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Abstract: Background: Taxifolin (TXF) is a flavonoid found abundantly in citrus/onion. Encour-
aging results on its renoprotective effect have been reported in a limited number of drug-induced
nephrotoxicity animal models. The present study aimed to evaluate for the first time the potential
renoprotective effects of TXF in a paracetamol (PAR)-induced nephrotoxicity rat model. Methods:
Rats were divided into three equal groups (n = 6 animals per group). Group 1 (PAR group, PARG)
received PAR diluted in normal saline by gavage (1000 mg/kg). Group 2 (TXF group, TXFG) received
TXF diluted in normal saline by gavage (50 mg/kg) one hour after PAR administration. Group 3
(control group, CG) received normal saline. Twenty-four hours after PAR administration, all animals
were sacrificed using high-dose anesthesia. Blood samples were collected and kidneys were removed.
Results: The serum blood urea nitrogen, creatinine levels and serum malondialdehyde levels were
significantly increased in the PARG. The serum glutathione peroxidase, glutathione reductase and
total glutathione levels were significantly higher in the TXFG. At the same time, the kidneys of the
PARG animals demonstrated tubular epithelium swelling, distension and severe vacuolar degenera-
tion. The kidneys of the TXFG animals showed mildly dilated/congested blood vessels. Conclusions:
The TXF renoprotective effects are promising in preventing PAR-induced nephrotoxicity, mainly
through antioxidant activity, and warrant further testing in future studies.

Keywords: acute kidney injury; kidney; nephropathy; paracetamol; renal injury; taxifolin; toxicity

1. Introduction

Paracetamol (4′-hydroxyacetanilide, N-acetyl-p-aminophenol, acetaminophen, PAR)
is an analgesic-antipyretic drug sold worldwide without prescription in most countries [1].
It is an effective and useful drug at therapeutic doses; however, severe side effects have
been reported at high doses [2]. Both isolated renal failure and renal failure combined with
liver failure have been reported in association with PAR overdosing [3]. Existing guidelines
still encourage treatment based mostly on the dose calculated in the 1970s for the reported
studies of acetylcysteine in PAR toxicity [4]. A massive PAR overdose causing nephro-
toxicity could occur after extrapolated 4 h plasma PAR concentration (about >250 mg/L)
or the intravenous administration of a 150 mg/kg bolus dose [5]. While PAR has been
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administered by gavage at 0.5–2.5 g/kg to create hepatotoxicity and nephrotoxicity in rats,
exact known toxic doses remain inconclusive in the international literature [6].

Acute tubular necrosis and acute renal failure due to PAR toxicity may develop [7]. The
elevation of serum creatinine (sCr) and blood urea nitrogen (BUN) levels may be indicators
of PAR-induced acute tubular necrosis. Approximately 1–2% of patients exposed to PAR
overdose develop renal failure [8,9]. Paracetamol induces liver injury due to its metabolic
conversion to the highly reactive intermediate N-acetyl p-benzoquinonimine (NAPQI) by
cytochrome P-450 mediated oxidases [10]. This mechanism has been accepted for PAR-
induced nephrotoxicity too [11]. Renal toxicity is mediated through NAPQI formation
after PAR conjugation through glucuronidation and sulphation is saturated [12]. A PAR
overdose causes systemic toxicity by disrupting the balance between NAPQI and basal
glutathione levels [2,13]. Accumulated toxic metabolites cause subendothelial damage and
acute tubular necrosis. Apart from direct nephrotoxicity, oxidative stress and an insufficient
amount of renal glutathione contribute to renal injury and progressing renal failure [14–16].

Nowadays, natural antioxidants, rather than chemical drugs, are used as protective
agents against organ damage in many diseases [17]. Polyphenols are herbal agents abun-
dant in marine pine bark and contain some antioxidant flavonoids [18,19]. Despite the fact
that data regarding the biological functions of polyphenols are abundant, evidence is still
inadequate to support the clear beneficial effects on human chronic diseases [20]. Neverthe-
less, from these antioxidant flavonoids, for example, the protective effect of proanthocyanin
and silymarin against renal damage has previously been reported [21,22]. Flavonoids
exhibit antioxidant activity by inhibiting the lipid peroxidation and enzymatic reactions
responsible for the formation of free radicals. Taxifolin (3, 5, 7, 3, 4-pentahydroxy fla-
vanone or dihydroquercetin, TXF) is a flavonoid found abundantly in citrus and onion [23].
Recently, the protective effects of TXF on hepatotoxicity-induced liver injury have been
demonstrated [24]. Encouraging results on the renoprotective effect of TXF have been
reported in a limited number of drug-induced nephrotoxicity animal models [25–27]. The
present study aimed to evaluate for the first time the potential renoprotective effects of TXF
in a PAR-induced nephrotoxicity rat model.

2. Materials and Methods
2.1. Animals

Eighteen adults male Wistar rats (aged 8–10 weeks) weighing 255± 15 g were obtained
from Atatürk University Medical Experimental Practice and Research Center (Erzurum,
Turkey). They were bred and housed in ventilated rooms at a temperature of 24 ± 2 ◦C,
with a 12 h light/dark cycle and a humidity of 60± 4%. Thiopental sodium (Pental Sodium,
IE Ulagay Drug Co., Istanbul, Turkey), TXF (Evalar, Hertz, Moscow, Russia) and PAR (Parol,
Atabay Drug Co., Istanbul, Turkey) were purchased. Rats were randomly divided into three
equal groups (n = 6 animals in each group). Group 1 (PAR group, PARG) received PAR
diluted in normal saline by gavage (1000 mg/kg suspension) at a single dose. Group 2 (TXF
group, TXFG) received TXF diluted in normal saline by gavage (50 mg/kg suspension) one
hour after PAR administration. Group 3 (Control group, CG) received normal saline only.
Twenty-four hours after PAR administration, all animals were sacrificed using high-dose
anesthesia (50 mg/kg thiopental), blood samples were collected and kidneys were removed.
Prerequisites for the experimental process were in accordance with the Guide for the Care
and Use of Laboratory Animals of Atatürk University. The Ethical Committee approved
the study (Protocol; 2018/8812460-00.99-EE.45082).

2.2. Blood Analyses and Histopathological Evaluation

Serum creatinine (sCr) and blood urea nitrogen (BUN) levels were determined us-
ing COBAS Integra 800 analyzer (Roche, Schaffhausen, Switzerland). Oxidative stress
biomarkers were measured in the animals’ renal tissues as previously described using
renal tissue homogenate (diluted 1:2) [28]. Total plasma protein was determined using
a Bradford reagent (Sigm, Rockville, USA). More specifically, malondialdehyde (MDA)
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was measured in 532 nm wavelength and the pink complex formed at a high temperature
(95 ◦C) based on spectrophotometric measurement [29]. The total glutathione (tGlu) assay
(yellow color) was measured at 412 nm wavelength [30]. Glutathione peroxidase (GPO)
and Glutathione reductase (GR) activity were determined at 340 nm wavelength (Lawrence
and Burk for GPO and Carlberg and Mannervik for GR were used) [31,32]. Rat kidneys
were removed immediately after sacrifice. They were fixed in neutral formalin 10% (Sigma,
Rockville, USA) solution for 24 h, then embedded in paraffin wax and sectioned (4 µm
thickness) for histopathological assessment. Renal tissue sections were stained with hema-
toxylin and eosin (H and E stain) using a standard protocol and were evaluated under
light microscopy [33–35].

2.3. Statistical Analysis

Statistical analysis was performed using the SPSS software (SPSS Inc., Version 25.0.
Chicago, IL, USA). Groups were compared using one-way analysis of variance (ANOVA),
following normality/homoscedasticity checks with Shapiro–Wilk test/Leven’s test, respec-
tively. Post hoc comparisons were performed using Tukey/Tamhane’s test, as appropriate.
Bivariate correlation analysis was used to find correlations among the biochemical markers
monitored both in serum and tissue. The chi-square (χ2) test was used for the analysis of
associations between histopathological findings and levels of oxidative stress markers in
tissue samples and sCr. p value ≤ 0.05 was considered significant.

3. Results

The results of the biochemical analysis in the PARG, TXFG and CG animals, in serum
and tissue samples, are summarized in Table 1. Serum creatinine and BUN levels increased
following PAR administration compared to the CG; this increase was statistically significant
in the PARG and reached over 600% for sCr and over 300% for BUN levels, while in
the TXFG the increase in sCr was 11% (nearly significant, p = 0.076) and for BUN was
insignificant and less than 10%. Oxidative stress markers in renal tissue samples were
severely altered after PAR administration. Malondialdehyde, one of the final products of
polyunsaturated fatty acid peroxidation in the cells, was measured at more than 2 times
higher in the PARG animals compared to the CG. Taxifolin administration almost restored
MDA levels compared to the CG (16% increase). Similarly, GSH levels diminished by
63% in the PARG compared to the CG, which points to elevated cellular vulnerability
towards oxidative stress and was restored by 83% in the TXFG. The same pattern was
observed for GPO and GRx. A non-consistent and weak pattern of bivariate correlations
between the biochemical markers monitored was observed within the experimental groups
of the present study. In the PARG animals, the renal tissue levels of MDA were positively
correlated with GPO (r = 0.890, p = 0.046), while GPO kidney levels were negatively
correlated with GRx levels in the TXFG animals (r = −0.868, p = 0.025). Serum creatine and
BUN did not correlate with any tissue oxidative stress markers monitored in all groups,
with the exception of sCr; its mildly elevated levels in the TXFG animals were negatively
correlated with GPO (r = 0.920, p = 0.013).

Kidney specimens demonstrated tubular epithelium swelling, distension and severe
vacuolar degeneration in the PARG. Kidney specimens showed mildly dilated and con-
gested blood vessels in the TXFG. No abnormal morphological changes were observed
under light microscopy in the kidney specimens of the CG, which received normal saline
only. The histopathological results are presented in Figure 1 and their rating is summarized
in Table 2.
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Table 1. Levels of Malondialdehyde (MDA), total Glutathione (tGSH), Glutathione peroxidase (GPO)
and Glutathione reductase (GRx) monitored in renal tissues samples, serum Creatinine (sCr) and
blood urea nitrogen (BUN) from the Paracetamol group (PARG), the Taxifolin group (TXFG) and the
Control (CG).

Parameter Monitored PARG TXFG CG

MDA (µmol/gr protein) 6.86 ± 0.212 ## 3.58 ± 0.242 ** 3.08 ± 0.303

tGSH (nmol/gr protein) 2.84 ± 0.324 ## 6.88 ± 0.422 ** 7.70 ± 0.683

GPO (U/gr protein) 3.00 ± 0.421 ## 6.95 ± 0.693 ** 8.18 ± 0.491

GRx (U/gr protein) 3.51 ± 0.441 ## 8.21 ± 0.402 ** 8.96 ± 0.512

sCr (mg/dL) 2.73 ± 0.282 ## 0.414 ± 0.0532 ** 0.373 ± 0.0532

Blood Urea Nitrogen (mg/dL) 158 ± 7.55 ## 37.3 ± 2.80 ** 34.0 ± 2.75
##: comparison between PARG and CG, p < 0.001. **: comparison between PARG TXFG, p < 0.001. No statistical
difference was detected between TXFG and CG.
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Figure 1. Results of the histopathological analysis. (A) Histological status in the control group
(CG) animals, without any signs of kidney damage (H&EX200): glomerular structure (straight
arrow), bowman capsule (straight arrow), proximal tubule (check arrow) and distal tubule (round
arrow). (B) Histopathological changes of damaged kidney tissue in the paracetamol group (PARG)
(H&EX200): hemorrhage in the parenchyma (straight arrow), destruction and edema (double-sided
arrow). (C) Histopathological appearance of damaged kidney tissue in the PARG (H&EX200):
mild atrophic glomerulus (striated arrow), dilated and congested blood vessels (straight arrow).
(D) Histopathological changes (H&EX200) in the kidneys of animals treated with Taxifolin after
administration of high dose PAR (TXFG): mildly dilated and congested blood vessels (straight arrow).

Serum creatine increase was associated with the severity of glomerular damage (PARG:
p = 0.015; TXFG: p = 0.022). On the other hand, only in the PARG was the MDA increase
associated both with the extent of parenchyma destruction and edema (p = 0.01) and
glomerular damage (p = 0.02). Hyperemia in the PARG animals was nearly significantly
associated with the decreased GSH levels (p = 0.057).
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Table 2. Summary of the histopathological scores based on H and E staining results for kidney tissues.

Histopathological Findings Control Group PARG TXFG

Glomerular Damage - +++
(6/6 animals)

+
(4/6 animals)

Parenchyma destruction and edema - +++
(6/6 animals)

+
(4/6 animals)

Hyperemia - +++
(6/6 animals)

++
(5/6 animals)

Control: healthy group (no treatment), PARG: Paracetamol group, TXFG: Taxifolin group. Histopathological
findings rating grades: None (-), mild (+), moderate (++), severe (+++).

4. Discussion

The present study aimed to evaluate for the first time any potential renoprotective
effects of TXF in a PAR-induced nephrotoxicity rat model. Potential protective agents previ-
ously studied in experimental nephrotoxicity models using PAR high-dosing schemes fol-
low different modes of action and the results remain controversial [36–38]. Acetaminophen-
related kidney dysfunction has been defined in clinical practice based on the laboratory
examination of sCr, BUN, the glomerular filtration rate and albumin sCr ratio [39,40]. In our
study, after PAR administration, sCr and BUN levels severely increased; TXF administration
counteracted this increase to a large extent for both markers of renal function. Previous
studies reported a protective effect of rhein, silymarin and grape seed pro-anthocyanidin on
renal function in PAR toxicity and ischemia-reperfusion injury [26]. There are also reports
that high sCr, BUN and MDA levels due to nephropathy were significantly decreased after
flavonoid administration. In this relation, Baponva et al. (2022), showed that the use of
the aqueous extract of the African plant Amblygonocarpus andongensis’s stem bark helped
recovery from hepatic and renal failure caused by PAR toxicity [9,41].

After orally receiving PAR, nearly 63% of PAR is metabolized through glucuronidation
and 34% via sulphation mainly in the liver [42,43]. N-acetyl p-benzoquinonimine plays a
role as a reactive intermediate, when the oxidization of 55% of PAR occurs by the micro-
somal P-450 enzyme system. Taking into consideration PAR metabolism and excretion,
changes and the aggravation of the oxidative stress status are expected, not only regarding
circulating oxidative stress, but also on a tissue level. N-acetyl p-benzoquinonimine is
detoxified by intracellular GSH, when receiving PAR in therapeutic doses. Therefore, serum
tGSH levels during nephrotoxicity following PAR overdosing have been recognized as a
biochemical marker indicating the degree of kidney injury in animal models. There are also
reports of PAR renal toxicity without liver toxicity [42,43]. In our study, although the mean
tGSH in the TXFG still remained slightly lower than the CG, the alleviating effect of TXF
is evident, similar to other reports on flavonoid administration (Nigella Sativa, Rhein) in
order to treat PAR toxicity [44,45].

In the case of kidney damage caused by chemicals and drugs, the inability to elimi-
nate free radicals after oxidative stress results in cellular destruction [46]. Therefore, the
local changes in the oxidative status observed could also entail kidney histopathological
alterations. In the current study, histopathology showed the presence of hemorrhage,
destruction and edema of the renal parenchyma as previously described [42]. Moreover,
a mild atrophic glomerulus and dilated/congested blood vessels in kidney specimens
of the PARG were found. The subendothelial damage shown—acute tubular necrosis
caused by PAR overdose—was documented through elevated sCr and BUN levels. Taxi-
folin administration restored to a large extent even the histopathological alterations due to
PAR toxicity.

Injury to the nephrocellular membrane causes lipid peroxidation, leading to the release
of inflammatory mediators or free radicals. Malondialdehyde has been widely accepted
as an indicator of the degree of lipid peroxidation [47–49]. In our study, mean renal tissue
MDA levels were significantly higher in the PARG compared to the CG and the TXFG.
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Tissue MDA levels after TXF administration returned to CG levels. Our work was consistent
with previous studies [50].

Free radicals oxidize biomolecules including proteins, lipids and DNA. The enzyme
GPO is a selenium-dependent enzyme and its main effect is the removal of H2O2, and
also it inhibits the formation of highly reactive hydroxyl radicals [29,51]. Glutathione
reductase is also a crucial enzyme and serves to restore cellular glutathione levels by
reducing oxidized disulfide-glutathione [31]. The mechanism of nephrotoxicity is closely
related to the depletion of the antioxidant defense system [52–54]. In the present study,
GRx and GPO activities were monitored and our findings further support the results of
previous experiments demonstrating the protective antioxidant activity of flavonoids, such
as TFX, in the PAR nephrotoxicity experimental model [55–57].

The limitation of the current study is the use of a single and not escalating dosing
scheme for TFX after PAR nephrotoxicity is established. Furthermore, different time
intervals for administering TXF could be studied, such as pre-conditioning with TXF [39]
and simultaneous administration with PAR, in order to mimic hospitalization treatment
conditions. Finally, a comparative study of other antioxidants with TFX in the said model
could further demonstrate the nephroprotective effectiveness of TXF.

5. Conclusions

Taxifolin has been accepted as an essential component of some dietary supplements
and antioxidant-rich functional foods. Moreover, the antioxidant activity of TXF has been
previously demonstrated by the ferric thiocyanate method [24,27,28,31,43]. The present
study, for the first time, evaluated the potential renoprotective effects of TXF in a PAR-
induced nephrotoxicity rat model. Oxidative damage was proven as a component of PAR
nephrotoxicity. Our results provide evidence that TXF may have the potential to prevent
PAR-induced nephrotoxicity through its antioxidant activity and warrants further testing
in future studies and clinical trials.
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