Mazurowski et al. [109] evaluated radiomics features of the MRI of 892 BC patients
and found tumour size, textural and volumetric measures related to the enhancement had
the strongest association with DFS in the univariate analysis. Most of these variables were
also independently prognostic of outcomes in a multivariate analysis, after controlling
for clinical and pathologic variables. Moreover, the authors also evaluated the prognostic
value of each of the selected variables for specific clinically relevant subsets of patients
(e.g., patients with ER/PR positive tumours, who underwent NAT or received hormonal
therapy), and this increases their applicability in clinical settings.

A recent retrospective study [110] demonstrated that combining MRI radiomic features
of BCs with MRI radiomic features of normal parenchyma from the contralateral breast,
helps in the prediction of BC recurrence, suggesting that the underlying breast environment
may contribute to recurrence more than the cancer biology of the tumour alone.

In 2020, Koh et al. found an association between MRI radiomics features and systemic
recurrence in patients with TNBC. They selected 32 features on the second phase of DCE-
MRI of patients with TNBC before any treatment. Their radiomics model, obtained by
combining the Rad score with clinical and pathologic data, better predicted systemic
recurrence than that of the clinical model alone. However, when they tried to validate the
results with a different MRI scanner, the external validation did not show the radiomics
model to be superior to the clinical model.

In addition to MRI, even mammography and US were used to extract radiomics
features for prediction of histological findings.

In 2021 Xiong et al. [111] developed the first radiomics signature based on US to
predict DFS in women with invasive BC. Their radiomics nomogram proved to be superior
to the clinicopathological nomogram in terms of clinical usefulness. However, a limit of
this US radiomic signature was that it was not reliable for DFS prediction when different
sonographic platforms were used.

In a multicentric study, Yu et al. [112] developed and validated a recurrence risk
model based on radiomics features from US for TNBC patients. The radiomics model,
incorporating a radiomics signature and three prognostic variables, had a better diagnos-
tic performance than that of a radiomics signature and clinicopathological model when
used alone.

In the same year, Dasgupta et al. [113] conducted a prospective study to investigate
the role of pre-treatment quantitative US radiomics in predicting recurrence for patients
with locally advanced BC. They obtained 95 radiomics features including spectral features,
texture, and texture-derivatives ones that have been demonstrated to be related to tissue
microstructural elastic properties. These parameters were selected using the support
vector machine-based model that demonstrated an accuracy of 82% to identify BC patients
developing recurrence.

Concerning mammography, in 2021, Mao et al. [114] developed a mammography-
based radiomics model for predicting the risk of BC: the multivariate logistic regression
model including radiomics signature and clinical risk factors (tumour grade and HER 2)
showed good performance yielding AUC of 0.92 in the training set.

Overall, these studies have shown that that adding radiomics to the standard radio-
logical workflow would improve the prognostic value of breast imaging.

6. Future Trends and Modern Perspectives

Precise identification of cancer subtype and biomarkers of tumour immune biology
play an increasingly important role in prognostication and treatment selection. The oncolog-
ical drive towards multifocal biopsy of heterogenous lesions, multisite biopsy in metastatic
disease, and resampling following therapy calls for non-invasive alternatives [115]. Fu-
sion of data collated in The Cancer Imaging Archives (TCIA) and The Cancer Genome
Atlas (TCGA), with increasingly capable radiomics workflows and the emergence of ra-
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diogenomics stands poised to provide the requisite solutions [116–119]. Non-invasive
biomarkers for predicting response to specific treatments are being validated, and ra-
diomics signatures are en route to support clinical practice. Innovation will be explosive,
and radiologists are the essential partners in testing the translational applications of these
technologies [20].

7. Conclusions

Data from the above-mentioned studies show the advancement in AI technologies in
healthcare and support the potential utility of radiomics analysis in determining breast
cancer biomarker from diagnostic imaging. However, standardization and transparency
across all stages of the radiomics workflow and refinement of AI algorithms are required
for improving reproducibility of radiomics analysis.

The assessment of clinical relevance and impact prior to study commencement, in-
creased level of evidence using studies with large enough datasets and external validation,
and its combination with established methods will help to move the field towards clinical
implementation. As radiomics applications in breast cancer care include diagnosis, prog-
nostication, and prediction of treatment response, a multidisciplinary collaboration among
radiologists, data scientists and imaging scientists is demanded.

Multi-centre prospective oncological and radiological translational research using
real-world heterogeneous datasets may develop radiomics techniques as the paradigm
shifts towards minimally invasive techniques in the scenario of personalised medicine.
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Glossary

Diffusion Weighted Imaging (DWI)
MRI technique based on the random Brownian motion
measure of water molecules within a voxel of tissue.

Machine learning

A branch of artificial intelligence involving use and
development of computer systems that are able to learn and
adapt without following explicit instructions, by using
algorithms and statistical models to analyse and draw
inferences from patterns in data.

Radiomic features
Characteristics of a tissue or a lesion that can be extracted in
form of data.

ROI
acronym of Region of Interest, the portion of an image over
which radiomics features are extracted. It can be delineated
manually, in semi-automatic of fully automatic way.

Radiomic signature

Computational model which aims to address either unmet
clinical needs, mostly in the field of oncologic imaging, as
biomarkers, for example, or to compare radiomics
performance with that of radiologists.
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