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Abstract: Background: Post-Acute Sequelae of COVID-19 (PASC) have emerged as a global public
health and healthcare challenge. This study aimed to uncover predictive factors for PASC from
multi-modal data to develop a predictive model for PASC diagnoses. Methods: We analyzed elec-
tronic health records from 92,301 COVID-19 patients, covering medical phenotypes, medications,
and lab results. We used a Super Learner-based prediction approach to identify predictive factors.
We integrated the model outputs into individual and composite risk scores and evaluated their
predictive performance. Results: Our analysis identified several factors predictive of diagnoses of
PASC, including being overweight/obese and the use of HMG CoA reductase inhibitors prior to
COVID-19 infection, and respiratory system symptoms during COVID-19 infection. We developed
a composite risk score with a moderate discriminatory ability for PASC (covariate-adjusted AUC
(95% confidence interval): 0.66 (0.63, 0.69)) by combining the risk scores based on phenotype and
medication records. The combined risk score could identify 10% of individuals with a 2.2-fold in-
creased risk for PASC. Conclusions: We identified several factors predictive of diagnoses of PASC and
integrated the information into a composite risk score for PASC prediction, which could contribute to
the identification of individuals at higher risk for PASC and inform preventive efforts.

Keywords: COVID-19; post-acute sequelae of SARS-CoV-2 infection; electronic health records;
predictive models; phenotype risk score

1. Introduction

Despite the declaration by the WHO on 5 May 2023 marking the end of the COVID-19
emergency [1], the long-term clinical consequences of COVID-19 continue to pose signif-
icant health challenges [2–4]. Post-Acute Sequelae of COVID-19 (PASC), also known as
Post-COVID Conditions (PCC) [5], Long COVID [6], Post-Acute COVID-19 Syndrome
(PACS) [7], and Long Haul COVID-19 [8], encompass a diverse array of persistent symp-
toms and new chronic disorders that can arise following a COVID-19 infection. These can
range from lingering symptoms following the initial infection, such as cough, fatigue, and
loss of smell [9–11], to the development of chronic lung or neurological conditions [4,12–17],
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as well as late post-COVID complications, including autoimmune complications. The global
prevalence of PASC is estimated to be substantial, with at least 65 million individuals world-
wide affected [18]. Advancing our knowledge of the physiological mechanisms underlying
PASC plays a crucial role in accurately predicting PASC and enabling early identification
of patients at high risk [19], who may then be candidates for PASC-focused treatment or
follow-up care [9,20].

Clinically defined as the continuation or development of new symptoms 3 months
after the initial SARS-CoV-2 infection, PASC have been associated with a wide range of
factors, including demographic characteristics such as female gender [21], older age [22],
and higher BMI [23,24], as well as pre-existing conditions (e.g., fatigue, respiratory system
disorders [11,25]). Additionally, certain medication use (e.g., angiotensin-converting en-
zyme inhibitors and metformin), genetic factors (e.g., FOXP4 locus), and environmental
factors (e.g., engagement in transportation, logistics, or the discipline workforce) have
been revealed to be predictive of PASC diagnosis [26–29]. Efforts have also been made to
predict PASC based on these factors using various methods, including flexible machine
learning models such as XGBoost [30], random forest [31,32], deep neural network [33],
and logistic regression models [34,35]. These studies highlight the importance and feasi-
bility of identifying risk factors related to PASC and predicting patients with a high risk
of developing PASC. However, most of these studies have relied on specific risk factors
(e.g., genetics or pre-existing comorbidities) rather than modeling them jointly. There is also
limited literature comparing the relative contribution of each data domain to the prediction
of PASC that can inform future studies employing primary data collection. Therefore, there
is a need to integrate information from multi-modal data and develop integrated predictive
tools to enhance our understanding and predictions of PASC.

To address this research gap, we used electronic health record (EHR) data from a
comprehensive cohort of 92,301 COVID-19-positive patients who received care at Michigan
Medicine (MM), a large academic medical center in the midwestern United States, from
March 2020 to January 2023. Leveraging this EHR data, we developed prediction models
using time-referenced clinical phenotype data, medications, and laboratory measurements
during the pre-infection and acute infection periods of COVID-19. Recognizing the het-
erogeneity among patient populations and feature spaces, one single prediction model
might not perform well in each of the data domains, so we constructed the prediction
models using the Super Learner, an ensemble predictive algorithm [36]. Introduced in
2007, Super Learner uses cross-validation to arrive at the optimal weighted combination
of base learners. Super Learner demonstrated superior performance compared to individ-
ual machine learning algorithms [37], which was also observed in predictions related to
COVID-19 or Long COVID [38]. Through this exercise, we identified important features
that are predictive of PASC in a training dataset based on their permutation importance [39].
We then constructed five integrated risk scores (RSs) using different data domains and time
periods. These risk scores, when combined, show promising prediction and risk stratifi-
cation performance in a test dataset. With new diseases like COVID-19, which emerged
three years ago, in the absence of long-term population-based studies, one often must rely
on the EHRs for clues contributing to an emerging etiology of the disease and its sequelae.
Our study offers a principled framework to integrate multiple data domains to quantify
their joint and individual contributions to the prediction of PASC and, thus, enhance our
understanding of this complex and heterogeneous condition.

2. Materials and Methods
2.1. Study Cohort

The study cohort consisted of 92,301 eligible individuals who were patients at Michi-
gan Medicine (MM) and had a recorded COVID-19 diagnosis or a positive reverse tran-
scriptase polymerase chain reaction (RT-PCR) test for a severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection performed or recorded at MM between 10 March
2020 and 3 January 2023. Only the first SARS-CoV-2 infection was recorded.
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We categorized the COVID-19-positive patients into two groups: those with a recorded
diagnosis of PASC and those without any recorded PASC diagnosis, referred to as the “no
PASC” group. Consistent with our previous work [35], we employed the same definition
for PASC diagnoses: a PASC record in the Problem Summary List (PSL) or a U09.9 (“Post
COVID-19 condition, unspecified”) or B94.8 (“Sequelae of other specified infectious and
parasitic diseases”) ICD-10-CM diagnosis code.

2.2. Covariate Definition

To examine and adjust for confounding by patient characteristics, socioeconomic
status, and other variables, we also collected the following data for each participant: age,
self-reported gender, self-reported race/ethnicity, Neighborhood Disadvantage Index (NDI)
without proportion of Black (coded as quartiles, with larger quartiles representing more
disadvantaged communities) [40,41], population density measured in persons per square
mile (operationalized as quartiles), vaccination status, body mass index (BMI, the last
measurement before the index date (represents the date of the first positive COVID-19 test
or diagnosis (day 0))), Elixhauser comorbidity score [42,43], COVID-19 severity (non-severe
(not hospitalized) and severe (hospitalized or deceased)), healthcare worker (HCW) status
(yes or no), and time span of records in the EHR before the COVID-19 test. These time
spans were based on the first or last recorded encounter in the EHR data.

2.3. Matching

The flow diagram describing the analytic steps undertaken in our study is presented
in Figure 1. First, to minimize potential bias introduced by the covariates to the exploration
of predictive multi-modal EHR data and improve the comparability between PASC and
“No PASC” COVID-19 patients, we matched each PASC COVID-19 patient (referred to
as cases) with up to 10 “No PASC” COVID-19 patients (referred to as controls) using the
“MatchIt” R package [44]. Nearest neighbor matching was employed for age at index date,
pre-COVID-19 years in the EHR, and post-COVID-19 years in the EHR. Exact matching was
applied for sex, primary care visit at Michigan Medicine within the last 2 years (yes/no),
race/ethnicity, and year quarter of the index date. After matching, we randomly split the
matched patients into training and testing sets with a ratio of 7:3 to create and evaluate the
performance of the predictive model.

2.4. Reference Time Period

As depicted in Figure S1, our analysis considers two distinct time periods based on
the index date. The pre-COVID-19 period included the time period from 2 years to 14 days
prior to the index date (−2 years to −14 days), while the acute COVID-19 period covered
the period from 14 days before the index date to 28 days after the index date (−14 days
to +28 days). Accordingly, we partitioned the EHR contents into these two distinct time
periods to capture associations specific to the pre-COVID-19 and acute COVID-19 periods.

2.5. Processing of Multi-Modal Data

In addition to the covariates mentioned earlier, our dataset includes multi-modal data
encompassing three primary domains: medical phenotype data (signs, symptoms, and
diagnoses), medication records, and laboratory biomarker measurements.

2.5.1. Phenotype Data

To construct each subject’s medical phenome, we extracted the available International
Classification of Diseases (ICD; ninth and tenth editions [45,46]) codes from the EHR
during the two defined time periods. These codes were then mapped to 1813 phenotype
concepts known as PheCodes using the R package “PheWAS” [47], separately. In short,
each patient was assigned a binary value of “1” if they had ICD codes corresponding to
a specific PheCode during the respective period, and “0” if not. This process generated
two time period-specific phenomes for each patient: the pre-COVID-19 period phenome
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and the acute COVID-19 period phenome. To further distinguish between the two time
periods, we created an additional phenome that captured only diagnosed conditions that
exclusively appeared during the acute COVID-19 period and did not appear in the pre-
COVID phenome for each patient. Furthermore, to avoid incorporating sparse records and
to prevent the inclusion of records that are present in only males or females, we excluded
PheCodes with fewer than 10 occurrences in either gender (male or female). As a result,
we obtained two phenomes for further analysis: the “pre-COVID-19 period phenome”
(19,956 patients and 1508 PheCodes) and the “acute-COVID-19 period new phenome”
(19,956 patients and 526 new PheCodes).

Figure 1. Overview flowchart showing the sample filtering and analysis setup.

2.5.2. Medication Data

Similarly, to construct each subject’s medication history, or “medicome”, we extracted
the available list of medication order and administration data from the EHR and mapped
them to Anatomical Therapeutic Chemical (ATC) codes. Specifically, we focused on the
fourth level of the ATC codes, as it provides more specific and clinically relevant information
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while avoiding redundancy, and yielded 942 ATC codes. Following the same principle as
the phenome data, we divided the medicome into two distinct periods and generated a
new medicome that included newly used medications that exclusively appeared during
the acute COVID-19 period. After excluding ATC codes with fewer than 10 occurrences in
either gender, we obtained two medicomes: “pre-COVID-19 medicome” (20,040 patients
and 409 ATC codes) and “acute-COVID-19 new medicome” (20,040 patients and 276 new
ATC codes).

2.5.3. Laboratory Biomarker Data

We also retrieved the clinical laboratory measurements corresponding to each patient
from their respective EHRs. We focused on 42 specific laboratory traits that have been
commonly analyzed for their association with COVID-19 prognosis (Table S1). With
repeated laboratory tests, the median value of each individual’s laboratory measurements
during the specific time period was considered as their summary laboratory measure. Due
to the high degree of missingness of the laboratory biomarker during the relatively short
acute COVID-19 period, only laboratory measurements from the pre-COVID-19 period
were included in our analysis. To maximize sample size, we utilized “univariate regression
models” as a basic screening tool for laboratory measures. In this approach, a logistic
regression model (Equation (1)) was individually applied to each laboratory measure to
capture their adjusted correlations with PASC (as indicated by the p-value of the coefficient).

logit(P(PASC is present|Covariates, Laboratory Measurements))

= β0 +
P

∑
p=1

βpCovariatep + βLabLab (1)

where P represents the number of covariates.
The top 15 Laboratory Result Codes with the lowest p-values were selected and

included in the “pre COVID-19 period lab” data (6987 patients and 15 Laboratory Re-
sult Codes).

Consequently, we obtained five distinct data domains: “pre-COVID-19 phenome”,
“acute-COVID-19 new phenome”, “pre COVID-19 medicome”, “acute-COVID-19 new
medicome”, and “pre- COVID-19 laboratory measurements”.

2.6. Statistical Methods for Feature Identification and Risk Score Construction

We constructed a Super Learner (SL)-based predictor to generate an integrated risk
score using each of the five data domains in addition to the set of basic covariates [36].
The Super Learner algorithm is an ensemble machine learning algorithm that uses V-fold
cross-validation to build the optimal weighted combination of predictions from a library
of candidate algorithms. Specifically, each data domain was first evaluated separately by
using a 10-fold cross-validated SL trained on the training set using PASC status as a binary
outcome (Equation (2)).

ŷSL,Dj = P̂
(

PASC is present
∣∣Covariates, Dj

)
= fSL

(
Covariates, Dj

)
(2)

where j = 1, 2, . . . , 5, Dj, represents the j-th data domain (pre- and acute COVID phenome
and medicome, and pre-COVID labs). The SL model incorporated five types of learners,
including random forest, Generalized Linear Model, elastic net, XGBoost, and Bagging
Classification Trees. Subsequently, a risk score (RS) was calculated for each patient using
the predicted logit function of PASC (Equation (3)).

RS
(

Dj
)
= logit

(
ŷSL,Dj

)
(3)

Subsequently, we calculated five distinct risk scores based on the five data domains
to capture the respective risk factors associated with PASC. These risk scores included



J. Clin. Med. 2023, 12, 7313 6 of 20

phenotype risk scores 1 and 2 (PheRSs 1 and 2), which summarized the pre-COVID and
acute COVID phenotype-related risk factors, medication risk scores 1 and 2 (MedRSs 1 and
2), which summarized the pre-COVID and acute COVID medication-related risk factors,
and laboratory risk score 1 (LabRS1), which summarized the pre-COVID laboratory-related
risk factors.

In addition to the risk scores, we evaluated the feature importance to gain a com-
prehensive understanding of the contribution of different risk factors arising from each
data domain. Permutation importance was used for this purpose using the vip pack-
age [39,48], which measures the decrease in model AUC (area under the ROC curve) when
the corresponding feature is randomly shuffled. To ensure stability, each importance was
estimated using 10 Monte Carlo replications. For validation purposes, we also calculated
the SHAP-based variable importance score of the features using the vip package.

2.7. Risk Score Combination

To combine the information captured by different periods and evaluate the prediction
contribution of each data domain series (e.g., phenome, medicome), we fit a ridge-penalized
logistic regression on the training set and obtained the estimated weight corresponding
to each RS (Equation (4)). The weights estimated for each risk score when combined are
provided in Table S3.

logit(y|Covariates, RSs) = logit(P(PASC is present|Covariates, RSs))

= β0 +
P

∑
p=1

βpCovariatep +
K

∑
k=1

βRSk RSk
(4)

where ˆβRIDG =
(

β̂0, β̂1, β̂2, . . . , β̂P, β̂RS1 , β̂RS2 , . . . , β̂RSK

)
= arg min

β

{−∑N
i=1 [yilog(πi)+

(1− yi)log(1− πi)] + λ||β||22} represents the ridge-penalized estimator for the coefficients.
P denotes the number of covariates, K denotes the number of RSs to be combined, πi is the
predicted probability of yi = 1 of i-th individual based on β, and N denotes the number of
individuals used for training.

The combined risk scores were then calculated as the weighted sum of a set of selected
RSs (Equation (5)).

RScombined =
K

∑
k=1

β̂RSk RSk (5)

We constructed a phenotype risk score (PheRS) using a weighted combination of
PheRS1 and PheRS2, and a medication risk score (MedRS) using a weighted combination
of MedRS1 and MedRS2. Afterwards, to further combine the information captured by
different risk scores, we combined PheRS, MedRS, and LabRS1 to create a composite risk
score, “AllRS”.

2.8. Risk Scores Evaluation

To evaluate each of the RSs we generated (e.g., PheRS1, MedRS1, PheRS), we fitted
a Firth bias-corrected logistic regression model for each RS, adjusting for age, gender,
race/ethnicity, Elixhauser score, population density, NDI, HCW, vaccination status, BMI,
pre-COVID-19 years in EHR, and COVID19 severity, using a complete case analysis.

We then assessed the following performance measures relative to the PASC status on
the testing set: (1) overall performance of the risk score as measured by the Nagelkerke’s
Pseudo-R2 of the model using the R package “rcompanion”; (2) accuracy with the Brier
score using the R package “DescTools”; (3) ability to discriminate between PASC cases and
matched controls as measured by the area under the covariate-adjusted receiver operating
characteristic (AROC; semiparametric frequentist inference) curve (denoted AAUC) using
the R package “ROCnReg”; (4) and (5) overall association with PASC as measured by the
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odds ratio (OR) and p-value of the predictor corresponding to PASC when adjusting for
the covariates. To compare effect sizes corresponding to the various predictors, we have
centered each predictor to their mean and scaled them to have a standard deviation of 1
during this analysis.

Finally, we conducted a risk stratification analysis using an aggregate score derived
from a select set of predictors. We partitioned the control group’s aggregate score distri-
bution into deciles to establish our risk categories based on the training set. Then, within
the testing set, we allocated the PASC cases into these deciles, thus allowing us to profile
disease prevalence across the different risk categories. To further demonstrate the risk
stratification ability, we calculated the OR of PASC corresponding to an RS higher than its
90th percentile in the training set. This was achieved by fitting covariates-adjusted logistic
regression models in the testing data using different composite risk scores. Furthermore,
the odds ratio (OR) for each decile was also calculated, using the middle of the risk score
(40–60th percentile) as the reference level.

3. Results
3.1. Patient Characteristics

Among the 92,301 COVID-19-positive patients who were seen in MM at least two months
after their first COVID-19 diagnosis or positive RT-PCR test, a total of 2287 (2.5%) received a
diagnosis of PASC. Analysis revealed notable differences in patient characteristics between
PASC cases and controls. PASC cases, on average, were older at their index date, with a
mean age of 47.93 years compared to 42.29 years for the controls (Table 1). Moreover, a
higher proportion of females was observed among PASC cases, accounting for 65.0% of
PASC cases compared to 57.3% among the controls. Additionally, the proportion of patients
receiving primary care at MM was significantly higher in PASC cases (58.1%) compared to
PASC controls (45.3%). To address these observed differences and mitigate potential bias,
matching was performed on several variables (see Section 2). All significant differences in
covariates became nonsignificant after matching (Table 1).

Table 1. Patient characteristics of COVID-19 patients with (cases) and without observed PASC
diagnosis (controls). Case–control matching was based on nearest neighbor matching (age at index
date, pre-test years in EHR, post-test years in EHR) and exact matching (gender, primary care at MM,
race/ethnicity, quarter of year at COVID-19 index date).

COVID-19 Patients
with PASC Diagnosis

COVID-19 Patients without PASC Diagnosis

Unmatched p-Value * Matched p-Value *

n 2287 90,014 22,845

Age at index date; mean (SD) 47.93 (19.13) 42.29 (22.71) <0.001 47.23 (19.24) 0.101

Pre-test years in EHR;
mean (SD) 11.83 (7.72) 10.48 (7.79) <0.001 11.74 (7.55) 0.555

Post-test years in EHR;
mean (SD) 1.16 (0.70) 0.95 (0.70) <0.001 1.14 (0.69) 0.337

Female; n (%) 1487 (65.0) 51,548 (57.3) <0.001 14,848 (65.0) 0.999

Primary care at MM; n (%) 1328 (58.1) 40,765 (45.3) <0.001 13,255 (58.0) 0.984

Race/ethnicity; n (%) 0.004 0.999

Caucasian/non-Hispanic 1680 (73.5) 64,494 (71.6) 16,800 (73.5)

African
American/non-Hispanic 245 (10.7) 9638 (10.7) 2450 (10.7)

Other/non-Hispanic
or Hispanic 256 (11.2) 9995 (11.1) 2552 (11.2)

Other/unknown ethnicity 106 (4.6) 5887 (6.5) 1043 (4.6)
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Table 1. Cont.

COVID-19 Patients
with PASC Diagnosis

COVID-19 Patients without PASC Diagnosis

Unmatched p-Value * Matched p-Value *

Quarter of year at COVID-19
diagnosis date; n (%) <0.001 1

2020/1 30 (1.3) 668 (0.7) 293 (1.3)

2020/2 58 (2.5) 1890 (2.1) 567 (2.5)

2020/3 66 (2.9) 2877 (3.2) 660 (2.9)

2020/4 289 (12.6) 14,471 (16.1) 2890 (12.7)

2021/1 259 (11.3) 7967 (8.9) 2590 (11.3)

2021/2 263 (11.5) 6526 (7.2) 2625 (11.5)

2021/3 189 (8.3) 4869 (5.4) 1890 (8.3)

2021/4 331 (14.5) 13,690 (15.2) 3310 (14.5)

2022/1 319 (13.9) 14,360 (16.0) 3190 (14.0)

2022/2 187 (8.2) 9214 (10.2) 1870 (8.2)

2022/3 182 (8.0) 8019 (8.9) 1820 (8.0)

2022/4 104 (4.5) 5028 (5.6) 1040 (4.6)

2023/1 10 (0.4) 435 (0.5) 100 (0.4)

Elixhauser score AHRQ
(mean (SD)) 4.67 (11.95) 3.75 (10.70) <0.001 3.94 (11.31) 0.004

BMI (mean (SD)) 30.64 (7.88) 29.42 (7.47) <0.001 30.12 (7.55) 0.003

COVID-19 severity: Severe;
n (%) 319 (13.9) 5307 (5.9) <0.001 1358 (5.9) <0.001

Healthcare worker status: Yes;
n (%) 63 (2.8) 2527 (2.8) 0.931 802 (3.5) 0.067

Vaccination status n (%) <0.001 0.013

Unvaccinated 1263 (55.2) 50,897 (56.5) 12,565 (55.0)

After first vaccination 133 (5.8) 3604 (4.0) 1119 (4.9)

After full vaccination 692 (30.3) 25,288 (28.1) 6751 (29.6)

After booster 199 (8.7) 10,225 (11.4) 2410 (10.5)

Population density (%) 0.002 0.248

Quartile 1 572 (25.0) 21,342 (23.7) 5624 (24.6)

Quartile 2 622 (27.2) 25,533 (28.4) 6697 (29.3)

Quartile 3 716 (31.3) 26,459 (29.4) 6865 (30.1)

Quartile 4 197 (8.6) 7592 (8.4) 1830 (8.0)

Missing 180 (7.9) 9088 (10.1) 1829 (8.0)

Neighborhood Deprivation
Index (%) 0.002 0.274

Quartile 1 832 (36.4) 32,873 (36.5) 8791 (38.5)

Quartile 2 515 (22.5) 18,746 (20.8) 4871 (21.3)

Quartile 3 444 (19.4) 16,261 (18.1) 4190 (18.3)

Quartile 4 316 (13.8) 13,046 (14.5) 3164 (13.8)

Missing 180 (7.9) 9088 (10.1) 1829 (8.0)

* p-value of differences between COVID-19 patients with a PASC diagnosis and COVID-19 patients without a
PASC diagnosis.
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Furthermore, apart from the matching variables, several other variables exhibited
different distributions between matched cases and controls. For instance, matched cases had
higher average Elixhauser scores (4.67 versus 3.94), lower rates of booster vaccination (8.7%
versus 10.5%), and a lower proportion of healthcare workers (2.8% versus 3.5%). These
univariate summary findings suggested that these variables distribute quite differently
among PASC cases and controls conditioned by the matching process. Combined with
the results from previous studies [20,35], it is plausible that these variables could serve as
potential predictive factors for PASC, and we included them in the prediction models.

3.2. Key Predictive Features Identified by the SL Algorithm in Training Data
3.2.1. Predictive Phenotypes

Having investigated the demographic characteristics of PASC cases and controls, we
now turn our attention to the phenotype factors that were predictive of the diagnosis of
PASC. Figure 2 presents the top 15 most important features (as determined by permutation
importance) when constructing the SL models. We also present the SHAP-based variable
importance scores in Figure S2. In the models utilizing phenotype data during the pre-
COVID period, overweight, obesity, and circulatory system signs and symptoms including
hypertension were identified as diagnoses predictive of PASC. This aligns with high SHAP
importance scores for overweight and hypertension. During the acute COVID period,
predictive signs and symptoms mainly revolved around the respiratory system, including
shortness of breath and respiratory abnormalities. Additionally, symptoms such as malaise
and fatigue and chronic fatigue syndrome made significant contributions to the prediction
of PASC (permutation importance of 0.012 and 0.0035). Additionally, malaise, fatigue,
and chronic fatigue syndrome significantly contributed to PASC prediction (permutation
importance of 0.012 and 0.0035), as consistently observed, illustrated in Figure S2. Notably,
among the 10 permutations, the importance of features during the pre-COVID-19 period
showed greater variability and smaller importance values compared to the acute COVID-19
period, implying that despite smaller time periods and fewer occurrences, diagnoses in the
acute COVID-19 period have a stronger and more stable contribution to prediction.
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(defined as the decrease in model AUC after the corresponding feature was randomly shuffled) based
on the Super Learner model with the covariates being adjusted. Each importance was estimated by
10 Monte Carlo replications. The importance of all the covariates can be found in Table S2. Only
15 features with highest importance were presented. (A): Feature importance plot for phenotypes
in the Super Learner (SL) model with pre-COVID phenotypes; (B): feature importance plot for
phenotypes in the SL model with acute COVID new phenotypes; (C): feature importance plot
for medications in the SL model with pre-COVID medications; (D): feature importance plot for
medications in the SL model with acute COVID new medications.

3.2.2. Predictive Medications

Moving on to the predictive medications as extracted from the medication adminis-
tration and order records, the use of HMG CoA reductase inhibitors and ACE inhibitors
exhibited the highest predictive importance among pre-COVID-19 medications. While
there is a slight lack of overlap in the top 15 predictive features between the two lists,
the importance of HMG CoA reductase inhibitors and ACE inhibitors is still evident
(Figures 2 and S2). Among acute COVID medications, analgesics, anesthetics, and selective
beta-2-adrenoreceptor agonists were identified as the most predictive, supported by both
permutation importance and SHAP-based scores. Among acute COVID medications, anal-
gesics, anesthetics, and selective beta-2-adrenoreceptor agonists were identified as the most
predictive. Furthermore, cough suppressants were also found to be predictive, which aligns
with the well-known association between cough and both COVID-19 and Long COVID, as
well as our results on the relationship between cough and Long COVID. Again, we also
observed a higher importance in the acute COVID-19 period than the pre-COVID-19 period.

3.2.3. Predictive Laboratory Measurements and Covariates

We also explored the predictive lab measurements during the pre-COVID period.
Table S2 presents the screening results for the 42 lab results based on a complete analysis.
Among them, hematocrit level, hemoglobin level, and red blood cell count emerged as the
top three laboratory measurements associated with PASC and were all positively associated
with a higher risk of PASC. However, we found that the association between most lab
measurements and PASC was relatively weak, as only five lab measurements reached
nominal significance (p < 0.05). Given our main objective of predicting PASC rather than
solely identifying statistically significant predictors, and to maintain an adequate sample
size, we expanded our analysis to include the top 15 significant hits and performed an SL
model. The results, shown in Figure S3, indicate several lab measurements with similar
importance, including segmented neutrophils, red cell distribution width, and hemoglobin.

Apart from the five data domains extracted from the EHR, we are also interested in
the predictive performance of the covariates. Although matching has been applied to sev-
eral covariates, our analysis indicates that among unmatched covariates, BMI, COVID-19
vaccination status, and COVID-19 severity (hospitalization) consistently displayed high
importance across the six models presented. This consistent pattern suggests that these co-
variates possess predictive relevance for PASC. These findings align with previous studies
highlighting the importance of these factors in the PASC risk assessment [24,49–52].

3.3. Risk Score Evaluation in Testing Data

After investigating the predictive risk factors in the SL model, we proceeded to assess
the predictive power of the constructed risk scores.

3.3.1. Distinct Risk Scores

Firstly, focusing on the phenotype risk scores, we analyzed a testing set comprising
456 PASC cases and 3610 controls. Both PheRS1 and PheRS2 demonstrated a moderate
discrimination ability for PASC, with AAUC values of 0.56 (0.53, 0.58) and 0.64 (0.61, 0.67),
respectively (Table 2). Notably, PheRS2 exhibited a better model performance (Pseudo-R2

(PheRS2): 0.095 versus Pseudo-R2(PheRS1): 0.033) and a stronger PASC risk stratification



J. Clin. Med. 2023, 12, 7313 11 of 20

ability (p-value (PheRS2): 2.97× 10−38 versus p-value (PheRS1): 4.88× 10−8). This suggests
that the phenotype risk score derived from the short-acute COVID-19 period contains
more information related to PASC than the pre-COVID period. The combination of these
two phenotype risk scores, denoted as PheRS, yielded a slightly stronger discrimination
ability, with an AAUC of 0.65 (0.62, 0.67), and a stronger risk stratification ability (adjusted
OR (2.96 (2.49, 3.5), versus 1.94 (1.75, 2.14) and 1.55 (1.33, 1.82)). This improvement is further
supported by Figure 3A, which visually illustrates a distinct right shift in the distribution
of PheRS between PASC cases and controls compared to the individual risk scores. The
concentration of PheRS in PASC cases implies that it effectively captures the risk factors
associated with PASC, making it a valuable component in our prediction model.

Table 2. Evaluation of phenotype risk scores (PheRSs) and medication risk scores (MedRSs) on the
testing data. All predictors were evaluated while adjusting for covariates. PheRS1: pre-COVID-
phenotype risk score; PheRS2: “Acute-COVID New Phenotype Risk Score”; PheRS: combination
of PheRS1 and PheRS2; MedRS1: pre-COVID medication risk score; MedRS2: acute COVID new
medication risk score; MedRS: combination of MedRS1 and MedRS2; PheRS and MedRS: combination
of PheRS and MedRS. AAUC represents the area under the covariate-adjusted receiver operating
characteristic of the corresponding predictor. Adjusted OR represents the odds ratio of PASC
corresponding to the predictor (centered to the mean and scaled to have a standard deviation
of 1) adjusted for the covariates. p-Value represents the p-value of the corresponding adjusted odds
ratio of PASC corresponding to the predictor.

Predictor
Testing Data AAUC a

(95% CI) Pseudo-R2 b Brier Score Adjusted OR a

(95% CI)
p-Value

n Cases n Controls

PheRS1

456 3610

0.56 (0.53, 0.58) 0.033 0.098 1.55 (1.33, 1.82) 4.88× 10−8

PheRS2 0.61 (0.58, 0.64) 0.095 0.093 1.94 (1.75, 2.14) 2.97 × 10−38

PheRS 0.65 (0.62, 0.67) 0.093 0.094 2.96 (2.49, 3.5) 6.12 × 10−36

MedRS1

525 5436

0.53 (0.5, 0.56) 0.025 0.079 1.36 (1.18, 1.55) 1.16 × 10−5

MedRS2 0.6 (0.58, 0.63) 0.068 0.077 1.69 (1.56, 1.85) 1.30 × 10−33

MedRS 0.61 (0.58, 0.64) 0.057 0.078 2.1 (1.83, 2.42) 1.76× 10−25

LabRS1 209 1895 0.46 (0.41, 0.49) 0.025 0.088 0.73 (0.45, 1.2) 0.213

PheRS

454 3603

0.65 (0.62, 0.68) 0.089 0.094 2.94 (2.48, 3.48) 8.79 × 10−36

MedRS 0.59 (0.56, 0.62) 0.046 0.097 1.99 (1.68, 2.35) 1.04 × 10−15

PheRS and
MedRS 0.66 (0.63, 0.69) 0.094 0.094 3.68 (3.01, 4.5) 2.88 × 10−37

a Adjusted for age at index date, gender, race/ethnicity, BMI, Elixhauser score, population density, NDI, healthcare
worker status, vaccination status, pre-test years in EHR, and COVID-19 severity. b Nagelkerke (Cragg and Uhler).

Similar findings were observed for the medication risk scores. MedRS2 demonstrated
better performance in predicting PASC compared to MedRS1 (AAUC(MedRS1): 0.6 (0.58,
0.63) versus AAUC(MedRS2): 0.53 (0.50, 0.56)). Combining these two risk scores resulted
in a slight improvement in risk stratification ability as indicated by a higher adjusted OR
(adjusted OR: 2.1 (1.83, 2.42), in contrast to 1.69 (1.56, 1.85) and 1.36 (1.18, 1.55) for individual
scores). Figure 3B illustrates the distribution of medication risk scores in PASC cases and
controls. We observed that MedRS2 displayed a less normal-like distribution compared to
MedRS1, with the presence of two distinct peaks. This characteristic might be attributed to
the decreased number of ATC codes included during the acute COVID period, resulting in
weaker continuity and stronger category properties in our score. Furthermore, Figure 3B
also highlights that the MedRS is more concentrated among PASC cases compared to the
separate risk scores, reinforcing its improvement in predicting PASC.
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Figure 3. Risk score distribution among cases and controls in the testing set. (A): Distribution of
phenotype risk scores (PheRS1: pre-COVID risk score; PheRS2: “Post COVID New Diagnosis” risk
score; PheRS: combination of PheRS1 and PheRS2) in the testing set (n cases: 456, n controls: 3610);
(B): distribution of medication risk scores (MedRS1: pre-COVID risk score; MedRS2: “New Med-
ication” risk score; MedRS: combination of MedRS1 and MedRS2) on the testing set (n cases: 525,
n controls: 5436); (C): distribution of PheRS and MedRS (combination of PheRS and MedRS) in the
testing set (n cases: 454, n controls: 3603).

When evaluating the predictive power of the laboratory risk score (LabRS1), as shown
in Table 2, we observed that LabRS1 could not discriminate between PASC cases and
controls (AAUC = 0.46 (0.41, 0.49)). Additionally, the association between LabRS1 and
PASC diagnosis was weak, as indicated by the nonsignificant adjusted odds ratio (adjusted
OR = 0.73 (0.45, 1.2), p-value = 0.213). These findings suggest that LabRS1 alone may not be
sufficient for accurately predicting PASC.

3.3.2. Combined Risk Scores

Building upon the individual contributions of the phenotype risk scores, medication
scores, and laboratory risk scores, we aimed to integrate the information captured by these
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different risk scores. First, we combined PheRS, MedRS, and LabRS1 to create a composite
risk score, referred to as AllRS. The evaluation of different risk scores in the same cohort
is presented in Table S4. Although AllRS moderately predicted PASC (AAUC(AllRS):
0.64 (0.6, 0.68)), its discrimination power did not demonstrate a substantial improvement
compared to the individual risk scores (AAUC(PheRS): 0.64 (0.59, 0.68), Table S4). This
lack of improvement was also evident in lower accuracy, reflected by the Brier score (Brier
score(AllRS): 0.0963 versus Brier score(PheRS): 0.0955) and a poorer model fit, as suggested
by the Pseudo-R2 (Pseudo-R2(AllRS): 0.071 versus Pseudo-R2(PheRS): 0.082). Despite a high
OR, a relatively wider confidence interval and higher p-value compared with PheRS also do
not support an increase in performance. We hypothesize that the limited improvement in
predictive power when incorporating LabRS1 may be due to its inherent low predictability,
as we have mentioned before. Additionally, the observed correlation between LabRS1 and
other risk scores, as shown in Figure S4, consistently exceeded 0.5. This suggests that the
information captured by LabRS1 is already encompassed by MedRS, PheRS, and other
components in the model. This redundancy in information could also contribute to the lack
of improvement when incorporating LabRS1 into the composite risk score.

Thus, recognizing the limited contribution of “LabRS1”, we decided to exclude it
from the predictive risk score framework. Instead, we constructed a new composite score
called “PheRS&MedRS” by using weighted combinations of only PheRS and MedRS. As
presented in Table 2, the model performance of PheRS and MedRS demonstrated further
improvement, achieving a Pseudo-R2 of 0.094, higher than the individual scores. Despite
the absence of a notable increase in PASC discrimination ability (AAUC(PheRS and MedRS):
0.66 (0.63, 0.69) versus AAUC(PheRS): 0.65 (0.62, 0.68)), the higher and more significant
adjusted odds ratio (OR[PheRS and MedRS]: 3.68 (3.01, 4.5) versus OR(PheRS): 2.94 (2.48,
3.48), p-value (PheRS and MedRS): 2.88 × 10−37 versus p-value (PheRS): 8.79 × 10−36)
indicated its stronger risk stratification properties for identifying people at higher risk
of PASC. Additionally, Table S4 underscores the superiority of the PheRS and MedRS
model, consistently outperforming other predictors across all metrics within the same
cohort. This consistency highlights the stability and reliability of our composite risk score
in varying sample sizes. Figure 3C also visually demonstrates the increased differentiation
in the distribution of PheRS and MedRS between PASC cases and controls, indicating the
enhanced discriminatory ability of the combined risk score. Therefore, we adopted the
PheRS and MedRS as our final risk score for subsequent analysis and prediction.

3.4. PASC Risk Stratification Using a Composite Score

In addition to the improved predictive power for PASC, our composite score (PheRS
and MedRS) effectively stratified the risk of developing PASC. As depicted in Figure 4A,
PheRS and MedRS demonstrated a notable enrichment of PASC cases in the top 10% risk
bin (proportion of PASC cases = 23.2%) compared to the lower nine deciles of the score
distribution (3.7%–19.7%, Table S5). Particularly, individuals in the top 10% of the PheRS
and MedRS exhibited an approximately 2.2-fold enrichment (OR = 2.17 (95% CI: 1.02, 4.76))
in PASC risk compared to those in the remaining 90% of the distribution (Figure 4B), which
performed best among all the risk scores. These results indicate that the integration of
phenotype risk scores and medication risk scores allows for identifying a large proportion
of PASC cases with a 2.2-fold increased risk for PASC in the top 10% compared to the
rest. This enrichment is more pronounced if the focus is on only the middle part of
the risk distribution; for example, compared to the middle 40–60% of the combined risk
distribution, in the top 10%, we see a nearly 13-fold enrichment (OR = 13.14 (95% CI: 6.77,
26.40), Table S5).
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4. Discussion

In this study, we utilized a cohort of COVID-19-positive individuals from MM, a single
medical center, to develop a machine learning-based approach for predicting PASC by
integrating multiple health record datasets, including phenotypes, medications, and labora-
tory biomarkers. Our analysis revealed several important factors in these datasets that are
predictive of PASC, including overweight or obesity, use of HMG CoA reductase inhibitors,
segmented neutrophils measurement during the pre-COVID period, malaise and fatigue,
and use of analgesics or anesthetics during the acute COVID period. When combining
the information into individual risk scores based on phenotypes (PheRSs), medications
(MedRSs), and laboratory measurements (LabRS1) using SL models, we observed relatively
low accuracy in predicting PASC among COVID-19-positive individuals. To overcome this
limitation, we developed a combined risk score (PheRS and MedRS), leading to improved
predictive power (AAUC(PheRS and MedRS): 0.66 (0.63, 0.69)) in the testing data. Notably,
this combined risk score identified 10% of the population with a 2.2-fold increased risk for
PASC compared to those in the bottom 90% of its score distribution.

A comparison of our findings with previous studies confirmed many pre-existing
health records that might predispose a patient to PASC. For example, according to the
SL models on the phenotype data, overweight [23,53], circulatory system diagnoses (e.g.,
hypertension, complications of heart disease), and respiratory diagnoses (asthma [23,24,54])
were identified as predictive pre-existing conditions for PASC. We also identified newly
diagnosed malaise and fatigue [11,18] and respiratory symptoms during the short acute
period, including shortness of breath [55], respiratory abnormalities [25], and cough [56,57],
to be associated with PASC. Unlike many previous papers, we did not identify mental
health factors (e.g., depression and anxiety [58,59]) as highly relevant risk factors, which
could be explained by differing definitions of PASC criteria across studies. Additionally,
consistent with prior literature, we identified the pre-use of HMG CoA reductase inhibitors
and ACE inhibitors as predictors of PASC [60,61]. Moreover, our investigation revealed
several laboratory measurements that were associated with PASC diagnoses. For instance,
segmented neutrophil counts, known for their correlation with COVID-19 [62], exhibited
potential associations with PASC, although limited reports have explored this relationship.
However, the constructed pre-COVID laboratory score “LabRS1” demonstrated weak
predictive power, both alone and in the composite risk score. One possible explanation for
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this low performance is the limited number of laboratory measurements and the relatively
smaller sample size, which may introduce inaccuracies in the predictive model.

With the establishment of a systematic PASC prediction model, our study not only
offers a nuanced understanding of individual risk profiles but also opens avenues for
targeted interventions and personalized care strategies, as it bridges existing gaps in the
understanding of PASC risk. Specifically, leveraging a comprehensive multi-modal EHR
dataset, our model provides a unique opportunity to assess the relative contributions of
each data domain to PASC prediction, and assists in informing future studies that may
involve primary data collection, enhancing their design and focus. Table S6 summarizes the
findings of several recent PASC-prediction-related studies [30,31,35,63,64]. While some of
the studies also looked into a large cohort, most of them limited their focus to investigating
risk factors from one or two data domains (e.g., phenotypes or medications) and were
weaker in assessing the relative contributions of each data domain.

Moreover, our study introduces a novel composite risk score by employing an en-
semble learning method. Instead of relying on a single machine learning method, we
employed the SL method, which combines random forest, XGBoost, elastic net, and other
base algorithms. This approach enabled us to combine the contributions of these mod-
els and address the heterogeneity of EHR data features. For comparative purposes, we
trained several individual machine learning algorithms, which performed well in previous
works (Table S6), on identical cohorts and features, summarized by “PheRS” and “MedRS.”
As outlined in Table S7, we contrasted their prediction performance with that of the SL
algorithm. The SL algorithm demonstrated superior performance in terms of prediction
accuracy, as indicated by the smaller Brier score, suggesting that our SL algorithm is more
adaptable to complex data than other individual learners. Furthermore, our constructed
pipeline for disease-related risk score construction and prediction offers valuable insights
for risk assessment for a wide range of medical conditions beyond PASC.

However, it is important to acknowledge some limitations of our study. First, we
performed matching, incl. on age, gender, and race/ethnicity, to adjust for potential
confounding and to identify novel predictors (diagnoses, medications, labs, etc.). However,
these demographic characteristics seem to be important predictors of PASC [23,65,66].
So, while matching and adjusting for these covariates may have enhanced our ability to
identify factors that elevate the risk of PASC, we disregarded these demographic factors
as PASC predictors. Future studies are needed to evaluate the combined contributions
of these variables in more comprehensive prediction models. Second, the availability
of laboratory results was limited, with only 15 laboratory measurements included in
our analysis due to a high missing rate. This resulted in lower predictive power for
the laboratory measure-based risk scores. Future studies should aim to address this
limitation by incorporating a larger set of laboratory measurements [67] or employing
imputation methods to improve the predictive accuracy of the models, potentially [68–70].
Another limitation pertains to our medication data, which solely includes orders and
administrations, but not prescription data. Consequently, the availability of medication
data could be skewed towards patients with prior hospitalizations, potentially favoring
those who were older or more critically ill. Additionally, although permutation importance
served as a robust metric for assessing feature contribution, aligning consistently with
SHAP-based results, the inherent randomness in this evaluation warrants consideration.
Exploring larger permutation iteration size or alternative importance evaluation methods,
such as the LIME (Local Interpretable Model-Agnostic Explanations) method [71,72], could
offer valuable insights and enhance the reliability of our feature importance assessments.
Furthermore, our study was conducted using data from a single medical center (MM),
which may introduce potential biases and limit the generalizability of our findings to other
populations or healthcare settings. MM, as an academic medical center with specialized care,
may attract certain types of patients. Additionally, attendance at MM is overwhelmingly
white and exhibits a higher prevalence of comorbidities. While the analysis is conditional
on individuals with confirmed COVID-19, it is crucial to validate the model in other cohorts,
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particularly those with more diverse patients and those in different healthcare settings
(such as outpatient clinics, not specialized academic medical centers).

5. Conclusions

PASC pose a significant global public health challenge, impacting millions of individ-
uals. While effective therapies for PASC are still being developed, the use of prediction
and risk models can contribute to the reliable identification of individuals at higher risk for
PASC and their subcategories, potentially informing preventive and therapeutic efforts. In
this study, we aimed to identify pre-existing factors associated with PASC and to develop
prediction models for PASC using a comprehensive dataset encompassing phenotype,
medication, and laboratory measurements. Through our analysis, we identified several
factors predictive of diagnoses of PASC and integrated this information into risk scores
that demonstrated moderate predictive capability for PASC. Future studies should further
focus on expanding the range of lab measurements included in the analysis, allowing
for a more comprehensive assessment of their predictive value for PASC. Furthermore,
incorporating additional data sources, such as genetic information, environmental factors,
and biomarkers [73–75], could provide valuable insights into the underlying mechanisms
of PASC and enhance the predictive capability of the models. Ultimately, the development
of more accurate and robust prediction models for PASC will have significant clinical
implications, enabling early identification of high-risk individuals and facilitating targeted
interventions. Such efforts will contribute to the advancement of personalized medicine
and the improvement of clinical outcomes for individuals affected by PASC.
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