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Abstract: (1) Background: Type 2 Diabetes (T2D) is associated with reduced muscle mass, strength,
and function, leading to frailty. This study aims to analyze the movement patterns (MPs) of older
individuals with T2D across varying levels of physical capacity (PC). (2) Methods: A cross-sectional
study was conducted among individuals aged 60 or older with T2D. Participants (n = 103) were
equipped with a blinded continuous glucose monitoring (CGM) system and an activity monitoring
device for one week. PC tests were performed at the beginning and end of the week, and participants
were categorized into three groups: low PC (LPC), medium PC (MPC), and normal PC (NPC). Group
differences in MPs and physical activity were analyzed using non-parametric Kruskal–Wallis tests
for both categorical and continuous variables. Dunn post-hoc statistical tests were subsequently
carried out for pairwise comparisons. For data analysis, we utilized pandas, a Python-based data
analysis tool, and conducted the statistical analyses using the scipy.stats package in Python. The
significance level was set at p < 0.05. (3) Results: Participants in the LPC group showed lower
medio-lateral acceleration and higher vertical and antero-posterior acceleration compared to the
NPC group. LPC participants also had higher root mean square values (1.017 m/s2). Moreover,
the LPC group spent less time performing in moderate to vigorous physical activity (MVPA) and
had fewer daily steps than the MPC and NPC groups. (4) Conclusions: The LPC group exhibited
distinct movement patterns and lower activity levels compared to the NPC group. This study is the
first to characterize the MPs of older individuals with T2D in their free-living environment. Several
accelerometer-derived features were identified that could differentiate between PC groups. This
novel approach offers a manpower-free alternative to identify physical deterioration and detect low
PC in individuals with T2D based on real free-living physical behavior.

Keywords: type 2 diabetes; movement patterns; physical capacity; accelerometer

1. Introduction

Type 2 diabetes (T2D) is a rising epidemic and a global healthcare concern, especially
in the older age group. The prevalence of diabetes in older people (age 65–99 years)
is projected to increase by about 200% from the estimated number in 2019 and reach
276.2 million by the year 2045 [1]. People with diabetes are at increased risk for frailty due
to common diabetes complications [2,3] along with sarcopenia, which is characterized by
excessive loss of muscle strength and mass [4]. Both frailty and sarcopenia are known as risk
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factors for falls [5,6], mobility disability, hospitalization, and even death [1,7]. Preceding the
onset of disability and frailty is a long period of deterioration in physical health [8]. Recently,
the American Diabetes Association (ADA) published recommendations suggesting older
people with diabetes should be screened for cognitive and physical impairments and that
medical treatment for people with T2D should be given according to their PC levels and
health status [9].

To assess PC, clinicians rely mostly on physical–functional assessment tests which
allow quantitative comparisons of performance. Nevertheless, a significant limitation of
most of these assessments is their suitability only for clinical environments, requiring su-
pervision. Recent advances in technology have led to an increased use of wearable-sensors
that assess functional balance and mobility [10,11]. Accelerometers have been suggested
as a quantitative measure of balance and offer a practical and low-cost alternative to force
plates which are considered to be the gold standard of balance assessment [12]. These
portable, inexpensive, lightweight, and compact sensors allow continuous measurement of
movement patterns (MPs) of the wearer both in everyday life and in the clinic [13]. Many
studies have used accelerometers for the purpose of gait analysis in order to diagnose and
monitor certain diseases [14–17] or to detect gait patterns in frail older adults [18]. Others
have used them to identify a real-time fall [10,19,20] or evaluate the risk of falls through al-
terations in balance [21,22]. It has even been reported that accelerometer features can better
estimate the risk of falls in healthy active community-dwelling older people compared to
the use of the timed up and go test (TUG), a common physical-functional mobility test [10].
The current literature has identified a wide range of accelerometer-based features, but
there is no consensus regarding the optimal indices to examine from the data obtained [10].
Two commonly used features are the tilt angle and the root mean square (RMS). The tilt
angle has been used to detect change in body orientation (such as a fall) or posture and
to classify human movement [11,23]. Studies have used the RMS in order to distinguish
between responses to different test conditions and between fallers and non-fallers [12,24].
Menz et al. [25] calculated acceleration RMS for all axes (x, y, z) and used it to evaluate
age-related differences in walking stability. They found that the magnitude of accelerations
at the head and pelvis was generally smaller in older subjects compared to the younger
ones. This can be attributed to the reduced walking speed older people tend to adopt as a
compensatory strategy to ensure that the head and pelvis remain stable, thereby reducing
the likelihood of falls when walking. Kang et al. [11] used a single waist-mounted tri-axial
accelerometer in order to classify activities of daily living and to distinguish various active
states from resting states in a younger cohort using the RMS and tilt angle. The total
successful detection rate of the different activities was approximately 96%. This study
provided limited data on MPs in a free-living environment as most data was collected in
the laboratory and only one subject was tested in a free-living environment [11].

Characterizing the MPs of older people with diabetes obtained through continuous
movement devices may be a first step in identifying those at risk for frailty and disability in a
manpower-free objective manner. This might pave the way for implementing interventions
that have been shown to prevent further physical deterioration among this population [26,27].

Therefore, this study aimed to characterize MPs of older people with diabetes in
varying levels of PC in their ecological environment.

2. Materials and Methods
2.1. Participants

In this cross-sectional study, 103 independent adults with T2D over the age of 60 who
were randomly selected from diabetes clinics, community centers, and residential care
homes were recruited via physicians’ referrals and social media advertisements. Individ-
uals with a significant hearing or visual disability, those who couldn’t walk or perform
the physical function tests, and those who were diagnosed with dementia, cognitive im-
pairment, or any major non-diabetes-related illness expected to reduce life expectancy
substantially or interfere with study participation were excluded. Individuals who were



J. Clin. Med. 2023, 12, 7404 3 of 13

not able to perform the physical–functional tests for any reason were also excluded from
the study.

2.2. Study Design

This study was conducted at the “Center for Successful Aging with Diabetes” at the
Sheba Medical Center. Participants visited the clinic twice. On their initial visit, they
provided demographic and medical details, completed a questionnaire on physical activity
(PA), and underwent various PC tests. These tests encompassed evaluations of aerobic
capacity, gait speed, balance, and muscle strength. Participants were then connected to a
blinded continuous glucose monitoring (CGM) system (Medtronic iPro™2 and CareLink™,
Medtronic, Northridge, CA, USA) and downloaded a compatible application in which they
documented glucose levels three to four times a day for calibration purposes. In order to
assess MPs and PA behavior, the participants were equipped with an activity recording
device (ActiGraph® GT9X; ActiGraph Corp, Pensacola, FL, USA). A week later, the PC
measurements were repeated and data from the activity and from the CGM device were
downloaded (Figure 1 presents the study’s timeline and description).
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Figure 1. Timeline and description of the seven-day study design that included two visits. On their
first visit, participants were connected to a CGM and an accelerometer. One week later, on the second
visit, data from both devices was downloaded. On both visits, participants underwent PC (physical
capacity) tests.

2.3. Socio-Demographic Measures

Socio-demographic characteristics, including age, gender, education, marital status,
employment status, ethnicity, and smoking status, were collected. Anthropometric mea-
surements, including waist circumference, self-reported weight and height, and calculated
body mass index (BMI), were also collected.

2.4. Glycemic Control (GC) Status

HbA1c levels were assessed by extracting data from patients’ medical records and
the CGM. The CGM system continuously measures and records blood glucose levels at
five-minute intervals, with the collected data stored in the sensor and later retrieved for
analysis. The data obtained and retrieved from the Medtronic iPro™2 and CareLink™
(Medtronic, Northridge, CA, USA) included: percent of time spent in target range (%TIR,
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between 70 and 180 mg/dL), time above range (%TAR, >180 mg/dL), time above high
range (%TAHR, >250 mg/dL), and time below range (%TBR, <70 mg/dL).

2.5. Physical Capacity (PC) Battery

In order to include a wide range of physical abilities and physical capacity domains,
well-validated tests with established norms were conducted.

2.5.1. Muscle Strength Assessment

1. The hand grip strength test was used to assess upper body muscular strength [28].
This test was conducted with a dynamometer (Jamar) in a seated position with the
patient’s elbow flexed to 90 degrees and their forearm and wrist neutral. An average
score (kg) from three repetitions was calculated for the dominant and nondominant
hand and compared to the general population according to age and gender. The grip
position of the dynamometer was adjusted to each individual’s hand size. Measure-
ments of grip strength taken with the Jamar dynamometer have evidence for good
to excellent (r > 0.80) test–retest reproducibility and excellent (r = 0.98) inter-rater
reliability [28]. Longitudinal studies confirm that grip strength declines after midlife,
with loss accelerating with increasing age and through old age. Grip strength assess-
ment has been shown to have predictive validity, and low values are associated with
falls, disability, impaired health-related quality of life, a prolonged length of stay in
hospital, and increased mortality [29].

2. The 30 s chair stand (STS) was used to assess lower limb muscle strength [30]. The
patient instructions were to stand up from a seated position as many times as possible
with arms crossed on the chest for 30 s. Participants were familiarized with the task
before the beginning of the test. The number of times within 30 s that the participant
could rise to a full stand from a seated position with his back straight and feet flat on
the floor “as fast as possible” was counted. The strength of the lower limb muscles
has a crucial impact on daily functioning, for example, in movement from a sitting
position to a standing position, climbing up stairs, and walking. Failure to perform
STS movements efficiently and smoothly may lead to falls [31]. For individuals aged
70–74, a score below 10 signifies a high risk of falling for women, and a score below
12 indicates a high risk for men [32]. To maintain physical independence, a score of 14
or higher is necessary for women, while men require a score of 15 or higher [33].

2.5.2. Aerobic Capacity Assessment

For aerobic capacity, the 6 min walk test (6MWT) [34,35] was conducted. The test
measures the distance covered over a total of six minutes on a hard, flat surface. The
participants were instructed to walk as fast as they could and were allowed to self-pace and
rest as needed as they traversed back and forth along a marked walkway. During the test,
participants were discouraged from talking and were notified of each passing two minutes.
The distance covered in the 6MWT by healthy adults has been reported to fall within the
range of 400 m to 700 m. Additionally, in older adults with heart failure, the 6MWT has
been linked to frailty and mortality [36].

2.5.3. Gait Speed Assessment

The 10 m walk test (10MW) was used to determine gait speed [37]. The participants
were asked to walk at a “comfortable pace” for a total of 14 m (including two meters for
acceleration at the beginning and two meters for deceleration at the end). The score achieved
is determined by the elapsed time while the participant walked 10 m. The subject performed
the test twice and the average time was reported. Studies have shown that better gait speed is
associated with a lower risk for functional decline, hospitalization, and mortality [38] and that
a score below 0.8 m/s in the test is a predictor of poor clinical outcomes [39].
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2.5.4. Balance Assessment

For the assessment of the participants’ balance, three tests were applied: The timed up
and go (TUG) test, the Berg balance scale (BBS), and the four-square step test (FSST).

1. The TUG [40] test examines most mobility skills. The participant is asked to get up from
a chair with handles, walk three meters, turn, walk back, and sit down in the shortest
possible time. The score is categorized according to the risk of falls and independent
walking. The following cut-offs are conventionally used: less than 14 s indicates inde-
pendent mobility; 15–20 s signifies semi-independent mobility, suggesting a somewhat
elevated risk of falls and necessitating further assessment, with the possibility of requir-
ing a walking aid; 20–30 s indicates dependent mobility. Data suggests that the TUG
test is a reliable and valid test for quantifying functional mobility and risk for falls that
may also be useful in following clinical change over time [41].

2. The BBS [42] test includes 14 tasks which evaluate static and dynamic balance. Each
task receives a score of 0 to 4 points depending on the quality and task execution time.
The maximum score is 56 points. The scores are dichotomized in the following manner:
Scores below 36 indicate impairment with an increased risk of falls, scores between
37–45 indicate the need for a walking aid in order to walk in a safe manner, and scores
above 45 indicate an independent walker without an increased risk of falls. In assessing
the risk of fall among the community-dwelling elderly, the TUG and the BBS can be
used in combination to increase the diagnostic accuracy of the risk of fall [43].

3. The FSST [44] evaluates dynamic balance at a high functional level and features
stepping forward, backwards, left, and right over two 90 cm and 2.5 cm high long
sticks that divide the floor into four squares. The subject stands in square 1 facing
square 2. The aim is to step as fast as possible into each square with both feet in
the following sequence: Square 2, 3, 4, 1, 4, 3, 2, 1 (clockwise to counterclockwise)
without touching the sticks. The score is the time required to complete the entire route.
Subjects with scores higher than 15 s are associated with a greater risk of falls.

2.5.5. Frailty Assessment

Screening for frailty was performed using the Fried scale [45]. The scale includes five
criteria, and pre-frailty is defined as the presence of two components and frailty is defined as
the presence of at least three of the following components: (1) unintentional weight loss—loss
of 10 lbs/4.5 kg or more in 1 year; (2) self-reported exhaustion/ fatigue; (3) low PA level as
assessed by a modified Baecke questionnaire [46]; (4) slow gait speed—less than 0.8 m/s
with or without a walking aid; (5) low grip strength relative to gender and body weight.

2.6. Allocation to PC Categories

Using the data collected from the PC tests, individuals were then categorized according
to their PC status and assigned to one of three groups: the low PC (LPC) group, the medium
PC (MPC) group, and the normal PC (NPC) group. Participants were allocated to the LPC
group if: their standardized 6MWT or STS or grip score was equal or less than −2 standard
deviations or if their BBS score was ≤36, if their TUG score was between 21 and 30, if their
FSST score was greater than 15 s, or if they were deemed as frail as assessed by the Fried
scale. Participants were allocated to the MPC group if: their standardized 6MWT or STS
or grip score was between −2 and −1.5, if their BBS score was between 37 and 45, if their
TUG score was between 15 and 20, if their FSST score was between 10.14 and 14.59, or if
they were determined to be pre-frail using Fried scale. All other participants whose criteria
did not satisfy the previous conditions were allocated to the NPC group [47].

2.7. Assessment of Movement Patterns (MPs) Using Accelerometers

MPs were measured using an accelerometer (ActiGraph® GT9X; ActiGraph Corp,
Pensacola, FL, USA).) worn on the anterior left side of the waist for seven consecutive
days. The ActiGraph captures and records high resolution raw acceleration data (i.e., X, Y,
and Z coordinates). The following features were derived from the activity device for each
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patient: timestamp (from which a day, an hour, and a time can be derived), accelerometer
recordings collected every 10 ms: (1) Accelerometer X—Mediolateral (ML)—side to side, (2)
Accelerometer Y—Vertical (VT)—up down, and (3) Accelerometer Z—Anterior–posterior
(AP)—forward and backward (refer to Table A1 in Appendix A). In addition, using the raw
data acceleration, the RMS (measured in g-force units where 1 g = 9.8 m/s2) and tilt-angle
change [11] were calculated. The RMS serves as a measure of acceleration magnitude,
computed by taking the average of the square root of the acceleration signals in the x, y,
and z directions (x2 + y2 + z2) [22]. The tilt function is employed to identify and assess
body posture and orientation (cos−1(y)).

2.8. Assessment of Physical Activity (PA) Using Accelerometers

The following indices were extracted from the manufacturer-provided software (Ac-
tiLife software version 6.13.4, Pensacola, FL, USA): light PA (LPA), moderate to vigorous
PA (MVPA), number of steps, and sedentary time.

2.9. Accelerometer Data Integration and Analysis (Figure 2)

The analysis was performed on 815,965,498 data points (accelerometer values); LPC
(160,139,810 data points), MPC (323,904,000 data points), and NPC (331,921,688 data points).
While all participants were advised to wear the accelerometer continuously for seven days,
it was observed that some participants only had recorded data available for a duration of
five days. Consequently, the analysis in this study is based on the five-day data records for
each participant. We assessed the distribution’s normality using the Kolmogorov–Smirnov
test. To ascertain variations in baseline characteristics among the three physical capacity
(PC) categories, we conducted non-parametric Kruskal–Wallis tests for both categorical
and continuous variables. Dunn post-hoc statistical tests were subsequently carried out for
pairwise comparisons. For data analysis, we utilized pandas, a Python-based data analysis
tool, and conducted the statistical analyses using the scipy.stats package in Python. The
significance level was set at p < 0.05.
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Figure 2. Accelerometer data analysis description and visualization: The process starts with the
accelerometers’ data set for 103 patients for one week. The dataset was integrated into a common
repository. Three different data sets were extracted according to the patient groups—LPC, MPC,
and NPC. At the final stage, the three groups were compared in terms of X, Y, Z, RMS, and tilt a
while statistical tests were applied. Note: RMS: root mean square, LPC: low physical capacity, MPC:
medium physical capacity, NPC: normal physical capacity.

3. Results
3.1. Dataset Description

This analysis pertains to data for 103 participants (59.2% male) whose mean age was
71.5 ± 6.9 years and average diabetes duration was 17.1 ± 10.4 years. Twenty participants
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(19%) met the criteria for LPC, thirty-eight (37%) were classed as MPC, and forty-five (44%)
were classed as NPC. Table 1 presents the characteristics of the participants according
to their PC category. Diabetes duration (years) was higher in the LPC group compared
to the NPC group (p-value = 0.004) and in the MPC group compared to the NPC group
(p-value = 0.009). In addition, compared to the MPC and NPC groups, participants in the
LPC group had higher mean glucose levels, spent less time below range (TBR) and in range
(TIR), and more time above range (TAR) and above high range (TAHR) (p-value < 0.001).

Table 1. Comparison between the three PC groups according to demographic, diabetes indices, and
glucose levels.

Total LPC (n = 20) MPC (n = 38) NPC (n = 45) p-Value of the
Model (KW)

Gender: Male 61 (59.2%) 10 (50%) 23 (61%) 28 (62%) 0.615

Age 71.5 ± 6.9 71.9 ± 7.4 71.4 ± 6.7 71.3 ± 7.2 0.974

Education (years) 15.4 ± 3.6 13.9 ± 2.6 15.3 ± 3.4 16.2 ± 3.9 0.108

Weight (Kg) 80.4 ± 15.5 79.9 ± 15.5 83.7 ± 16.5 77.9 ± 14.5 0.190

Height (cm) 168.7 ± 9 164.4 ± 7.5 169.9 ± 9.8 169.4 ± 865 0.057

BMI 28.2 ± 4.6 29.3 ± 4.7 29 ± 5.4 27 ± 3.7 0.070

WC (cm) 105.7 ± 11.5 109.9 ± 12.8 106.1 ± 12.4 103.7 ± 9.9 0.170

Falls 24(23%) 5(26.3%) 12(30.6%) 7(15.6%) 0.260

Smoking 10 (9.2%) 4 (17.7%) 2 (5.3%) 4 (9.3%) 0.340

Diabetes duration (years) 17.1 ± 10.4 21.2 ± 8.9 19.4 ± 11.2 12.9 ± 9.1 0.0014

Diabetes complication 96 (93.2%) 19 (95%) 36 (94.7%) 41 (91.1%) 0.760

Severe hypo 18(17.4%) 5(25%) 7(18.4%) 6(13.33%) 0.510

Insulin (%) 89 (86.4%) 19 (95%) 30 (79%) 40 (89%) 0.170

A1C (%) 7.1 ± 1.1 7.5 ± 1.2 7.1 ± 0.9 6.9 ± 1.2 0.057

Glucose Level (mg/dL) 142.7 ± 45.6 159.5 ± 53.7 141.7 ± 42.2 135.7 ± 42.5 <0.001

TBR (%) 1.2 ± 10.8 0.9 ± 9.3 0.9 ± 9.5 1.6 ± 12.6 <0.001

TIR (%) 81.9 ± 38.5 71.5 ± 45.1 82.5 ± 38 86.4 ± 34.3 <0.001

TAR (%) 13.9 ± 34.6 20.9 ± 40.7 14.4 ± 35.1 10 ± 30 <0.001

TAHR (%) 2.9 ± 17 6.6 ± 24.9 2.2 ± 14.7 2 ± 14 <0.001

Numbers are presented as either mean ± SD or n (%). Statistically significant rows are bolded. Note: LPC:
low physical capacity, MPC: medium physical capacity, NPC: normal physical capacity, KW: Kruskal–Wallis,
BMI: body mass index, WC: Waist circumduction, TBR: time below range (>70 mg/dL), TIR: time in range
(70–180 mg/dL), TAR: time above range (>180 mg/dL), TAHR: time above high range (>250 mg/dL).

Table 2 displays the PC test scores and the level of physical activity (PA) for the three
groups. It is evident that individuals in the LPC group devoted less time to engaging in
moderate to vigorous physical activity (MVPA) in comparison to the MPC and NPC groups
and that they took fewer daily steps (p-value < 0.001). They also had lower scores on all
PC tests except for the STS test. No significant differences in sedentary and light physical
activity (LPA) were found between the groups.

3.2. Acceleration Patterns of the Three Physical Capacity Categories

Table 3 illustrates the distinctions in acceleration and movement patterns among the
three groups. In contrast to the MPC and NPC groups, participants within the LPC group
exhibited lower average X-axis acceleration (m/s2) (medio-lateral—side to side) but higher
Y-axis (m/s2) (vertical—up and down) and Z-axis (m/s2) (AP—forward and backward)
amplitude accelerations. Additionally, they displayed elevated RMS and tilt values.
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Table 2. Comparison between the three PC groups according to physical and functional indices.

Total LPC
(n = 20)

MPC
(n = 38)

NPC
(n = 45)

p-Value of the
Model (KW)

PA questionnaire—Total score 5.3 ± 1.8 4.5 ± 1.7 5.3 ± 1.7 5.8 ± 1.7 0.012

GRIP, dominant hand (KG) 24.9 ± 9 18.7 ± 8.3 25.7 ± 8.2 28 ± 9.5 <0.001

BERG total score 53.9 ± 4.9 50.3 ± 7.3 54.6 ± 4.6 55.1 ± 2.6 <0.001

FSST (s) 10.8 ±3.4 14.4 ± 4.8 11.4 ± 1.7 8.5 ± 1.7 <0.001

6MWT (m) 495.8 ± 111.2 376.3 ± 95.1 485.2 ± 9 557.9 ± 8 <0.001

STS (reps) 13.9 ± 1.5 13.7 ± 1.2 13.9 ± 1.5 13.9 ± 1.7 0.74

TUG (s) 9.2 ± 3.3 12.6 ± 5.1 9.1 ± 2.3 7.6 ± 1.5 <0.001

10MWT (s) 8 ± 1.9 9.4 ± 1.9 7.9 ± 1.6 7.5 ± 1.6 <0.001

OLS (s) 17.8 ± 10.3 9.1 ± 8.5 17.9 ± 9.6 21.1 ± 9.7 <0.001

3360 turn test (s) 5.7 ± 1.8 7.4 ± 2.2 5.9 ± 1.2 4.7 ± 1.2 <0.001

Pre-frail (%) 35 10.5 0

Frail (%) 25 0 0

Steps (daily mean) 4772 ± 2691 2535 ± 1411 4327 ± 2646 4610 ± 1979 <0.001

Sedentary (%) 82.2 ± 7 85.1 ± 6.8 81.9 ± 7.1 81 ± 6.8 0.120

LPA (%) 16.6 ± 6.4 14.4 ± 6.5 16.8 ± 6.6 17.4 ± 6.1 0.247

MVPA (%) 1.2 ± 1.3 0.4 ± 0.6 * 1.2 ± 1.3 1.5 ± 1.3 <0.001

* Numbers are presented as either mean ± SD or n (%). Statistically significant rows are bolded. Note: LPC: low
physical capacity, MPC: medium physical capacity, NPC: normal physical capacity, KW: Kruskal–Wallis, PA: physical
activity, FSST: four-square step test, 6MWT: 6 min walk test, STS: sit to stand, TUG: timed get up and go, 10MWT:
10 min walk test, OLS: one leg stance, LPA: light physical activity, MVPA: moderate to vigorous physical activity.

Table 3. Comparison between the three PC groups according to movement patterns.

LPC (n = 20) MPC (n = 38) NPC (n = 45) LPC (n = 20) p-Value of the
Model (KW) Total Median

X(m/s2) 0.102 (0.57) 0.082 (0.63) 0.109 (0.61) <0.001 0.096 (0.61)

Y (m/s2) −0.473 (0.76) −0.418 (0.79) −0.438 (0.79) <0.001 −0.438 (0.78)

Z (m/s2) 0.234 (1.06) 0.141 (1.06) 0.172 (1.04) <0.001 0.174 (1.06)

RMS (m/s2) 1.017 (0.04) 1.009 (0.04) 1.011 (0.04) <0.001 1.012 (0.04)

Tilt (◦) 1.157(0.52) 1.132 (0.49) 1.152 (0.52) <0.001 1.145 (0.51)

Numbers are presented as medians (IQR). Statistically significant rows are bolded. Note: LPC: low physical
capacity, MPC: medium physical capacity, NPC: normal physical capacity, RMS: root mean square.

Figure 3 provides a visual representation of the comparisons between group in the
three acceleration axes. Specifically, in the X-axis, individuals in the NPC group exhib-
ited statistically significant higher acceleration signals when compared to the LPC and
MPC groups. Conversely, in the Y and Z axes, participants in the LPC group displayed
statistically significant higher acceleration signals in contrast to the NPC and MPC groups.

Significant differences in tilt were identified between the LPC and MPC groups, as
well as between the MPC and NPC groups. Figure 4 illustrates that significant differences
were also observed in the median RMS acceleration throughout the day among all of the
groups (p-value < 0.001), with the highest values being evident in the LPC group.
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4. Discussion

In this study we monitored the movement patterns and physical activity behavior of
103 older people with T2D continuously for one week. The implementation of continu-
ous measurement allowed for real-time identification of movement patterns during the
execution of everyday tasks. The findings revealed that participants allocated to the LPC
group solely by their PC had lower X and higher Y and Z axis accelerations, as well as
higher tilt and RMS values compared to participants in the NPC group. Older individuals
with lower PC: i.e., lower scores in agility, balance, aerobic endurance, and muscle strength
tests (usually collected through elaborate assessment in the clinic by a physiotherapist)
are at higher risks for falls [32,41–44,48,49]. Our study demonstrated that each PC cate-
gory is characterized by distinct movement patterns (MPs). Using these MPs may allow
early identification of those at high risk for falls and physical deterioration in a remote,
manpower-free manner, as opposed to current practice that requires extensive assessment
by a health care professional in the clinic.

This study collected MPs during the execution of everyday tasks. Previous studies
used wearable accelerometers mostly in a laboratory setting for gait analysis [14,50] to
detect falls [51,52]. Weng et al. [23] aimed to develop a real-time fall detector system via
two smartphones worn on the waist and pocket. They reported significant variations in
body tilt angles (expressed by posture change) and the RMS (expressed by motion change)
when applying a three falling-phase model for the detection of a possible fall. Several
studies have highlighted the ability of accelerometer-derived features to predict the risk
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of falls in older people [10,12]. Among them is the study conducted by Dohney et al. [53].
In this study, 40 adults over the age of 65 were required to stand still for 30 s under four
different standing balance conditions while wearing an accelerometer on their lower back.
The X and Z acceleration axis signals were used to quantify postural sway in each direction
as an indicator for balance. The results showed a significantly higher value for the X axis
acceleration signal during two different balance standing conditions in those defined as
fallers (participants which had experienced multiple falls or one fall requiring medical
attention during the 12 months prior to assessment) compared to non-fallers (p < 0.01).
Values for the Z axis acceleration signal were also different between fallers and non-fallers,
with fallers exhibiting significantly increased sway relative to non-fallers (p < 0.05).

Few researchers have used the accelerometer in a free-living continuous manner similar to
our study. Weiss et al. [54] continuously monitored everyday activity over three days to assess
fall risk in 71 older adults during community ambulation (i.e., the ability to walk and move
around one’s community or neighborhood, navigating and participating in daily activities).
The subjects were classified as fallers or non-fallers based on a history of two or more falls and
were assessed both in the laboratory and in a free-living environment. They demonstrated that
the fallers had significantly higher gait variability in the Y (vertical) axis and lower variability in
the X (medio-lateral) axis (p-value < 0.02). They suggested that by measuring raw acceleration
data during activities of daily living (ADL), those who are at risk to fall can be identified [54].
Another study focusing on fallers and non-fallers, defined based on a comprehensive history
of falls, measured the torso accelerations of older patients using a tri-axial accelerometer
under four balance conditions. They found a significantly higher acceleration RMS in fallers
compared to non-fallers (p-value < 0.011) when standing unsupported on a mat with eyes open,
and concluded that accelerometer-based measures are potentially an efficient, quantitative
alternative tool for balance measurement in older people [12].

5. Conclusions

To the best of our knowledge, this is the first study attempting to characterize the
MPs of older people with T2D in their free-living environment. Through the utilization
of wearable accelerometers, we successfully profiled the movement patterns of older
individuals across various levels of PC. As the ADA recommends medical treatment for
people with T2D according to their PC levels [9], there is an urgent need for effective
objective evaluation tools that can detect the early stages of physical deterioration. As
most evaluations are conducted in the clinic, require supervision, and are costly and time
consuming, this innovative approach might offer a manpower-free alternative way to
identify physical deterioration and to detect LPC in people with T2D through free-living
ambulation. Larger studies are needed in order to further validate these results, and
prospective studies are required to assess the temporality of the relationship.

Study Limitations

This study is subject to several limitations that should be acknowledged. Firstly,
the cross-sectional design employed does not allow for the establishment of a temporal
relationship between the PC level and the MPs. To investigate such a relationship, a
prospective study design would be necessary. Secondly, it is important to consider that a
portion of the study took place amidst the COVID-19 pandemic, potentially influencing
and limiting the participants’ physical activity behavior and MPs. Lastly, to validate and
broaden our findings, a larger cohort would be required.
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Appendix A

Table A1. Snapshot of individual patient data, featuring timestamps and corresponding
accelerometer signals.

Timestamp Accelerometer X Accelerometer Y Accelerometer Z

0 12/08/2020 10:55:00.000 0.008 −0.898 0.395

1 12/08/2020 10:55:00.010 0.031 −0.906 0.387

2 12/08/2020 10:55:00.020 0.043 −0.902 0.363

3 12/08/2020 10:55:00.030 0.039 −0.883 0.328

4 12/08/2020 10:55:00.040 0.051 −0.887 0.328

5 12/08/2020 10:55:00.050 0.039 −0.883 0.309
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