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Abstract: Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia that commonly
results in bleeding but with frequent indications for therapeutic anticoagulation. Our aims were
to advance the understanding of drug-specific intolerance and evaluate if there was an indication
for pharmacogenomic testing. Genes encoding proteins involved in the absorption, distribution,
metabolism, and excretion of warfarin, heparin, and direct oral anticoagulants (DOACs) apixaban,
rivaroxaban, edoxaban, and dabigatran were identified and examined. Linkage disequilibrium with
HHT genes was excluded, before variants within these genes were examined following whole genome
sequencing of general and HHT populations. The 44 genes identified included 5/17 actionable
pharmacogenes with guidelines. The 76,156 participants in the Genome Aggregation Database
v3.1.2 had 28,446 variants, including 9668 missense substitutions and 1076 predicted loss-of-function
(frameshift, nonsense, and consensus splice site) variants, i.e., approximately 1 in 7.9 individuals had
a missense substitution, and 1 in 71 had a loss-of-function variant. Focusing on the 17 genes relevant
to usually preferred DOACs, similar variant profiles were identified in HHT patients. With HHT
patients at particular risk of haemorrhage when undergoing anticoagulant treatment, we explore
how pre-emptive pharmacogenomic testing, alongside HHT gene testing, may prove beneficial in
reducing the risk of bleeding and conclude that HHT patients are well placed to be at the vanguard
of personalised prescribing.

Keywords: anticoagulation; direct oral anticoagulant; pharmacogenomics; loss-of-function variant;
missense variant; genetic testing

1. Introduction

Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant multi-
system vascular dysplasia arising from a single heterozygous loss-of-function variant
(“mutation”), usually in ENG, ACVRL1, or SMAD4 [1–5]. As recently reviewed [6–9],
patients develop internal, visceral arteriovenous malformations (AVMs) and smaller
telangiectasia that bleed recurrently. International consensus is available to guide clin-
ical management [7,8,10,11]. Initial guidance was through the generation of consensus
clinical diagnostic criteria (the Curaçao Criteria) where the presence of three criteria from
spontaneous recurrent nosebleeds, mucocutaneous telangiectasia, visceral involvement,
and family history can be used to define definite clinical HHT [10–12]. These criteria are
less helpful in children where there are fewer clinical features [9,13–15], and conversely,
it is possible to overdiagnose HHT if based on nosebleeds, telangiectasia, and family his-
tory alone [16,17]. The 2020 Second International Guidelines [7] recommended obtaining
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a genetic diagnosis of the HHT-causative mutation to facilitate targeted screening for
internal AVMs. HHT gene testing pathways are now in place in multiple countries world-
wide [7,8,18–25] and facilitate the diagnosis of HHT, targeted AVM screening programmes,
and direction of SMAD4 families to SMAD4-specific preventative measures [26–31].

Haemorrhage and anemia are hallmarks of HHT. Recurrent bleeds from nasal and/or
gastrointestinal telangiectasia in HHT commonly result in anaemia and dependence on oral
iron, intravenous iron, and/or red cell transfusions [7,8,32,33], with anaemia exacerbated
by additional aetiologies [34–37]. Despite this, there are frequent indications for therapeutic
anticoagulation. One major indication is venous thromboembolism (VTE), which is more
common in HHT than in the general population [38–40] and may also be precipitated by
therapies to treat HHT bleeding [41,42]. A further common indication is atrial fibrillation,
which complicates high cardiac output states in the setting of HHT hepatic AVMs, particu-
larly when anaemia develops [43]. Left atrial appendage closure is increasingly performed
for HHT patients unable to tolerate the usually recommended anticoagulation [44–46].
In addition to treatment (therapeutic) doses, anticoagulants are often indicated at lower
(prophylactic) doses, for example, peri-operatively or in hospitalized, acutely ill medical
patients [47,48].

Previous observational data in HHT-affected individuals have indicated marked ex-
tremes in tolerance of anticoagulant therapies. HHT is the second most common heritable
bleeding disorder after von Willebrand’s disease (HHT 11–17 per 100,000 [49–52]; VWD
109–2200 per 100,000 [53]) as it is more common than the haemophilias [54]. Given that up
to 10,000 HHT patients in Europe are estimated to require anticoagulation [55], it is surpris-
ing that a modest number of small retrospective cohort studies (Supplementary Table S1)
represent the bulk of our knowledge on the safety and tolerability of different anticoagu-
lant drugs in HHT [39,40,55–60]. Incidence of major bleeding episodes necessitating the
discontinuation of anticoagulation ranged from 21.6 to 50.1 per 100 patients per year across
studies [39,58]. For example, a large retrospective cohort study surveying 126 patients on
the French national HHT registry found that just over a third of HHT patients prematurely
discontinued anticoagulation in the first three months of treatment [60]. Reasons for discon-
tinuation included mucosal bleeding, major bleeding events, and corresponding increases
in red cell transfusions and/or hospitalisation [60].

Until recently, it was not possible to directly compare anticoagulant agents in HHT as
no single study included the full range of low molecular weight heparins (LMWH), Vitamin
K antagonists such as warfarin/acenocoumarol, and direct oral anticoagulants (DOACs) in
any significant numbers (Supplementary Table S1). In part, this reflected the reluctance of
major HHT centres to prescribe DOACs where there is less opportunity to reverse, and no
evidence of tolerance in HHT, in contrast to heparin and warfarin [56,57]. For instance, in
early data from the Hospital Italiano de Buenos Aires, no DOAC use was reported in their
HHT registry [61], while across Europe, only 32 DOAC treatment episodes were identified
by the European Reference Network [55]. Comparing these small numbers to historical
online patient survey data [57] and expert opinion led the Second International Guidelines
Committee to suggest LMWH and warfarin over DOACs in 2020 [7]. More recently, US data
provided sufficient numbers to enable direct comparisons between anticoagulant agents
in HHT patients for the first time [59]. This study found that the rates of dose-reduction
or premature treatment discontinuation due to bleeding were similar in those episodes
involving warfarin (16/35 [46%]), heparin-based anticoagulation (LMWH or fondaparinux,
14/27 [48%]), DOACs (11/25 [44%]), and multiple agents simultaneously (18/41 [44%]),
noting that anticoagulation discontinuation rates were potentially higher than reported
in some earlier studies [40,55,56]. In view of variability, missing data, and some analyses
that combined prophylactic (low dose) and therapeutic episodes (Supplementary Table S1),
despite identifying 356 anticoagulant treatment episodes in HHT across 13 cohort studies
and 64 case reports, the authors of a 2023 “scoping review” did not feel they could make
over-arching conclusions on the optimal anticoagulation agent in HHT [62].
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What these studies do show is that while more people with HHT tolerate therapeu-
tic anticoagulation with no discernible adverse consequences [39,40,55–62], a significant
proportion of patients on heparin, Vitamin K antagonists, and DOACs such as apixaban,
dabigatran, edoxaban, and rivaroxaban, have serious exacerbation in their bleeding diathe-
sis and have to discontinue therapy [39,40,55–62]. Crucially, several series demonstrate
that tolerance differs between different anticoagulant agents in the same patient [55,57].

There is no evidence in man that a specific HHT causal genotype is associated with
tolerance of individual anticoagulant agents [55] or, indeed, a higher or lower overall
HHT bleeding risk [4,63]. This is supported by recent data from mice that indicate that
in both major HHT genotypes (ACVRL1 and ENG), haemostasis is impaired to a similar
degree, though through different mechanisms [64]. Thus, simple HHT diagnosis with or
without HHT gene testing does not allow prediction of who is at higher risk of bleeding,
or higher risk of bleeding on prescription of anticoagulants. Beyond HHT-causal genes,
however, whole genome sequencing (WGS) data in 104 HHT patients recruited to the
100,000 Genomes Project demonstrated that patients with greater haemorrhagic severity
had more deleterious variants in genes encoding platelet and coagulation cascade-related
proteins [63].

These observations prompted us to extend genomic analyses to additional genes that
may modify the HHT bleeding phenotype, focusing on commonly prescribed drugs. The
field of pharmacogenomics examines the impact of variation in the genome on drug phar-
macology and offers the potential to reduce adverse events and improve drug efficacy [65].
Loss and gain-of-function alleles in multiple genes have been shown to affect drug pharma-
cokinetics (how the body handles drugs) and pharmacodynamics (how drugs affect the
body) [66]. Recent guidelines for the general population detail multiple genes with DNA
variants that have sufficient clinical impact to merit changes to the drug or dose [67–69]. In
the general population, a major goal is to reduce adverse events and hospital admissions,
and for anticoagulants, the greatest concern is major bleeding events [70]. These concerns
are exacerbated for people with HHT, who are already prone to bleeds due to abnormal
vascular structures. Separately, there are pharmacogenomic considerations for efficacy,
in other words, preventing pathological thromboses. While that is less of a focus for the
current study, the higher VTE rates in HHT mean that efficacy considerations within what
may be a narrower therapeutic window are also important.

Therefore, we considered pharmacogenomic considerations of anticoagulant therapies
to be particularly relevant for people with HHT. Our first goal was to provide evidence to
support or refute individual drug-specific intolerance so that a single failed anticoagulation
episode does not prevent future use of other anticoagulants. A second goal, focusing
on countries where gene testing is implemented in HHT diagnostics, was to evaluate
if there could be an indication for diagnostic pharmacogenomic testing in HHT, using
linkage disequilibrium and pharmacogenetic DNA variant prevalence in general and HHT
populations. We specifically focused on the newer DOACs that are favoured in general
population guidelines and by patients but where more extreme haemorrhagic responses
have been described in HHT [55].

2. Materials and Methods
2.1. Gene Identification

A literature search was conducted to reconstruct the warfarin, heparin, and DOAC bio-
chemical pathways and underlying genes. The search was conducted using the Google Scholar
and Pub Med databases. The search included key phrases such as “Anticoagulants AND
Pharmacogenetics”, “Pharmacogenetics AND Warfarin”, “Warfarin metabolism”, “Warfarin
biochemical pathway”, “Pharmacogenetics AND Heparin”, “Heparin metabolism”, “Heparin
biochemical pathway”, “Pharmacogenetics AND DOACs”, “DOACs metabolism”, and
“DOACs biochemical pathway”. Articles on each anticoagulant biochemical pathway and
anticoagulant pharmacogenetics were selected. The Data Supplement provides a detailed
appreciation of gene involvement in the anticoagulants’ biochemical pathways.
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In a separate study (Murphy et al., manuscript in preparation), the 17 genes with
actionable guidance in clinical practice were generated by making use of the Dutch Phar-
macogenetics Working Group [71] and the Clinical Pharmacogenetics Implementation
Consortium [72] clinical guidelines, each derived from data within the Pharmacogenomics
Knowledgebase (PharmGKB) [73].

2.2. Gene Location and Variant Identification

Gene positions on the Genome Reference Consortium human (GRCh) build 38 [74]
were identified using the University of California Santa Cruz (UCSC) Genome Browser [75].
RefSeq [76] was used to obtain further metrics for each gene and major transcripts.

Data from 76,156 participants in the Genome Aggregation Database (gnomAD) v3.1.2 [77]
were used to estimate general population variant prevalence, specifically for predicted
loss-of-function (pLOF) variants (nonsense, frameshift, and consensus splice site variants),
and separately for missense variants that result in an amino acid substitution.

Anonymised outputs from the Genomics England internal bioinformatics pipelines
and analyses were examined in the Genomics England Research Environment [78] us-
ing Participant Explorer and Interactive Variant Analysis (IVA) v2.2.3. Data were ap-
proved for export through the Research Environment AirLock under subproject RR42
(HHT-Gene-Stop).

2.3. Data Analysis

A dataset was constructed to visualise the variation in the pharmacogenes using
publicly available databases. GRCh38 [74] and MANE Project v1.2 [79] were used to obtain
the length of each gene, the length of the coding region in nucleotides, and the number of
exons. Within gnomAD 3.1.2 [77], for each pharmacogene, we extracted the total number
of missense and pLOF variants (separately and combined), the total number of individuals
reported each missense or pLOF variant, and the allele frequency of each variant. The
number of gene variants per coding region nucleotide was calculated.

Data from HHT patients recruited to the 100,000 Genomes Project [78] were used to
construct a dataset containing the total number of variants and pLOF variants in the HHT
cohort for each of the DOAC pharmacogenes. We then calculated the number of variants
per [HHT] individual, pLOF variants per [HHT] individual, variants in an individual per
coding sequence nucleotide, and the ratio of the number of variants in an HHT individual
to the number of variants in the general population per coding sequence for each of the
DOAC pharmacogenes.

Descriptive, comparative, and relationship statistics were generated using GraphPad
Prism 9.5.1 (GraphPad Software, San Diego, CA, USA) and STATA version 15 (StataCorp,
College Station, TX, USA). For continuous data, two group comparisons were using Mann–
Whitney. Normality testing and graphical generation were performed using GraphPad
Prism 9.5.1 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Identification of Genes Involved in Anticoagulant Metabolism

In total, 44 genes were identified where encoded proteins impacted the pharmacoki-
netics or pharmacodynamics of warfarin (Figure 1), heparin (Figure 2), or direct oral
anticoagulants dabigatran, rivaroxaban, apixaban, edoxaban, and betrixaban (Figure 3).

The full list of 44 pharmacogenes is provided in Supplementary Table S2. As shown in
Figure 4, individual genes are relevant to more than one drug.

3.2. Genomic Location of Genes Involved in Anticoagulant Metabolism

None of the 44 pharmacogenes genes are located within 1.5 Mb of the major HHT
genes ACVRL1, ENG, or SMAD4 (Figure 5, Supplementary Table S2). ENG (GRCh38
chr9: 127,815,016–127,854,658) was the closest to one of the pharmacogenes with ORM2
sited 13.5 Mb away at chr9:114,329,869–114,333,251. However, ORM2 was almost adjacent
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(only 75 kb, i.e., 0.075 Mb distant) to the D9S59 locus that was unlinked to ENG in one
of the original HHT families used to identify ENG as a HHT-causative gene [80]. We
concluded that neither HHT gene testing nor familial responses would be likely to predict
pharmacogenomic responses to anticoagulants in HHT families.
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γ-glutamyl carboxylase. Γ-glutamyl carboxylase ⑥ carboxylates multiple proteins involved in the 
clo ing cascade, including Factor (F)II, FVII, FIX, FX, Protein C, Protein S and Protein Z (encoded 
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Figure 1. Mechanism of action of warfarin relevant to pharmacogene identification (further de-
tails provided in the Data Supplement). Blue box highlights the pharmacokinetic warfarin (warf.)
metabolic pathway; purple box the Vitamin K cycles and pharmacodynamic warfarin pathway. Genes
encoding participating proteins are highlighted in yellow. Warfarin exerts its anticoagulant effect by
inhibiting the functioning of the VKOR enzyme, which results in a reduction in coagulation factors.
In detail, warfarin is 1© transported to the liver, where it is absorbed and 2© metabolised to active
metabolites. At this point, some of the drug is 3© eliminated. The remaining active metabolites
interfere with the Vitamin K cycle by 4© inhibiting vitamin K epoxide reductase encoded by VKOR.
Vitamin K1 is 5© reduced to Vitamin K1 dihydroquinone, which is an essential cofactor to γ-glutamyl
carboxylase. Γ-glutamyl carboxylase 6© carboxylates multiple proteins involved in the clotting cas-
cade, including Factor (F)II, FVII, FIX, FX, Protein C, Protein S and Protein Z (encoded by PROC,
PROS1 and PROZ respectively); proteins involved in bone and tissue modulation such as osteocalcin
(encoded by BGLAP); circulating matrix Gla protein (encoded by MGP), and apoptosis-related Gas6
(encoded by GAS6). The Vitamin K-independent cycle is not included in the diagram. 7© The Vitamin
K cycle is completed by VKOR and Epoxide Hydrolase 1 (EPHX1) which reduce Vitamin K epoxide
to Vitamin K.

3.3. General Population Variant Burdens

With reference to Figures 1–3 predicted loss-of-function (pLOF) alleles, including
frameshift indels, nonsense substitutions, splice site, and some missense alleles, would
predict higher plasma drug levels for two already actionable pharmacogenes (VKORC1
for warfarin and SLCO1B1 for heparin). In addition, for at least 11 further genes, pLOF
variants would predict higher plasma drug levels. We, therefore, tested the frequency of
pLOF loss-of-function allelic variants.
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Figure 2. Mechanism of action of heparin relevant to pharmacogene identification (further details
provided in the Data Supplement). The coagulation cascade intrinsic (black) and extrinsic (blue)
pathways are indicated. Genes encoding participating proteins are highlighted in yellow. 1© The
conversion of fibrinogen to fibrin is reduced by 2© heparin, which inhibits Factors Xa and IIa. Low
molecular weight heparin and unfractionated heparin bind to antithrombin III (AT-III encoded
by SERPINC1 and 3© produced in the liver) and 4© enhance inhibition of FXa and FXa plus FIIa,
respectively. LMWH: low molecular weight heparin; UFH: unfractionated heparin.

First, the number of variants within the 44 identified pharmacogenes was exam-
ined in the 76,156 participants in gnomAD v3.1.2 [77]. Recruited participants were from
diverse backgrounds, including 39,345 Europeans, 20,744 Africans/African Americans,
7647 Latino/Admixed Americans, and 5023 individuals from South or East Asia. In total,
there were 9668 different missense substitutions of an amino acid that may be silent but
may cause loss-of-function (as for many of the HHT-causal variants in ACVRL1, ENG, and
SMAD4) or more rarely, gain-of-function. Separately, there were 1076 different pLOF vari-
ants, i.e., frameshift, nonsense, and consensus splice site variants. Variant allele frequencies
are displayed in Figure 6 across all genes and were seen in all ethnicities. Importantly, within
the gnomAD sample of 76,156 people, this approximately translated to 1 in 7.9 individuals
having a missense substitution and 1 in 71 a predicted loss of function allele.

Adjusting for gene length, VKORC1, an actionable gene for warfarin prescription [71–73],
had the greatest number of missense and pLOF variants per coding region nucleotide (nt) at
0.34 missense variants per nucleotide and 0.045 pLOF variants per nucleotide. F9 encoding
Factor 9 had the fewest at 0.051 missense variants/nt and 0.014 pLOF variants/nt. The
number of pLOF variants per coding region nucleotide passed normality testing using
all four of Anderson–Darling, D’Agostino and Pearson, Shapiro–Wilk, and Kolmogorov-
Smirnov tests (all p values > 0.09) in support of random origin and maintenance. Missense
variants did not pass normality testing using any of the four tests (all p values > 0.097, with
VKORC1 and F9 being outliers).
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Figure 3. Mechanism of action of direct oral anticoagulants (DOACs) relevant to pharmacogene
identification (further details provided in the Data Supplement). DOACs circulating in the blood
exert anticoagulant effects by directly inhibiting coagulation factors. Blue box highlights 1© DOAC
uptake from the gastrointestinal tract following oral ingestion (note: most DOACs are absorbed
directly from the gastrointestinal tract into the liver) and 2© Edoxaban uptake, which is separately
facilitated by an organic anion transporter protein. Purple box highlights 3© activation of dabigatran.
Pink boxes highlight DOAC elimination via 4© ATP-binding cassette (ABC) efflux transporters. The
remaining DOAC 5© circulates in the blood and exerts its anticoagulant effect by directly inhibiting
coagulation factors. Eventually, all DOACs will be eliminated via the liver ( 6© highlighted in pink)
or kidney.
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Figure 5. Circus ideogram indicating loci for the HHT genes and the 44 pharmacogenes identified for
warfarin, heparin, or DOACs, and the HHT genes. Chromosomes 1–22, X and Y are displayed as an
outer ring, HHT genes on the middle ring (black symbols/text), and pharmacogenes on the inner
ring (red symbols/text). For precise pharmacogene locations, see Supplementary Table S2.

3.4. HHT Population Variant Burdens

While there was no reason to expect HHT patients to have differing proportions of
variants in these genes, we took the opportunity to examine variant frequencies in the
100,000 Genomes Project-recruited HHT population. Mindful of the change in general
medical practice away from warfarin and heparin requiring efficacy assessments and/or
injections, towards direct oral anticoagulants that do not, we focused on the 17 genes
relevant to DOAC mechanisms of action. As shown in Figure 7, within the modestly
sized (N = 141) HHT population recruited to the 100,000 Genomes Project, variants were
identified in all genes, with pLOF variants identified in eight genes.

Despite the differing methods of ascertainment, genome alignments, and stringency
metrics, there was a direct correlation between the number of variants per coding sequence
nucleotide in the HHT cohort and that identified in the gnomAD general population. In
other words, the number of variants per coding sequence nucleotide in the HHT cohort
increased as the number of variants per coding sequence nucleotide in the general popula-
tion increased (p = 0.014, Figure 8). Further, for pLOF variants where the impact would be
confidently predicted, there were between 0 and 53 per gene across the 141 HHT patients,
representing an average of 0–0.38 per patient per gene. Overall, across all 17 genes impli-
cated in DOAC mechanisms of action, the mean number of pLOF variants per HHT patient
recruited to the 100,000 Genomes Project was 0.96 (standard deviation 0.11).
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Figure 8. Correlation between variant numbers ascertained in the general population through the
Genome Aggregation Database (gnomAD) v3.1.2 (general population) [77] and the hereditary haem-
orrhagic telangiectasia (HHT) population recruited to the 100,000 Genomes Project [78]. Numeric
data were extracted from the respective sources, and variants per coding nucleotide calculated and
plotted as described in the Methods.

4. Discussion

We have shown that across a series of 44 genes where gene products influence phar-
macokinetics or pharmacodynamics of major, currently used anticoagulants, at least 1 in
7 individuals can be expected to have a missense substitution, and more than 1 in 70 to
have a loss-of-function variant. This includeds drug metabolism pharmacogenes in which
heterozygous loss-of-function alleles, along with other pharmacogenes-encoding drug
transporters and receptors, predict higher drug levels. The variants were also identified in
people with HHT, where there is a narrower therapeutic window due to abnormal vascula-
ture. Thus, while it is not possible to predict bleeding tendency based on familial HHT gene
variants or phenotypes, knowledge of pharmacogenetic variants may allow predictions
facilitating individualised anticoagulant prescriptions. Conversely, for non-genotyped
populations, chance differences in the prevalence of these variants could result in skewed
results of less general applicability across HHT than previously thought.

The main study limitations were the absence of functional data in the participants
with the gene variants and the lack of ethnic diversity in the HHT patients recruited to the
100,000 Genomes Project (though more ethnically diverse genome datasets were examined
through gnomAD). However, the main study strength is to alert the field of the presence of
these variants and their potential importance to prescribing.

In terms of implications for practice, the first element is relevance to prescribing
anticoagulants in HHT without pharmacogenomic data, as this is the current situation.
Previous work has shown marked variability in anticoagulant tolerance in terms of bleeding
in HHT [39,40,55–62], and the current findings are in keeping with this. Previous work
has also shown that individuals with HHT who are unable to tolerate one particular
anticoagulant due to excessive bleeding are able to tolerate other agents [55,57]. Again,
the current findings are in keeping with this. Given the narrow therapeutic window and
tendency to higher thrombotic rates in HHT [38–40], there is value in being able to monitor
efficacy directly through laboratory assays (e.g., international normalized ratio (INR) for
warfarin [81] or activated partial thromboplastin time (APTT) for heparin [82]) to ensure
the patient is anticoagulated to the correct degree. For warfarin, different loading regimens
can be employed, and a more conservative low-dose approach, such as the Crowther
protocol [83], may be preferred above a rapid loading schedule, such as recommended by
Tait [84].
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Where pharmacogenetic testing is available, validated variants can be translated
into personalised prescribing by employing internationally recognised guidelines such
as those found on PharmGKB [73]. That said, of the anticoagulants examined in the
current manuscript, only warfarin has clinically established pharmacogenomic prescribing
guidelines [85–88]. Even amongst these well-established warfarin guidelines, there is a lack
of consensus with differing approaches to dose alterations arising from clinically actionable
pharmacogenomic variants. Notably, with alternatives such as efficacy monitoring through
the INR [81] and wider use of DOACs [89,90], there may not be a push to harmonise the
warfarin guidance.

For DOACs, which are now the main oral anticoagulants in clinical use [91,92], the
data are in the arena of “newly discovered variants”, where PharmGKB recommends
determining the level of evidence for the impact a variant would have on whether a dosing
amendment is needed [93]. The effect of a loss-of-function variant can be inferred using the
principles from the American College of Medical Genetics and Association for Molecular
Pathology [94] for “very important pharmacogenes” in which the drug–gene association
has been strongly established. However, for variants where drug–gene associations have
not been made, studies examining the association between pharmacogenetic variants
and drug response would need to be performed. This is the case for all DOACs where
pharmacogenomic testing is not yet used in clinical practice [95].

There is a trend towards greater adoption of pharmacogenomic testing in mainstream
clinical practice to improve safety and efficacy. For example, England’s National Health
Service commissions a limited number of individual drug–gene pairs [96], and the goal
is to move towards pre-emptive panel-based testing across a wide range of drug–gene
pairs [97], providing clinically actionable genetic information at the point of prescribing.
The recent multicentre randomised control trial, PREPARE, demonstrated the success of
this approach by testing for 50 variants in 12 pharmacogenes resulting in a significantly
lower number of adverse drug events [68]. Subsequently, the PROGRESS programme is
assessing the feasibility of introducing NHS-wide genetic testing to guide prescription in
common practice [98,99]. Although economic panel-based arrays are proposed as the first
step to introduce pharmacogenomics into common practice [65,96–99], as shown by our
study, whole genome sequencing facilitates the identification of novel clinically relevant
loss-of-function variants, which would otherwise go undetected. As such, as sequencing
costs fall, this approach may become more commonplace.

It must be recognised that pharmacogenomics will be implemented at different rates in
different healthcare structures. So, taken together, what conclusions can be drawn from the
current HHT study? First, as guideline-emphasised, therapeutic anticoagulation is not con-
traindicated in HHT [7]. If no personalised genomic data are available, drug treatment can
still be personalised using demographic and clinical data, remembering the HHT-specific
observational studies summarised in Supplementary Table S1. Given that DOACs have so
many advantages for easier prescription (though they are more difficult to monitor and
reverse), this is the area where pharmacogenomics may be of most potential importance to
HHT and other states with narrower therapeutic windows for anticoagulation. For people
with HHT, the significant bleeding risk posed by anticoagulation, and their higher inci-
dence of VTE, together with nosebleeds providing less severe manifestations of excessive
bleeding, represent a strong argument in favour of further study in the population.

In order to address some of the study limitations, future work could use functional
data to validate pharmacogene variants. In addition, associations between pharmacogene
variants and drug response could be measured. Although prospective clinical trials may
not be ethical in this population, retrospective analyses could be performed; alternatively,
pharmacogenomic data from unaffected individuals could be extrapolated to HHT patients.
It will also be important to educate patients about the benefits of pharmacogenomic testing
to increase awareness and acceptance of this approach, and of anticoagulation when clini-
cally indicated. Ultimately, since most indications for anticoagulants are in the emergency
setting, prior understanding of individual drug risk profiles would enhance patient safety.



J. Clin. Med. 2023, 12, 7710 12 of 18

5. Conclusions

High proportions of the HHT population carry DNA variants that predict particular
anticoagulants will carry a higher risk of haemorrhage. In view of their narrow thera-
peutic window and the usually urgent nature of anticoagulant prescribing, we encourage
the development of pre-emptive pharmacogenomic testing alongside HHT gene testing.
More generally, the HHT population is well placed to be at the vanguard of personalised
prescribing.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/jcm12247710/s1: Supplementary Methods; Supplementary Table S1: Pre-
vious HHT Anticoagulation Studies; Supplementary Table S2: Pharmacogenes and location; Supple-
mentary References [39,40,55–60,100–124].
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