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Abstract: Acute kidney injury (AKI) is one of the serious complications of sepsis in clinical practice,
and is an important cause of prolonged hospitalization, death, increased medical costs, and a huge
medical burden to society. The pathogenesis of AKI associated with sepsis is relatively complex and
includes hemodynamic abnormalities due to inflammatory response, oxidative stress, and shock,
which subsequently cause a decrease in renal perfusion pressure and eventually lead to ischemia
and hypoxia in renal tissue. Active clinical correction of hypotension can effectively improve renal
microcirculatory disorders and promote the recovery of renal function. Furthermore, it has been
found that in patients with a previous history of hypertension, small changes in blood pressure
may be even more deleterious for kidney function. Therefore, the management of blood pressure
in patients with sepsis-related AKI will directly affect the short-term and long-term renal function
prognosis. This review summarizes the pathophysiological mechanisms of microcirculatory disorders
affecting renal function, fluid management, vasopressor, the clinical blood pressure target, and kidney
replacement therapy to provide a reference for the clinical management of sepsis-related AKI, thereby
promoting the recovery of renal function for the purpose of improving patient prognosis.
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1. Introduction

Septic shock is a pathological syndrome of life-threatening multiorgan dysfunction
caused by a dysregulated host response to infection [1]. Acute kidney injury (AKI) occurs
in up to 50% of patients with sepsis, resulting in prolonged hospitalization and a six- to
eightfold increase in mortality [2–4]. Survivors of AKI are at risk of developing chronic
or end-stage renal disease, even with short-term or mild renal impairment, which is a
medical burden on society [5,6]. Multiple mechanisms are involved in the development
of sepsis-associated AKI, including inflammatory responses, oxidative stress, adaptive
responses of renal tubular epithelial cells, and renal hemodynamic abnormalities [7–9].
Histological staining of renal tissue from patients who died of sepsis-associated AKI reveals
uneven tubular injury, manifested as focal acute tubular injury, and most of the renal
tubules were normal [10,11]. This is related to abnormal shunt of renal blood supply due to
microcirculation damage, and clinical improvement of blood pressure and optimization of
systemic hemodynamic support are essential in patients with AKI or at risk of AKI [12,13].
Statistically, a high proportion of patients diagnosed with sepsis-associated AKI in the
intensive care unit have previous chronic hypertension, which is an independent risk
factor [14,15]. Because the kidneys of hypertensive patients are more sensitive to abnormal
fluctuations in blood pressure [16,17], the management of blood pressure in septic AKI is a
great challenge for clinicians. Therefore, this paper summarizes the mechanism of sepsis
microcirculation disorder affecting renal function, clinical comprehensive management
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of blood pressure, and target blood pressure in order to provide references for clinical
treatment and urgent clinical research directions.

2. Microcirculatory Disorders

Microcirculation refers to the capillary system that connects the arteries and veins.
It is essential to the function of every organ and system in the body for the transport of
oxygen and nutrients and the removal of toxins. Impaired microcirculation is a hallmark of
septic shock and is the pathophysiological basis for the failure of multiple organs, including
the heart, intestines, liver, brain, and kidneys [18,19]. The occurrence of microcirculatory
disorders in sepsis involves multiple mechanisms related to endothelial cell injury, blocked
intercellular communication, glycocalyx shedding, coagulation dysfunction, leukocyte and
platelet adhesion, and altered red blood cell deformability due to severe infection, resulting
in reduced microvascular blood flow velocity and microthrombosis, which ultimately
disrupt microvascular flow [20,21]. The kidney is particularly rich in microvessels, and
impaired microcirculation leads to intrarenal perfusion redistribution, resulting in abnormal
blood flow distribution in the renal medulla and renal cortex and decreased oxygenation in
tissues, which triggers a vicious cycle of oxidative stress and inflammation [22–24]. There
is a natural shunt in renal blood flow, with cortical blood perfusion accounting for 80%
of renal blood flow (RBF) and a partial pressure of oxygen of approximately 70 mmHg
and medullary blood flow accounting for 20% of RBF and a partial pressure of oxygen
of approximately 20 mmHg. Compared with the cortex, the medullary circulation is less
able to self-regulate against ischemia and hypoxia, making the medulla more sensitive to
hypoxia caused by sepsis [25]. This is related to the specific topography of the vascular
bundle in the renal medulla, where the thick upper branches of the Henle collaterals
are located at the periphery of the vascular bundle, allowing oxygen diffusion to be
restricted. In addition, diffuse shunting of oxygen in the renal medulla from the straight
ducts down to the upper ducts may reduce oxygen transport [26,27]. Reduced blood flow
and decreased oxygenation in the renal medulla may exacerbate tubular epithelial cell
injury in the medullary portion, especially in the proximal tubule S3 segment in the outer
medulla, leading to increased reactive oxygen species and mitochondrial dysfunction,
further leading to reduced renal function [28–30].

Hypoxia in the medulla also exacerbates renal injury by involving the tubuloglomeru-
lar feedback mechanism (TGF). Hypoxia in the thick ascending branch of the Henle collat-
erals can lead to decreased production of adenosine triphosphate, which decreases sodium
reabsorption, activates TGF, and reduces the glomerular filtration rate by constricting the
afferent small arteries, which again triggers a vicious cycle of medullary hypoperfusion and
hypoxia [31]. In conclusion, abnormal renal medullary perfusion due to microcirculatory
impairment, tissue ischemia and hypoxia, and reaggravation of medullary hypoxia by TGF
in sepsis are the main pathological mechanisms for the development of AKI associated with
sepsis (Figure 1), and renal medullary hypoxia can be corrected clinically by improving
microcirculation, thereby reversing renal impairment.
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yethyl starch (HES) and saline [34]. The results of this study showed that HES is associated 
with a higher incidence of AKI and renal replacement (RRT) rate, leading to the recom-
mendation that HES solution be contraindicated in patients with severe sepsis or at risk 
of AKI [35–37]. In a sheep model of septic shock, renal function and cumulative diuresis 
were preserved in the albumin and crystalloid resuscitation groups, whereas HES resulted 
in reduced creatinine clearance [38]. However, given the risk of infection, 4% hypotonic 
albumin is recommended as the concentration [39]. 
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Figure 1. Pathophysiological mechanism of microcirculatory dysfunction affecting renal function in
sepsis. TGF, tubuloglomerular feedback mechanism.

3. Fluid Management

In clinical practice, intractable hypotension due to sepsis is preferentially resuscitated
by fluid therapy to achieve the blood pressure target, thereby restoring circulating volume
and improving renal perfusion [32]. A retrospective study defined resuscitation goals for
patients with sepsis in the ICU as mean arterial pressure greater than 65 mmHg, central
venous pressure greater than 8 mmHg, and central venous oxygenation greater than
70%; achieving early resuscitation within 6 h after consultation was associated with a
reduction in the development of AKI [33]. The main categories of volume expansion fluid
therapy for hypotensive shock are colloids and crystals, and a meta-analysis found that
balanced crystalloids and albumin reduced the mortality in patients with sepsis more than
hydroxyethyl starch (HES) and saline [34]. The results of this study showed that HES is
associated with a higher incidence of AKI and renal replacement (RRT) rate, leading to
the recommendation that HES solution be contraindicated in patients with severe sepsis
or at risk of AKI [35–37]. In a sheep model of septic shock, renal function and cumulative
diuresis were preserved in the albumin and crystalloid resuscitation groups, whereas HES
resulted in reduced creatinine clearance [38]. However, given the risk of infection, 4%
hypotonic albumin is recommended as the concentration [39].

Additionally, 0.9% physiological saline was found to be at risk of causing or exacer-
bating metabolic acidosis and progression to AKI and RRT in critically ill patients with
sepsis [40,41]. However, most patients with sepsis-related AKI experience fluid overload to
varying degrees during fluid resuscitation therapy, which can aggravate renal impairment
and increase the morbidity and mortality of patients [42–44]. In addition to blood pressure,
CVP is one of the main clinical indicators of hemodynamics. It usually refers to the pressure
in the right atrium and large intrathoracic veins and is important for understanding the
effective circulating blood volume and cardiac function [45,46]. A cohort study that in-
cluded 15 patients with sepsis at the main time indicated that elevated CVP was associated
with an increased risk of death and AKI, and in addition, each 1 mmHg increase in CVP
was associated with a 6% increase in the odds of AKI [47]. Huo et al. found that a lower
CVP level (<13 mmHg) was an independent variable associated with reduced mortality in
patients with sepsis-related AKI through a propensity-score-matched analysis of clinical
data on adult sepsis from the Medical Information Mart for Intensive Care-IV database [48].
To address fluid overload, clinicians have three primary options: fluid restriction, diuretic
pharmacotherapy, or RRT extracorporeal ultrafiltration. Collectively, diuretics should not
be used to treat AKI except for fluid overload [49]. Diuretic clearance fluid is harmful in



J. Clin. Med. 2023, 12, 1018 4 of 13

the acute phase of sepsis, and when the patient is stable, fluid overload is harmful and
diuretic clearance can be applied [50–52]. Kidney replacement therapy (RRT) is an effective
treatment for dehydration in patients with hemodynamic instability where fluid overload
is not appropriate for diuretics. In conclusion, fluid resuscitation is the primary means to
improve sepsis patients and patients with concurrent AKI. In clinical practice, it is necessary
to avoid rehydration therapy that is detrimental to the benefit of the kidney, while strictly
vigilant against fluid overload. When fluid overload occurs, diuretic medication or RRT
may be selected, depending on the patient’s situation.

4. Vasopressor

In septic hypotension, if the blood pressure target cannot be achieved by fluid aug-
mentation, clinicians can also implement resuscitation to improve the microcirculatory
perfusion of the kidneys and other organs through the use of a vasopressor. Currently,
the commonly used drugs include norepinephrine, dopamine, pressor, and angiotensin II
(Table 1).

Norepinephrine increases the arterial pressure through α-adrenergic receptor-mediated
vasoconstriction and is the medication of choice for septic hypotension [53–55]. Infusion
of norepinephrine in a hyperdynamic sheep model of sepsis increased blood flow to the
heart, intestine, and kidneys, effectively increasing urine output and improving creatinine
clearance [56]. Although it has been reported that norepinephrine can aggravate medulla
hypoxia while reviving blood pressure in a sheep sepsis AKI model, it has no significant
effect on renal blood flow or renal oxygen delivery [57,58]. Furthermore, systematic reviews
and metastudies have found that norepinephrine minimizes arrhythmia compared with
other vasopressors and is therefore safe for use in patients with septic shock and AKI [53].

Dopamine is a natural precursor of epinephrine and norepinephrine. It excites mainly
the α receptors, β receptors, and peripheral dopamine receptors, and it has shown compara-
ble efficacy with epinephrine in the treatment of infectious shock [59]. Due to its stimulatory
effect on dopaminergic receptors, dopamine is suspected to adversely affect the perfusion
output of internal organs, such as the kidney [60]. In a prospective, double-blind random-
ized controlled study, “low-dose” dopamine worsened renal perfusion and increased renal
impairment in patients with acute kidney failure in the absence of systemic hemodynamic
effects [61]. Dopamine use in septic hypotensive patients was associated with higher
rates of mortality, infection, and arrhythmic events compared with norepinephrine and
epinephrine [62–66].

Vasopressin increases arterial blood pressure primarily by stimulating the arginine
vasopressin receptor 1A (AVPR1A) located on vascular smooth muscle cells to induce
vasoconstriction. It is currently recommended as a pressor agent that is unresponsive to
norepinephrine, and/or it reduces the dose of norepinephrine required to achieve the blood
pressure target [67,68].

In a sheep septic AKI model, vasopressin had better renoprotective effects than nore-
pinephrine [69,70]. In clinical practice, vasopressin increases per beat output, improves
renal perfusion in patients with infectious shock, improves renal function, and reduces the
use of RRT [71,72]. However, it has also been found that in adults with infectious shock,
early administration of vasopressin did not improve the number of days without kidney
failure compared with norepinephrine [73]. Therefore, the benefit of vasopressin in septic
AKI also needs to be informed by more studies.

Angiotensin II, an endogenous circulating hormone with potent vasoconstrictive
effects, effectively increases blood pressure in patients with vasodilatory shock who do
not respond to high doses of conventional vasopressors, such as norepinephrine [74]. The
decrease in renal arteriolar pressure and sodium in protourine stimulates the secretion of
renin by periglomerular cells. Renin acts on angiotensinogen in plasma to produce inactive
angiotensin I, which is hydrolyzed to active angiotensin II under the action of angiotensin-
converting enzyme. Angiotensin II can cause the contraction of the afferent and efferent
arterioles, and the efferent arterioles are more sensitive, which increases the pressure in the
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glomeruli, thus affecting the glomerular filtration rate [75,76]. In a sheep model of septic
AKI, angiotensin II was found to restore arterial pressure without exacerbating medullary
hypoxia. It significantly increased urine output and normalized creatinine clearance [77,78].
Clinically, in patients with septic acute kidney injury requiring kidney replacement therapy,
the 28-day survival and mean arterial pressure response were higher in the angiotensin
II group compared with the placebo group, and the release rate from kidney replacement
therapy was higher, suggesting that patients with septic AKI requiring kidney replacement
therapy may preferentially benefit from angiotensin II [79]. Taken together, we can conclude
that angiotensin II appears to be a safe and effective treatment, although more clinical data
are still needed to support this.

Table 1. Pharmacological effects and renal effects of the vasopressors.

Drug Name Receptor Effects on Renal
Function

Effect on Urine
Output

Effects on the
Medulla Reference

Norepinephrine α-adrenergic
receptor Improve Increase Exacerbate

hypoxia [53–58]

Dopamine

α receptor, β
receptor, and

peripheral
dopamine receptor

Worsen Unknown Unknown [60,61,80,81]

Vasopressin AVPR1A Improve Increase Unknown [67–72]

Angiotensin II Angiotensin II
receptor Improve Increase Does not

exacerbate hypoxia [74,77,78]

AVPR1A, arginine vasopressin receptor 1A.

5. Blood Pressure Target

Sepsis often leads to intractable hypotension, resulting in hypoperfusion and mi-
crocirculatory disorders in multiple organs, including the kidneys. Aggressive clinical
correction of blood pressure can largely improve renal blood supply and restore renal
function [32,82,83]. Mean arterial pressure (MAP) is the average arterial blood pressure
during one cardiac cycle. It is widely used as a measure of blood pressure. The latest
guidelines on sepsis suggest a MAP garget of 65 mmHg for initial resuscitation in patients
with septic shock to reduce the risk of death and end-organ failure [84]. However, it is
important to note that even at the same MAP, organs may have different perfusion pres-
sures and pressure–flow rates, with the small postglomerular artery responsible for renal
tissue perfusion typically having a lower pressure than systemic arterial blood pressure [85].
Therefore, for patients with sepsis, there are different recommendations for the ideal blood
pressure target to help prevent renal impairment or aid recovery (Table 2). A retrospective
study from 110 hospitals in the United States evaluated patients with sepsis who were
admitted to the intensive care unit (ICU) for more than 24 h from 2010 to 2016. Through
multivariate logistic regression analysis, the study found that the time-weighted mean
arterial pressure (TWA-MAP) began to be significant for AKI at 65 mmHg, and as MAP
decreased from 85 to 55 mmHg, in addition to AKI, patients had a progressive increase in
mortality and odds of myocardial injury. Therefore, it is suggested that in septic patients,
maintaining MAP well above 65 mmHg may be a more prudent approach to prevent and
ameliorate renal injury [86]. In another prospective observational FINNAKI study from
17 hospitals in Finland, 423 patients with severe sepsis from September 2011 to February
2012 were enrolled by screening, of whom 153 (36.2%) presented with AKI, and a signifi-
cantly higher TWA-MAP of 78.6 mmHg (72.9–85.4 mmHg) was found by between-group
analysis in non-AKI patients than in AKI patients. The study indicated that a TWA-MAP
cutoff of 73 mmHg best predicted the progression of sepsis-related AKI [87]. Chen et al.
conducted a retrospective cohort study of patients admitted to the ICU of Chiayi Chang
Gung Memorial Hospital from January 2015 to December 2016, which included 63 critically
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ill patients with confirmed AKI. They found that the sensitivity and specificity of the total
patient mortality at MAP ≤ 77.16 mmHg were 62.50% and 91.30%, respectively, and they
concluded that MAP ≤ 77 mmHg can be used as a risk factor for death in patients with
AKI [88]. A prospective study, which was approved by the Association des Réanimateurs
du Centre-Ouest, France, conducted in two ICUs from October 2007 to April 2009, included
and followed 217 patients with septic shock and compared the MAP in the first 24 h after
inclusion in patients who developed AKI at 72 h and those who did not develop AKI. The
study found that the optimal MAP level to prevent AKI at 72 h after the onset of infectious
shock was between 72 and 82 mmHg [89]. A retrospective single-center cohort study from
the Mayo Clinic found the lower incidence of AKI in patients with infectious shock when
the postresuscitation median MAP was closest to or higher than the preadmission median
MAP, suggesting that this MAP should not be a fixed value and that it is necessary to target
the preadmission MAP for AKI prevention [90].

For patients with septic shock with a history of hypertension, European experts suggest
personalized blood pressure targets, perhaps with a higher MAP leading to better clinical
improvement [91]. A study of the blood pressure target in patients with septic AKI with a
history of hypertension included 26 patients with a history of chronic hypertension and AKI
within the first 24 h of septic shock in two ICUs at the University Hospital of Bordeaux, and
the MAP target of 80–85 mmHg was associated with more urine output and lower serum
creatinine compared with 65–70 mmHg, confirming the need for higher blood pressure in
this group of patients to improve renal perfusion [92]. In a multicenter, open-label trial in
France, we randomly assigned 776 patients with septic shock to resuscitation with a mean
arterial pressure target of 80 to 85 mmHg (high target group) or 65 to 70 mmHg (low target
group). Patients in the high-target group required less renal replacement therapy than
those in the low-target group, although the difference in mortality was not associated [93].

In addition to MAP, mean perfusion pressure (MPP) is often used as a clinical indicator
of blood pressure. It refers to the difference between the MAP and central venous pressure
(CVP) [94]. In a single-center retrospective study conducted in the ICU of Guy’s and St.
Thomas’ NHS hospitals, of 2118 ICU patients, 790 patients (37%) developed AKI stage I.
AKI I patients with MPP ≤ 59 mmHg were at a significantly increased risk of progression
to AKI stage III, and the study concluded that MPP ≤ 59 mmHg was independently
associated with AKI progression [95]. In another retrospective analysis of 107 patients
hospitalized for infectious shock between August 2010 and June 2013 in the ICU of the
tertiary referral university hospital in Melbourne, 55 (51.4%) of whom developed severe
AKI, the median MPP decline ratio from premorbidities was 29% in patients who developed
severe AKI compared with 24% in non-AKI patients, indicating that a greater MPP decline
ratio is associated with the development of septic AKI [96]. A prospective, open-label,
before-and-after controlled study conducted in two tertiary ICUs in Australia compared the
current standard care and the individualized blood pressure target strategies by screening
62 shocked ICU patients receiving vasopressor medication separately. There was a lower
incidence of new significant AKI in the individualized intervention group, indicating that
setting an individualized blood pressure target during ICU boosters may prevent AKI
and reduce mortality [97]. Taken together, we suggest that clinicians must personalize the
management of the patient and could attempt higher blood pressure values in specific
cases. Start by targeting 65 mmHg; consider targeting up to 85 mmHg in patients with
a previous history of hypertension and monitoring the microcirculation (skin peripheral
perfusion) lactate level and urine output to individualize BP targets using fluid infusion
and vasoactive drugs.
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Table 2. Recommendations for sepsis blood pressure targets by study.

Nation Time Type of Study Number of
Cases Indicator Target Reference

U.S. January 2007 to
January 2009 Retrospective study 233 MAP Prehospital MAP [90]

France October 2007 to
April 2009 Prospective study 217 MAP 72–82 mmHg [89]

U.S. 2010 to 2016 Retrospective study 8782 MAP Much higher than
65 mmHg [86]

Finland
September 2011

to February
2012

Prospective study 423 MAP Above 73 mmHg [87]

China January 2015 to
December 2016 Retrospective study 63 MAP Above 77 mmHg [88]

France August 2016 to
July 2017 Prospective study

26 (with a
history of

hypertension)
MAP 80–85 mmHg [92]

U.K. July 2007 to
June 2009 Retrospective study 790 MPP Above 60 mmHg [95]

MAP, mean arterial pressure; MMP, mean perfusion pressure; SBP, systolic blood pressure.

6. Replacement Therapy

Kidney replacement therapy is an effective method to treat internal environment
disorders caused by kidney failure in septic patients. It also removes toxins to replace
renal function, improves blood pressure by removing inflammatory mediators, and helps
ultrafiltrate the overload fluid in oliguric AKI [98,99]. At present, there are many clinical
kidney replacement treatment modes, so it is necessary to choose the appropriate treatment
mode according to the treatment purpose and condition.

Intermittent hemodialysis (IHD) and continuous renal replacement therapy (CRRT) are
often used to address fluid overload, and CRRT was previously thought to be advantageous
in septic hemodynamically unstable AKI patients [100,101]. More recently, however, it has
been suggested that IHD can also reduce hemodynamic instability and improve prognosis
if prescribed accurately [102,103]. In addition, IHD has the advantages of being more
practical and cost-effective, eliminating the need for anticoagulation and reducing the risk
of bleeding.

Other RRT modalities, such as continuous low-efficiency daily dialysis and prolonged
intermittent kidney replacement therapy, have shown both hemodynamic stability and
cost-effectiveness and are recommended for use in septicemic patients [104]. Hypotension
occurs frequently in patients undergoing CRRT and is independently associated with
mortality [105,106]. In a retrospective analysis of 2292 AKI patients undergoing CRRT at
three referral hospitals, low MAP at the start of CRRT was associated with high mortal-
ity, especially when it was <82.7 mmHg [107]. Therefore, blood pressure management
in patients during RRT treatment is even more important, which often requires larger
doses of pressor medication because of the clearance of replacement therapy. In terms of
alternative therapy doses, a meta-analysis of eight prospective randomized controlled trials
found that higher-intensity RRT did not reduce mortality and may actually delay renal
recovery compared with standard-intensity RRT [108]. In terms of the timing of treatment,
Stéphane Gaudry et al. randomized 620 patients with severe AKI to early RRT treatment or
delayed treatment. There was no significant difference in mortality between the two groups,
even though delayed treatment avoided the need for kidney replacement therapy in a
significant number of patients [109]. However, it has also been found that early initiation
of RRT to clear fluid overload is more beneficial to renal function recovery in patients
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with septic AKI compared with patients with delayed initiation of RRT [110].The Second
Affiliated Hospital of Guangzhou Medical University, Guangdong, China, is initiating a
large, multicenter, prospective, randomized trial on the timing of initiation of continuous
renal replacement therapy for acute kidney injury associated with sepsis in the intensive
care unit (ClinicalTrials.gov identifier: NCT03175328); the study will enroll 460 patients
with KDIGO 2 sepsis AKI from multicenter China, whose findings will help clinicians
choose the right time to initiate CRRT.

Some advanced RRT filters have been shown to be effective in removing proinflamma-
tory cytokines and endotoxins, such as the oXiris blood filter, which effectively removes
endotoxins, tumor necrosis factor-α, interleukin-6, interleukin-8, and interferon gamma in
patients with sepsis [111]. Two French centers reported experience with the oXiris blood
filter in patients with septic shock. Studies found a relative reduction in norepinephrine
infusion and an improvement in hemodynamic status, but kidney benefit was inconclu-
sive [112]. High-volume peritoneal dialysis (HVPD) may be considered an alternative form
of RRT in AKI [113]. However, it lacks competent control of fluids and can be a backup
option for a few special cases.

7. Conclusions

Blood pressure control in sepsis directly affects the function of multiple organs, includ-
ing the kidney, as well as the survival rate of patients. It is one of the difficult problems
faced by clinicians. In septic hypotension, abnormal microcirculatory shunts leading to
renal medullary ischemia and hypoxia are important pathological processes in AKI, and
improving microcirculatory perfusion is the goal-oriented approach to improve renal func-
tion. Due to the inconsistency in perfusion pressure, the MAP target for patients with
septic AKI is recommended to be set to individualize the blood pressure target based on
patient-specific conditions, and more research is needed to determine whether a higher
blood pressure is needed. Fluid resuscitation is the primary means of improving hypoten-
sive shock, but decreased urine output after renal impairment often leads to fluid overload
and requires RRT to maintain positive volume balance. Poor fluid resuscitation requires
the addition of pressor drugs to constrict blood vessels to improve the blood pressure and
improve the perfusion to all organs. However, more research evidence is needed to provide
a clinical basis for patient treatment, including fluid and vasopressor choice, alternative
treatment options, and so on, to achieve better blood pressure management goals, improve
kidney function, and reduce mortality.
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