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Abstract: Background: This study aimed to develop and internally validate computed tomography
(CT)-based radiomic models to predict the lesion-level short-term response to tyrosine kinase in-
hibitors (TKIs) in patients with advanced renal cell carcinoma (RCC). Methods: This retrospective
study included consecutive patients with RCC that were treated using TKIs as the first-line treatment.
Radiomic features were extracted from noncontrast (NC) and arterial-phase (AP) CT images. The
model performance was assessed using the area under the receiver operating characteristic curve
(AUC), calibration curve, and decision curve analysis (DCA). Results: A total of 36 patients with
131 measurable lesions were enrolled (training: validation = 91: 40). The model with five delta
features achieved the best discrimination capability with AUC values of 0.940 (95% CI, 0.890–0.990)
in the training cohort and 0.916 (95% CI, 0.828–1.000) in the validation cohort. Only the delta model
was well calibrated. The DCA showed that the net benefit of the delta model was greater than that of
the other radiomic models, as well as that of the treat-all and treat-none criteria. Conclusions: Models
based on CT delta radiomic features may help predict the short-term response to TKIs in patients
with advanced RCC and aid in lesion stratification for potential treatments.

Keywords: radiomics; renal cell carcinoma; tyrosine kinase inhibitor; molecular targeted therapy;
treatment response

1. Introduction

Vascular endothelial growth factor (VEGF) has a well-characterized role in angiogene-
sis, which is critical in the carcinogenesis and the pathophysiology of renal cell carcinoma
(RCC) [1]. Leveraging the molecular mechanism of angiogenesis, targeted therapies against
the VEGF pathway have become the first-line treatments for advanced or metastatic RCC
(mRCC), of which treatment with tyrosine kinase inhibitors (TKIs) has significantly im-
proved the survival of patients with mRCC in the past decade [2].

Despite the use of clinical prognostic models, such as the International Metastatic Renal
Cell Carcinoma Database Consortium (IMDC) score, radiomics has been used to identify
patient subgroups responsive to TKI treatment. In previous studies, the features of each
lesion and the average values of each feature were used to predict patient-level responses.
In a study by Haider et al., size-normalized standard deviation in baseline computed
tomography (CT) images was determined to be a significant predictor of progression-free
survival (PFS) and to improve the prognostic performance of IMDC [3]. In addition, Goh
et al. found that the percentage change in coarse uniformity between the baseline CT and the
CT after two treatment cycles independently predicted the time to progression [4]. Notably,
the features used in previous studies were derived from a single phase. Considering
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the mechanism of TKIs and the clinical practice of radiologists, the difference between
arterial-phase (AP) features and noncontrast (NC) features, namely delta features, reflects
the vascularization or perfusion of the lesion and thus may better predict the response to
anti-VEGF-based TKIs.

Not all lesions benefit from TKI treatment. Recent studies have reported heteroge-
neous radiological responses [5,6]. The term refers to the fact that the responses of the
lesions in one patient fall into at least two response categories which reflect different drug
sensitivity between lesions [5]. Response Evaluation Criteria In Solid Tumors (RECIST)
is commonly applied for response assessment in metastatic cancers. However, in cases
of treatment discontinuation owing to RECIST-defined disease progression, a number of
lesions may remain controlled. In addition, the occurrence of small new lesions may require
switching to alternative therapies, even if several large lesions remain controlled [7]. This
necessitates studies on the radiomic assessment of the lesion-level response to TKIs and on
the stratification of lesions with different progression risks. Yet, published studies on these
aspects are still scant.

In this preliminary study, we aimed to develop and internally validate machine-
learning models using radiomics features extracted from pretreatment CT images to predict
the lesion-level short-term response to TKIs in patients with advanced RCC. Simultane-
ously, we aimed to investigate the predictive value of delta radiomics features, which are
calculated by subtracting NC CT radiomics features from AP CT radiomics features.

2. Materials and Methods

The institutional review board of our institution approved this study, and the require-
ment for written informed consent was waived for this retrospective analysis.

2.1. Study Population

This retrospective study screened consecutive patients with RCC treated using TKIs as
their first-line treatment between January 2008 and October 2021 at our institution. Patients
were included if they met all of the following criteria: (a) patients who had pathologically
proven recurrent or metastatic clear-cell RCC and (b) patients who were treated with
sunitinib, axitinib, sorafenib, or pazopanib as their first-line treatment. Patients were
excluded if they met any of the following criteria: (a) patients with previous systemic
therapy, (b) patients who did not complete the treatment cycle (for example, financial
burden or side effects), (c) patients without necessary clinical data (for example, date of
treatment onset), (d) patients without baseline CT or follow-up CT images, (e) patients
with poor image quality, or (f) patients with no measurable lesions on baseline NC or AP
CT images.

Finally, 36 patients with 131 measurable lesions were enrolled in our study (Figure 1).
All images and electronic clinical information were deidentified before being transferred to
the investigators.

2.2. CT Image Acquisition and Preprocessing

The baseline and follow-up CT images of the chest, abdomen, and pelvis were per-
formed using 128-slice Siemens SOMATOM Force, 256-slice Siemens Definition Flash,
256-slice GE Revolution Apex, or 320-slice UNITED IMAGING UCT960 with the following
parameters: tube voltage, 120 keV; tube current, 210 mAs; collimation, 1 mm; and slice
thickness, 2 mm. AP images were obtained 30 s after an intravenous bolus injection of the
contrast agent (Omnipaque 300, GE Healthcare, Shanghai, China) at a concentration of
350 mg/mL and a rate of 1.5 mL/s using a high-pressure pump syringe. The CT images
were resampled with a 5 mm slice thickness.



J. Clin. Med. 2023, 12, 1301 3 of 11
J. Clin. Med. 2023, 12, x FOR PEER REVIEW 3 of 11 
 

 

 

Figure 1. Flowchart for selecting the study population. 

2.2. CT Image Acquisition and Preprocessing 

The baseline and follow-up CT images of the chest, abdomen, and pelvis were per-

formed using 128-slice Siemens SOMATOM Force, 256-slice Siemens Definition Flash, 

256-slice GE Revolution Apex, or 320-slice UNITED IMAGING UCT960 with the follow-

ing parameters: tube voltage, 120 keV; tube current, 210 mAs; collimation, 1 mm; and slice 

thickness, 2 mm. AP images were obtained 30s after an intravenous bolus injection of the 

contrast agent (Omnipaque 300, GE Healthcare, Shanghai, China) at a concentration of 

350 mg/mL and a rate of 1.5 mL/s using a high-pressure pump syringe. The CT images 

were resampled with a 5 mm slice thickness. 

2.3. Lesion Identification and Outcome Analysis 

The baseline image was defined as the CT image obtained within 28 days before treat-

ment onset, and the follow-up image was defined as the CT image obtained six months 

after treatment onset. In this study, one radiologist, specialized in abdominal imaging, 

analyzed all RECIST-defined measurable lesions. Specifically, tumorous lesions with their 

longest diameter larger than 10 mm and lymph node lesions with a short axis larger than 

15 mm were included. First, patient-level responses were evaluated according to the (Re-

sponse Evaluation Criteria in Solid Tumours) RECIST v 1.1. The presence of new lesions 

was considered as a progressive disease at the patient level. Second, based on the relative 

size change compared with that at baseline, each lesion was classified into one of three 

response categories [5]: responding lesions (RL), characterized by a decrease in size of 

≥30%; progressing lesions (PL), characterized by an increase in size of ≥20%; or stable le-

sions (SL), which did not comply with any of the above two criteria. PLs were considered 

positive samples, while SLs and RLs were considered negative samples. Furthermore, if 

Figure 1. Flowchart for selecting the study population.

2.3. Lesion Identification and Outcome Analysis

The baseline image was defined as the CT image obtained within 28 days before
treatment onset, and the follow-up image was defined as the CT image obtained six months
after treatment onset. In this study, one radiologist, specialized in abdominal imaging,
analyzed all RECIST-defined measurable lesions. Specifically, tumorous lesions with their
longest diameter larger than 10 mm and lymph node lesions with a short axis larger than
15 mm were included. First, patient-level responses were evaluated according to the
(Response Evaluation Criteria in Solid Tumours) RECIST v 1.1. The presence of new lesions
was considered as a progressive disease at the patient level. Second, based on the relative
size change compared with that at baseline, each lesion was classified into one of three
response categories [5]: responding lesions (RL), characterized by a decrease in size of
≥30%; progressing lesions (PL), characterized by an increase in size of ≥20%; or stable
lesions (SL), which did not comply with any of the above two criteria. PLs were considered
positive samples, while SLs and RLs were considered negative samples. Furthermore, if the
responses of the lesions in one patient fell into at least two response categories, lesion-level
responses were considered heterogeneous.

2.4. Image Segmentation

The volumes of interest (VOIs) of the included lesions were segmented on axial
NC and AP CT images using the ITK-SNAP software (v3.8.0, http://www.itksnap.org
accessed on 21 December 2022). VOIs involving the gross volume were delineated in
the lung (level, −500 HU; width, 1750 HU) or soft tissue (level, 40 HU; width, 400 HU)
window settings according to their locations. One radiologist, who had two years of
experience and was not included in the outcome analysis, independently segmented
all lesions without any knowledge of the patients’ clinicopathological data and lesion
outcomes. To test the intrareader reliability of segmentation, the procedure was repeated

http://www.itksnap.org
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by the same radiologist on 30 randomly selected lesions. Two sets of radiomics features
were extracted and compared using the intraclass correlation coefficient (ICC).

2.5. Feature Extraction

The workflow of radiomic analysis is demonstrated in Figure 2. For each phase,
107 radiomics features were extracted. These features were consistent with the Image
Biomarker Standardization Initiative [8]. A total of 93 delta radiomics features were
computed as the arithmetic difference between the NC and AP features. Because tumor
shape was consistent during the CT scans, shape-based delta features were not calculated
(n = 14). Detailed information regarding the extracted radiomic features can be found in
the online documentation (https://pyradiomics.readthedocs.io/en/stable/features.html
accessed on 21 December 2022).
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2.6. Feature Dimensional Reduction and Selection

First, features with low reproducibility (ICC < 0.75) were excluded. Second, the
included features were normalized using Z-score standardization. Pairwise Pearson’s
correlation analysis was used to remove redundant features. For highly correlated features
(Pearson’s correlation coefficient > 0.95), the feature with a higher average absolute corre-
lation was removed. Subsequently, the included features were ranked using the F-value
of analysis of variance. The F-value estimates the degree of linear dependency between
the features and the outcome to be predicted. Features with the top 10 F-values were
entered in the least absolute shrinkage and selection operator (LASSO) regression, and
non-zero-weighted features were selected for the final models. The hyperparameter lambda
value in LASSO was determined by five-fold cross -validation using the training data to
minimize the mean square error (MSE).

2.7. Modeling and Evaluation

Four models were developed: (1) the NC model using NC features, (2) the AP model
using AP features, (3) the NC + AP model using both NC and AP features, and (4) the
delta model using delta features. Using stratified sampling, the lesions were divided into
training and validation cohorts at a ratio of 7:3. Decision tree models were trained to
classify the samples. To avoid overfitting, the maximum depths of the decision tree models
were set to 3. The optimal cut-off values were identified to attain the highest sensitivity
while maintaining a specificity of >0.8 in the training cohort. The area under the receiver
operating characteristic (ROC) curve (AUC) was used to assess the discrimination ability
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of the models. Calibration curve analysis was used to graphically report the calibration
ability of the models. The sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy were used to measure the classification performance
of the models. Decision curve analysis (DCA) was used to describe and compare the clinical
effects of the models. Feature extraction, feature selection, modeling, and validation were
implemented using pyradiomics (v3.0), SciPy (v1.8.0), and scikit-learn (v1.1.1) in Python
(v3.7.9, https://www.python.org accessed on 21 December 2022).

2.8. Statistical Analysis

Descriptive analyses were performed to describe the demographic data characteristics.
Variables were compared between the training and validation cohorts using Student’s
t-test or the Mann–Whitney U test for continuous variables, the chi-square test or Fisher’s
exact test for unordered categorical variables, and the Mann–Whitney U test for ordered
categorical variables. Delong’s test was used to compare the ROC curves between the
models. Statistical significance was set at p < 0.05. Delong’s test was performed with pROC
(v1.18.0) in R (v4.2.1, https://www.r-project.org accessed on 21 December 2022), and other
statistical analyses were performed using SciPy (v1.8.0) and pyirr (v0.84.1.1) in Python.

3. Results
3.1. Patient Characteristics

The clinical characteristics of the patients are summarized in Table 1. According to
RECIST, at six months, 14 patients (38.9%) achieved partial response (PR), 14 patients
(38.9%) had stable disease (SD), and 8 patients (22.2%) had progressive disease (PD).
Heterogeneous or mixed responses were observed in 13 of 36 patients (36.1%), including 6
of the 14 patients showing PR (42.9%), 3 of the 14 patients having SD (21.4%), and 4 patients
having PD (50%).

Table 1. Patient characteristics.

Parameters PR (n = 14) SD (n = 14) PD (n = 8)

Age (years) * 55 (50–67) 58 (49–62) 62 (56–70)
Gender

male 10 (71.4%) 9 (64.3%) 7 (87.5%)
female 4 (28.6%) 5 (35.7%) 1 (87.5%)

MSKCC group
favorable risk 4 (28.6%) 3 (21.4%) 0 (0.0%)

intermediate risk 9 (64.3%) 7 (50.0%) 7 (87.5%)
poor risk 1 (7.1%) 4 (28.6%) 1 (12.5%)

IMDC group
favorable risk 4 (28.6%) 3 (21.4%) 0 (0.0%)

intermediate risk 8 (57.1%) 5 (35.7%) 5 (62.5%)
poor risk 2 (14.3%) 6 (42.9%) 3 (37.5%)

Medication
sunitinib 11 (78.6%) 6 (42.9%) 5 (62.5%)
axitinib 3 (21.4%) 7 (50.0%) 3 (37.5%)

sorafenib 0 (0.0%) 1 (7.1%) 0 (0.0%)
Lesion-level response

homogeneity 8 (57.1%) 11 (78.6%) 4 (50.0%)
heterogeneity 6 (42.9%) 3 (21.4%) 4 (50.0%)

* The data are median with interquartile range in parentheses. Note: IMDC, International Metastatic Renal Cell
Carcinoma Database Consortium score; MSKCC, Memorial Sloan Kettering Cancer Center score; PD, progressive
disease; PR, partial response; SD, stable disease.

3.2. Outcome Evaluation

The lesions were separated as follows: training cohort (74 RLs/SLs and 17 PLs; 70%)
and validation cohort (33 RLs/SLs and 7 PLs; 30%). The characteristics of the lesions are

https://www.python.org
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shown in Table 2. The results indicated no significant differences between the training and
validation cohorts.

Table 2. Lesion Characteristics.

Parameters Training Cohort (n = 91) Validation Cohort (n = 40) p-Value

Baseline size (mm) * 15.8 (11.8–23.2) 15.7 (13.2–20.0) 0.759
Six-month size (mm) * 12.9 (7.8–20.7) 14.1 (9.2–19.7) 0.747

Response 0.591
responding lesion 41 (45.1%) 15 (37.5%)

stable lesion 33 (36.3%) 18 (45.0%)
progressing lesion 17 (18.7%) 7 (17.5%)

Location 0.165
lung 63 (69.2%) 32 (80.0%)

kidney 10 (11.0%) 5 (12.5%)
lymph node 5 (5.5%) 0 (0.0%)

adrenal gland 3 (3.3%) 0 (0.0%)
pancreas 3 (3.3%) 0 (0.0%)

peritoneum 3 (3.3%) 1 (2.5%)
pleura 2 (2.2%) 0 (0.0%)
liver 2 (2.2%) 0 (0.0%)
bone 0 (0.0%) 2 (5.0%)

* The data are median with interquartile range in parentheses.

3.3. Feature Selection and Model Development

All NC and AP features had ICC values > 0.75. Thirteen delta features had ICC values
< 0.75 and, thus, were excluded. Subsequently, 55, 48, 110, and 19 redundant features
were excluded from the NC, AP, NC + AP, and delta models, respectively. The MSEs
of the NC, AP, NC + AP, and delta LASSO model in cross-validation were 0.154, 0.150,
0.149, and 0.151, respectively. After performing the LASSO regression, two, five, four,
and six non-zero-weighted features were used to train the NC, AP, NC + AP, and delta
models, respectively.

The selected features and the Gini importance in each decision tree model are listed
in Table 3. In the NC model, “cluster tendency” and “cluster shade” contributed to the
classification. In the AP model, “cluster shade”, “90th intensity percentile”, and “low-
dependence low-gray level emphasis” contributed to the classification. In the NC + AP
model, “cluster tendency”, “cluster shade”, “90th intensity percentile”, and “maximum
intensity” contributed to the classification. In the delta model, “delta maximum intensity”,
“delta discretized intensity uniformity”, “delta 90th intensity percentile”, “delta zone size
entropy”, and “delta intensity range” contributed to the classification. The decision tree
structures are shown in Supplementary Figures S1–S4. The models and code examples for
using the models can be found in online files (https://github.com/DOCT-Y/TKI-RCC-
delta-radiomics accessed on 21 December 2022).

3.4. Model Evaluation

The model performance of the training and validation cohorts is presented in Table 4.
In the training cohort, the NC, AP, NC + AP, and delta models achieved AUC values of
0.849 (95% confidence interval [CI]: 0.779–0.918), 0.872 (95% CI: 0.795–0.949), 0.905 (95%
CI: 0.853–0.958), and 0.940 (95% CI: 0.890–0.990), respectively. The AUC of the delta model
was significantly different from that of the NC model (p = 0.049) but comparable to that of
the AP and NC + AP models (p = 0.131 and 0.339, respectively) in the training cohort. The
NC + AP model exhibited the highest sensitivity (0.882), and the delta model exhibited the
highest accuracy (0.879).

https://github.com/DOCT-Y/TKI-RCC-delta-radiomics
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Table 3. Feature Importance in Each Model.

Model Phase Feature Class Feature Name Gini Importance

NC
noncontrast GLCM cluster tendency 0.783
noncontrast GLCM cluster shade 0.217

AP

arterial phase GLCM cluster shade 0.409
arterial phase Intensity 90th intensity percentile 0.343
arterial phase NGLDM LDLGLE 0.249
arterial phase Intensity intensity kurtosis 0
arterial phase Intensity maximum intensity 0

NC + AP

noncontrast GLCM cluster tendency 0.379
noncontrast GLCM cluster shade 0.351

arterial phase Intensity 90th intensity percentile 0.245
arterial phase Intensity maximum intensity 0.026

delta

/ Intensity maximum intensity 0.332
/ Intensity discretized intensity uniformity 0.255
/ Intensity 90th intensity percentile 0.201
/ GLSZM zone size entropy 0.122
/ Intensity intensity range 0.090
/ Intensity discretized intensity entropy 0

Note: AP, arterial-phase model; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix;
LDLGLE, low-dependence low gray-level emphasis; NC, noncontrast model; NC + AP, noncontrast plus arterial-
phase model.

Table 4. Model Performance.

Model Cut-Off Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) p-Value *

NC 0.290 Training 0.294 0.987 0.833 0.859 0.857 0.849 (0.779–0.918) 0.049
Validation 0.286 0.939 0.500 0.861 0.825 0.710 (0.529–0.891) 0.056

AP 0.136 Training 0.706 0.878 0.572 0.929 0.846 0.872 (0.795–0.949) 0.131
Validation 0.429 0.909 0.500 0.882 0.825 0.803 (0.677–0.929) 0.041

NC + AP 0.167 Training 0.882 0.838 0.556 0.969 0.846 0.905 (0.853–0.958) 0.340
Validation 0.143 0.849 0.167 0.824 0.725 0.708 (0.516–0.900) 0.020

delta 0.131 Training 0.824 0.892 0.636 0.957 0.879 0.940 (0.890–0.990) /
Validation 0.714 0.909 0.625 0.938 0.875 0.916 (0.828–1.000) /

* The Delong test for delta model and the others. Note: AP, arterial-phase model; AUC, area under receiver
operating characteristic curve; CI, confidence interval; NC, noncontrast model; NC + AP, noncontrast plus
arterial-phase model; NPV, negative predictive value; PPV, positive predictive value.

In the validation cohort, the four models achieved AUC values of 0.710 (95% CI:
0.529–0.891), 0.803 (95% CI: 0.677–0.929), 0.708 (95% CI: 0.516–0.900), and 0.916 (95% CI:
0.828–1.000), respectively. The AUC of the delta model was significantly different from that
of the AP and NC + AP models (p = 0.041 and 0.020, respectively) but comparable to that of
the NC model (p = 0.056) in the validation cohort. The delta model exhibited the highest
sensitivity (0.714) and accuracy (0.875).

All models were well calibrated in the training cohort, whereas only the delta model
remained well calibrated in the validation cohort (Figure 3). The result of the DCA showed
that the net benefit of the delta model was greater than that of the NC, AP, and NC + AP
models, as well as the treat-all and treat-none criteria (Figure 4).
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4. Discussion

In this study, radiomics models based on pretreatment CT images were developed
and internally validated to predict lesion-level short-term responses to TKIs in patients
with advanced RCC. As a result, the model based on delta radiomics features exhibited
the highest AUC value of 0.916 in the validation cohort. Its calibration curve and decision
curve revealed good fitness and higher benefits in clinical practice. Therefore, the model
derived from CT-based delta radiomics features could help predict lesion-level short-term
response to TKIs to aid in defining treatment strategies and making clinical decisions in
patients with advanced RCC.

In our study, the first tree node of the delta model correctly ruled out most of the
SLs/RLs by using a larger delta intensity maximum value. This feature represented the
largest difference in voxel intensities between the AP and the precontrast phase. The
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delta intensity maximum had the highest Gini importance in the delta model, which
supported the hypothesis that the perfusion of lesions can predict the response to TKIs.
In the following tree nodes, we found that some SLs/RLs showed lower values of delta-
discretized intensity uniformity and delta 90th intensity percentile than PLs. The more
homogeneous enhancement the lesion shows, the lower the number of gray levels in the
AP the lesion has, and the larger the delta-discretized intensity uniformity is supposed to
be. Similar to the delta intensity maximum, the delta 90th intensity percentile represented
almost the largest difference in voxel intensities between the AP and the precontrast phase.
Taken together, the lower values of the two features indicated that some SLs/RLs had
lower enhancement than PLs, which contradicted the hypothesis. Thus, lesions with high
enhancement may usually show PR or may remain stable, whereas the responses of the
lesions with low enhancement are uncertain. This was reflected in the model performance:
a high NPV value but a relatively low PPV.

Since TKIs target the VEGF pathway, lesion enhancement is, theoretically, a good
predictor of response. However, lesions at different locations could not achieve the highest
enhancement together at the scanning time point. The image intensity may vary among
different vendors and scanners. Thus, the difference between the AP and the precontrast
phase may not represent the true perfusion of the lesions. We noticed that the texture
features, including cluster shade, cluster tendency, zone size entropy, and low-dependence
low-gray-level emphasis, were predictive in the radiomics models. This result suggests
that intratumor heterogeneity, in addition to perfusion, may reflect tumor aggressiveness
and is valuable in the prediction of TKI response.

Previous studies used the average feature values of all the lesions in each patient to
predict patient-level response to TKIs [3,4]. A recent study used AP radiomic features
of a CT image to predict treatment response to TKIs [9]. The model did not achieve
the best performance (AUC = 0.66). In our study, the AP model was also not the best,
indicating that when predicting TKI response, AP features may not be the best solution.
Our results showed the delta features, arithmetic differences between the NC and AP
features, can better predict the early response of TKI treatment. Yet, studies on lesion-level
prediction are scarce. In our study, radiomics models were developed based on lesion-level
radiomics features, which were used to predict the response of each lesion. Heterogeneous
radiological responses exist. The results of our study showed that heterogeneous responses
to TKIs were observed in 13 of the 36 included patients (36.1%). Lesion-level prediction
of the response to TKIs can help identify the lesions that may or may not benefit from the
treatment. Metastasectomy is a potential treatment option, in addition to systemic therapy,
to decrease tumor burden and sometimes achieve complete remission of the disease [10,11].
The surgical excision of metastases was reported to prolong the survival time of patients
with mRCC [12–14]. Through stratification using the lesion-level radiomics predictive
model, metastasectomy can be performed on some lesions with a high risk of progression,
while the majority of lesions with a model-predicted preferable response can remain on
TKI therapy.

This study has some limitations that must be acknowledged. First, selection bias
inevitably existed because of the retrospective nature of the study. Second, the sample size
and the number of PLs were limited. To reduce the risk of overfitting, we extracted only 107
radiomics features from the original CT images and did not use image filters. In addition,
we fully reported the model performance of discrimination, calibration, and clinical utility
to avoid optimism in the evaluation. Third, we could not assess the lesion-level PFS and,
thus, could not perform the survival analysis. All the lesions in one patient were “lost”
during the follow-up after switching the therapy owing to patient-level disease progression,
including an increase in the sum of the longest diameters and the occurrence of new lesions.
Thus, the current model predicted the response at a single time point. In addition, acquired
resistance may develop as the treatment progresses. Thus, we developed the model for the
prediction of response six months after treatment onset.
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5. Conclusions

Models based on CT delta radiomics features may help predict the short-term response
to TKIs in patients with advanced RCC and aid in lesion stratification for potential treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12041301/s1, Figure S1: The tree structure of NC model;
Figure S2: The tree structure of AP model; Figure S3: The tree structure of NC + AP model; Figure S4:
The tree structure of delta model; Tripod-Checlist-Prediction-Model-Development; TRIPOD checklist;
The checklist of TRIPOD to ensure the quality of reporting for predictive model studies.
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