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Abstract: Diabetic peripheral neuropathy (DPN) is the leading cause of neuropathy worldwide
resulting in excess morbidity and mortality. We aimed to develop an artificial intelligence deep
learning algorithm to classify the presence or absence of peripheral neuropathy (PN) in participants
with diabetes or pre-diabetes using corneal confocal microscopy (CCM) images of the sub-basal
nerve plexus. A modified ResNet-50 model was trained to perform the binary classification of PN
(PN+) versus no PN (PN—) based on the Toronto consensus criteria. A dataset of 279 participants
(149 PN—, 130 PN+) was used to train (n = 200), validate (n = 18), and test (n = 61) the algorithm,
utilizing one image per participant. The dataset consisted of participants with type 1 diabetes (1 = 88),
type 2 diabetes (n = 141), and pre-diabetes (1 = 50). The algorithm was evaluated using diagnostic
performance metrics and attribution-based methods (gradient-weighted class activation mapping
(Grad-CAM) and Guided Grad-CAM). In detecting PN+, the Al-based DLA achieved a sensitivity of
0.91 (95%ClI: 0.79-1.0), a specificity of 0.93 (95%CI: 0.83-1.0), and an area under the curve (AUC) of
0.95 (95%ClI: 0.83-0.99). Our deep learning algorithm demonstrates excellent results for the diagnosis
of PN using CCM. A large-scale prospective real-world study is required to validate its diagnostic
efficacy prior to implementation in screening and diagnostic programmes.

Keywords: artificial intelligence; corneal confocal microscopy; diabetic peripheral neuropathy

1. Introduction

Diabetic peripheral neuropathy (DPN) can lead to neuropathic pain, foot ulcers, am-
putation, and premature mortality. Early screening and diagnosis are key to implement
risk factor reduction to prevent or delay the progression of DPN [1]. Corneal confocal
microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that enables
quantification of the corneal sub-basal nerve plexus to detect early DPN [2,3]. Artificial
intelligence (AI) and Al-based deep learning algorithms (DLAs) have been utilized to
accurately diagnose DPN [4-7]. We previously developed an Al-based DLA for the seg-
mentation of corneal nerves [7]. More recently, we developed an Al-based DLA [4] utilizing
end-to-end classification to analyze CCM images and classify healthy controls and people
with diabetes or pre-diabetes with and without peripheral neuropathy (PN). In a clinical
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diabetes outpatient/screening environment, rapid, reproducible tests are required to define
the presence or absence of DPN (binary classification). We hypothesized that an Al-based
DLA with a binary classification would outperform our previously published multi-class
classification approach. We propose a novel DLA for the binary classification of peripheral
neuropathy (PN+) versus no PN (PN—) in people with diabetes and pre-diabetes.

2. Materials and Methods
2.1. Dataset and Participants

The dataset (ENA group, University of Manchester, UK) consisted of CCM images
from 279 participants (type 1 diabetes with PN— [n = 49], type 1 diabetes with PN+ [n = 39],
type 2 diabetes with PN— [nn = 74], type 2 diabetes with PN+ [n = 67], pre-diabetes with PN—
[n = 26], and pre-diabetes with PN+ [n = 24]) using a standard validated protocol. Of the
279 participants, 149 had PN— and 130 had PN+ and their clinical characteristics and neu-
ropathy data can be found in our previously published study [4]. PN was defined according
to the Toronto consensus on diabetic neuropathy [8] and pre-diabetes was defined using
WHO/ADA criteria. Additional causes of peripheral neuropathy were excluded based on a
comprehensive medical and family history and blood tests (immunoglobulins, anti-nuclear
antibody, vitamin B12 levels, thyroid function tests). Ethical and institutional approvals
were obtained before the participants completed the scientific protocol including CCM
imaging which was conducted as a part of 4 longitudinal cohort studies (North Manchester
Research Ethics committee, Ref: 09/H1006/38; North West-Greater Manchester East, Ref:
14/NW/0093; Central Manchester Local Research Ethics Committee, Ref: 07/H1006/68;
and National Research Ethics Service committee North West, Ref: 08/H1004/1). All indi-
viduals provided informed valid consent prior to participation. The research adhered to
the tenets of the Declaration of Helsinki.

2.2. Algorithm Architecture and Implementation

The Al-based DLA was developed by modifying our previously devised DLA [4]
which utilized the pre-trained residual neural network ResNet-50 [9] as the backbone
network to perform the classification task. An additional dropout layer with a dropout
rate of 0.4 was added to increase the algorithm’s generalisability. One additional fully
connected layer with two output neurons was also added to predict the final binary
classification results. Data augmentation techniques such as random rotation (0-30 degrees),
and horizontal flips with a probability of 0.3 were used during the training process to avoid
overfitting problems and increase the algorithm’s generalisability. Stochastic gradient
descent with a momentum of 0.9 was adopted to optimize the algorithm. The algorithm
was trained for 300 epochs with a learning rate of 0.0001 and a step decay rate of 0.999
every 30 epochs for steady parameter optimization during training. Bilinear interpolation
was used to reduce the picture from 384 x 384 to 224 x 224 pixels. The image channel was
increased from 1 to 3 by replicating along the channel, turning the single-channel grayscale
CCM images into three-channel ‘colourscale” images. This allowed the images to fit into
the ResNet-50 model, pre-trained on ImageNet [10], to limit overfitting and remedy the
poor generalisation ability resulting from the limited dataset size used. The pixel value
was scaled into [0-1] by dividing by 255, and then normalised into the range of [-1, 1] by
using a mean value of 0.5 and a standard deviation value of 0.5 for three channels. Such
pixel-wise normalisation can prevent gradient vanishing or exploding during training,
resulting in a steady training process.

The algorithm was developed and evaluated on the CCM images from 279 participants
(149 PN —, 130 PN+), utilizing one image per participant. Random seeds were automatically
generated to split the dataset into training, validation, and testing sets, containing 200
(112 PN—, 88 PN+), 18 (8 PN—, 10 PN+), and 61 images (29 PN—, 32 PN+), respectively.
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2.3. Performance Evaluation

Performance was evaluated by generating a confusion matrix, a table displaying
the true classifications against the classifications predicted by the Al-based DLA. Based
on this information, a classification report was generated with the performance metrics:
sensitivity, specificity, and area under the curve (AUC). Attribution-based methods of
Gradient-weighted Class Activation Mapping (Grad-CAM) and Guided Grad-CAM [11]
were used to generate saliency maps to provide explainability to the Al-based DLA decision
making.

3. Results

The confusion matrix generated after the trained Al-based DLA had classified the
test dataset (n = 61) is displayed in Table 1. Of the PN— images in the test set (1 = 29), 27
were correctly detected, and 2 were misclassified as PN+. Of the PN+ images in the test set
(n = 32), 29 were correctly detected and 3 were misclassified as PN—. The Al-based DLA
had a sensitivity of 0.91 (95% CI: 0.79-1.0), a specificity of 0.93 (95% CI: 0.83-1.0), and an
AUC of 0.95 (95% CI: 0.83-0.99) in detecting PN+ (Figure 1).

Table 1. Confusion matrix of the Al-based DLA in participants with diabetes and pre-diabetes with
and without peripheral neuropathy.

Predicted Class

PN— PN+
PN— 27 2
True Class
PN+ 3 29

List of abbreviations: PN+—peripheral neuropathy; PN——no peripheral neuropathy.
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Figure 1. ROC (receiver operating characteristic) curve of PN+. The black line corresponds to the
ROC curve and the blue area corresponds to the 95% confidence interval. List of abbreviations:
PN+—peripheral neuropathy.

Figure 2 demonstrates representative Grad-CAM and Guided Grad-CAM saliency map
images from subjects with correctly detected PN— and correctly detected PN+. Corneal
nerves were highlighted in both correctly detected PN— and PN+ images, particularly
evident in the Guided Grad-CAM images. Based on previous studies [2], these were
appropriate features for the Al-based DLA to be utilizing for classification. However, due
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to the post-hoc nature of these explainability methods they are less informative in explaining
individual decisions, with interpretations risking confirmation bias and misuse [12].

PN- PN+

Original

Grad-CAM

Guided
Grad-CAM

Figure 2. Example saliency map images from correctly detected PN— (columns 1,2,3) and PN+
(columns 4,5,6). Highlighted areas within the Grad-CAM and Guided Grad-CAM images demonstrate
the areas in the image which impacted the classification decision most. For Grad-CAM images, the
areas of the image highlighted in red had the most impact on the classification decision, followed by
orange, yellow, green, light blue, and dark blue. Top row, original images; middle row, Grad-CAM
images; bottom row, Guided Grad-CAM images. List of abbreviations: PN+—peripheral neuropathy;
PN——no peripheral neuropathy.

4. Discussion

In this study, we propose an accurate Al-based DLA for the binary classification of
patients with pre-diabetes and diabetes into those with and without PN through analysis
of their CCM images. We have validated the algorithm’s ability to accurately perform
this binary classification and demonstrate superior performance to our previous Al-based
DLA [4]. Our Al-based DLA provides several potential benefits: (1) achieves excellent
results in the classification of PN+ vs. PN— (AUC 0.95); (2) provides the clinically relevant
binary classification outcome of PN+ vs. PN— with utility in a diabetes outpatient setting;
(3) performs classification without the need for expert annotation, remedying operator bias
or automated segmentation with a reliance on pre-determined morphological parameters;
and (4) provides rapid automated classification of CCM images which can enable its use in
the screening of DPN in a future bespoke diabetic neuropathy screening service.

Several studies have demonstrated successful results in the classification of DPN
using Al-based DLAs to analyse CCM images [4-7]. Scarpa et al. [6] utilized three non-
overlapping images of each eye per participant to classify them as a control or PN+,
achieving a sensitivity of 0.98, a specificity of 0.96, and accuracy of 0.97. Williams et al. [7]
developed a DLA to quantify the corneal nerve morphometrics of CCM images, demon-
strating a sensitivity of 0.68, a specificity of 0.87, and an AUC of 0.83 in the classification of
PN+. Salahouddin et al. [5] used a U-net DLA, achieving a sensitivity of 0.92, a specificity of
0.8, and an AUC of 0.95 in the classification of PN— vs. PN+. Our previous Al-based DLA
performed a multi-class classification between healthy controls, PN—, and PN+, demon-
strating a sensitivity of 0.83, a precision of 1.0, and F1-score of 0.91 in the classification of
PN+ [4]. Our binary classification model outperformed our multi-class classification model
as expected, while also demonstrating a more clinically relevant classification to a clinical
diabetes outpatient/screening environment in classifying the presence or absence of DPN.

The life expectancy of people with diabetes is shortened by up to 15 years, with 75%
dying prematurely of diabetes-related complications [13]. DPN affects at least 50% of
people with diabetes and is the major driving factor for foot ulceration and subsequent
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lower limb amputation [14]. Around 50% of patients who develop a diabetic foot ulcer
die within 5 years [13]. Neuropathic pain is a major feature of DPN, affecting around
one-third of all patients and associated with increased morbidity [15]. In the natural history
of DPN, small nerve fibre damage precedes large fibre damage, of which the former cannot
be detected using current tests such as monofilament insensitivity and loss of vibration
perception. Therefore, there is an unmet clinical need to accurately detect early sub-clinical
DPN [16]. Indeed, studies have demonstrated an excess of PN in pre-diabetes [17] and
the 2017 American Diabetes Association (ADA) position statement on diabetic neuropathy
advised screening for pre-diabetes in patients with symptoms of PN [18]. Rapid binary
classification into those with and without PN is key to implementing screening for DPN [19].
Al algorithms have already clearly demonstrated rapid and clinically equivalent results to
human graders in detecting high-risk diabetic retinopathy [20]. Current (National Institute
for Health and Care Excellence [NICE] advocated) methods of detecting DPN are crude
and demonstrate poor sensitivity (~50%) and an inability to detect early DPN [13,19]. The
10 g monofilament and 128 Hz tuning fork only detect those at high risk of foot ulceration,
when DPN is well-established and irreversible [21]. Therefore, more sensitive diagnostic
tests of DPN are required.

Our group has pioneered the use of CCM, which images small nerve fibres in the
cornea. A wealth of published data has demonstrated CCM to be a valid and accurate
endpoint for the diagnosis of early and more advanced DPN [2,7,22-28]. We, and others,
have demonstrated that CCM has comparable diagnostic utility to intra-epidermal nerve
fibre density in a skin biopsy [2,25]. Indeed, CCM has high sensitivity to detect early DPN
and has been proposed as an objective and reliable biomarker for screening and diagnosis
programmes [19].

Al-based diagnostics utilizing CCM, a rapid ophthalmic imaging technique, would
therefore enable screening for DPN alongside diabetic retinopathy. Our Al-based DLA
significantly outperforms current clinical methods for the screening and diagnosis of
DPN [29]. The DLA was trained and tested on a limited sized dataset (1 = 279 participants)
and requires validation in a large-scale prospective study to test its performance in real-
world clinical deployment. This is crucial, as previous work in diabetic retinopathy has
demonstrated that Al systems may have a lower performance in clinical practice compared
to in-lab validation [30]. Furthermore, the potential health economic impact of introducing
the DLA within a DPN screening programme will require determination through health-
economic models. Further studies should also develop Al-based DLA that can identify
participants at-risk of developing DPN.

5. Conclusions

Our Al-based DLA demonstrated excellent diagnostic ability for DPN and therefore
has the potential to be used in screening programmes for DPN. Further large-scale real
world clinical validation is required.
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