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Abstract: Introduction: Spinal cord injury (SCI) is a significant and transforming event, with an
estimated annual incidence of 40 cases per million individuals in North America. Considering
the significance of accurate diagnosis and effective therapy in managing SCI, Machine Learning
(ML) and Robot-Assisted Gait Training (RAGT) technologies hold promise for enhancing optimal
practices and elevating the quality of care. This study aims to determine the impact of the ML and
RAGT techniques employed on the outcome results of SCI. Methods: We reviewed four databases,
including PubMed, Scopus, ScienceDirect, and the Cochrane Central Register of Controlled Trials
(CENTRAL), until 20 August 2023. The keywords used in this study encompassed the following:
a comprehensive search was executed on research exclusively published in the English language:
machine learning, robotics, and spinal cord injury. Results: A comprehensive search was conducted
across four databases, identifying 2367 articles following rigorous data filtering. The results of the
odd ratio (OR) and confidence interval (CI) of 95% for the ASIA Impairment Scale, or AIS grade A,
were 0.093 (0.011–0.754, p = 0.026), for AIS grade B, 0.875 (0.395–1.939, p = 0.743), for AIS grade C,
3.626 (1.556–8.449, p = 0.003), and for AIS grade D, 8.496 (1.394–51.768, p = 0.020). The robotic group
exhibited a notable reduction in AS (95% CI = −0.239 to −0.045, p = 0.004) and MAS (95% CI = −3.657
to −1.066, p ≤ 0.001) measures. This study also investigated spasticity and walking ability, which
are significant. Conclusions: The ML approach exhibited enhanced precision in forecasting AIS
result scores. Implementing RAGT has been shown to impact spasticity reduction and improve
walking ability.

Keywords: spinal cord injury; machine learning; robot-assisted gait training

1. Introduction

Spinal cord injury (SCI) is a significant and transforming event, with an estimated
annual incidence of 40 cases per million individuals in North America [1]. Following the
occurrence of an injury, there are physiological repercussions that impact several body
systems and are frequently accompanied by a substantial risk of mortality. Previous studies
have reported inconsistent findings about the rates of in-hospital mortality, which have
been shown to range from 3% to 13%. Similarly, the 1 year mortality rates after SCI have
been estimated to range from 5% to 10% [2–5]. Numerous research studies have previously
elucidated predictive features and algorithms for evaluating the probability of death after
SCI. However, there is currently a shortage of prognostic instruments tailored specifically to
the SCI patient cohort that may be conveniently employed in a clinical environment [2,5–8].
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Apart from its utility in informing clinical decision-making and facilitating patient and
family talks, a predictive tool may also serve as a valuable instrument in clinical research
by accounting for the possible influence of distinct patient and injury variables on the
mortality risk of study participants.

Considering the significance of accurate diagnosis and effective therapy in managing
SCI, Machine Learning (ML) and Robot-Assisted Gait Training (RAGT) technologies hold
promise for enhancing optimal practices and elevating the quality of care. The numerical
value is provided by the user [9,10]. ML is often regarded as the most promising field
within the domain of artificial intelligence (AI). It encompasses using algorithms to auto-
matically generate predictions or outputs by analyzing the attributes of given inputs [11].
ML possesses inherent advantages in processing large datasets compared to traditional
statistical approaches. They exhibit greater precision and reproducibility than conventional
models and even skilled operators. ML can potentially uncover nuanced information that
may not be perceptible to the human eye in specific image-related activities [11,12]. The
user’s text is too short to be rewritten academically. In the current era characterized by
large-scale datasets, ML techniques can significantly enhance diagnostic accuracy and
prognosis [13].

Clinicians consistently face challenges in rehabilitating patients to improve pain man-
agement, reduce stiffness, and increase walking capacity. The application of RAGT in
rehabilitation has experienced increased prevalence due to its ability to transcend the
constraints imposed by the extent of an individual’s muscle paralysis. The provision of
recurrent and functional task training by RAGT has been found to elicit increased activity
in the sensorimotor cortex (specifically, S1 and S2) and the cerebellar areas [14,15]. The
convergence of advancements in fundamental neuroscience and technology innovation has
presented neurosurgery with distinctive prospects for utilizing ML and RAGT in research
and clinical settings to enhance patient care [16].

Moreover, using customized or precision medicine in the context of patients with
SCI seems beneficial in customizing expectations and treatment strategies, considering the
intrinsic diversity observed within this group in terms of outcomes, functional prognosis,
and the rehabilitation process [17–19]. This study comprehensively aims to examine the
impact of ML on predicting AIS score outcomes and RAGT on rehabilitation outcomes.
The focus was on research endeavors to enhance therapeutic advancements and develop
predictive models.

2. Material and Methods
2.1. Search Strategy

The PRISMA [20] systematically reviewed four databases, including PubMed, Scopus,
ScienceDirect, and the Cochrane Central Register of Controlled Trials (CENTRAL), until
20 August 2023. The MeSH phrases and keywords used in this study encompassed the
following: a comprehensive search was executed on research exclusively published in the
English language: machine learning, robotics, and spinal cord injury. The reference lists of
the published works were examined to identify potential areas for further investigation.
In instances where duplicate studies were identified, preference has been given to studies
with larger sample sizes. Each study produced the subsequent findings: (1) the initial name
and year of publication; (2) the nation and total sample; (3) type of study design; (4) level
of injury; (5) ASIA Impairment Scale (AIS) grade; (6) intervention; and (7) outcome.

2.2. Data Selection

Three reviewers (D.P.W.W., S.M., and T.G.B.M.) independently performed the selection.
The conflict among the first three reviewers was settled by the establishment of a consensus
by the fourth and fifth reviewers. Exclusion of studies occurred in cases where essential
outcome measures were absent or not assessed. The included papers should be: (1) a paper
that investigated ML and RAGT; (2) research given information on ML and RAGT as well
as outcome status; (3) studies that provide the computation data for the calculation of the
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total sample, mean, and standard deviation (SD); and (4) a full-text article. The protocol for
this review was registered in PROSPERO, with the registration number CRD42023464103.
The publication was subsequently developed according to PRISMA principles.

2.3. Data Extraction

The relevant data were extracted using a pre-established Google Sheets Excel Online
form by two reviewers (D.P.W.W. and S.W.) who worked independently. Any discrepancies
were identified and resolved through consensus with a senior reviewer (S.M.). When data
was absent or doubts arose, we initiated electronic correspondence with the authors via
email to acquire the necessary data.

2.4. Risk of Bias

Two authors (D.P.W.W. and S.M.) independently evaluated the bias quality of the
chosen randomized controlled trials (RCTs) using the Cochrane risk of bias assessment
methodology [20]. Two authors have used the Newcastle Ottawa Scale (NOS) [21] to
evaluate the chosen articles’ methodological quality independently. We divided the articles’
overall quality into moderate (4–6) and high (7–9). Any potential conflicts were effectively
resolved by open dialogue and the attainment of mutual agreement facilitated by the
involvement of the third author (S.W.).

2.5. Statistical Analysis

RCTs and non-RCTs were categorized into separate groups and subjected to indi-
vidual studies afterward. The treatment impact was analyzed using Comprehensive
Meta-Analysis (CMA) version 3 through statistical analysis. The mean differences (MD),
odds ratio (OR), and 95% CI were computed for outcome measures. We use a random
effect model for the analysis. The application of a random effect model offers distinct
advantages over a fixed effect model due to its ability to effectively capture the entirety of
the population under study.

3. Results
3.1. Search Results and Study Characteristics

A comprehensive search was conducted across four databases, identifying 2367 articles
following rigorous data filtering. A cumulative sum of 127 papers was deemed ineligible for
inclusion in the study due to their failure to match the predetermined criteria for research
inclusion in Figure 1. Ultimately, a total of 19 publications were selected for further research.
The combined sample size of the papers included in this study was 1508 patients. The
sample comprised 16 publications utilizing ML techniques and three articles using RAGT
techniques. The articles were sourced from various nations, including the USA, Canada,
Japan, Italy, Spain, Republic of Korea, and Switzerland.

The analysis incorporated both RCT and non-RCT study designs. The outcomes
examined in the RAGT group encompassed measures such as the Ashworth Scale (AS),
Modified Ashworth Scale (MAS), Visual Analog Scale (VAS), Lower Extremity Motor Score
(LEMS), 6 Minute Walk Test (6MWT), 10 Meter Walk Test (10MWT), and Timed Up and
Go Test (TUG). In the context of the ML group, an examination was conducted on the
AIS grade result. The highest marks obtained from the collection of 13 articles are AIS
C and D. The OR (95% CI) analysis was employed for the ML group. In contrast, the
mean differences (MD) were utilized for the RAGT group. The features of the studies are
presented in Tables 1 and 2.
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Figure 1

Figure 1. The flowchart depicts the process of selecting studies.

Table 1. RAGT concise overview of the chosen papers’ key characteristics and bias risk.

Author, Year Country
Total

Sample
(TS)

Study
Design Intervention Outcome Level of Injury NOS

Hornby 2005
[22] USA 30 RCT

The utilization of robotic
assistance in BWSTT and

therapist-assisted BWSTT. The
intervention involved

engaging in overground
ambulation via a mobile

suspension device for three
30 min weekly sessions over

8 weeks.

LEMS,
6MWT

AIS B, C, and D. The
level of damage is
located above the

tenth thoracic
vertebra (T10).

-

Wirz 2005
[23] USA 20 Single

group

The Lokomat (DGO)
intervention consisted of an

8 week duration, with
participants attending three to
five sessions per week, each

lasting 45 min.

AS, LEMS,
6MWT,

10MWT,
and TUG

AIS C and D. The
level of injury is at

L1 or above.
7
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Table 1. Cont.

Author, Year Country
Total

Sample
(TS)

Study
Design Intervention Outcome Level of Injury NOS

Field 2011
[24] USA 64 RCT

The participants engaged in a
training regimen for 12 weeks,
with a frequency of 5 days per
week. The training program
encompassed four distinct

modalities, namely
treadmill-based training with

manual help (TM),
treadmill-based training with
stimulation (TS), overground
training with motivation (OG),
and treadmill-based training
with robotic assistance (LR).

LEMS

AIS C and D. The
level of damage is
located at or above
the tenth thoracic

vertebra (T10).

-

Alcobendas
2012 [25] Spain 75 RCT

The study consisted of a total
of 40 sessions conducted over
8 weeks. Each session lasted

for approximately 1 h and
involved a Lokomat group
intervention. Specifically,
participants spent 30 min

utilizing the Lokomat device
within each session, followed

by an additional 30 min of
normal physical treatment.

The overground group
implemented a standardized
biological treatment protocol

for one hour.

VAS, LEMS,
6MWT, and

10MWT

AIS C and D. The
range of injuries
observed in the

individual spans
from the second
cervical vertebra

(C2) to the twelfth
thoracic vertebra

(T12).

-

Aach 2014
[26] Germany 8

Pre-post
experi-
mental
design

HAL had been used for
90 days, with a frequency of

five weekly sessions.

LEMS,
6MWT,

10MWT,
and TUG

ASIA A. Degree of
damage: T8 to L2 7

del-Ama
2014 [27] Switzerland 3 Pilot

study

The Kinesis system was
implemented during the first

week, whereas no
intervention was delivered

the following week.

AS, VAS,
6MWT, and

10MWT

AIS A and D.
Injuries impact the

spinal levels
encompassing L1

and L2.

8

Labruyère
2014 [28] Switzerland 9 RCT

The first group underwent
16 sessions of RAGT using the
Lokomat device, followed by

an additional 16 strength
training sessions. Group 2

received the intervention in
reverse order.

VAS, LEMS,
and

10MWT

AIS C and D. The
extent of the injury

ranges from the
fourth cervical

vertebra (C4) to the
eleventh thoracic

vertebra (T11).

-

Niu 2014 [29] USA 40 RCT

The experimental group
underwent twelve 1 h

Lokomat training sessions
over one month, whereas the
control group did not receive

any interventions.

TUG

AIS B, C, and D. The
level of damage is
located above the

tenth thoracic
vertebra (T10).

-
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Table 1. Cont.

Author, Year Country
Total

Sample
(TS)

Study
Design Intervention Outcome Level of Injury NOS

Shin 2014
[30]

South
Korea 53 RCT

In four weeks, the RAGT
group received three 40 min

sessions per week of RAGT in
addition to regular
physiotherapy. The

conventional group received
physiotherapy twice daily,

five days per week.

LEMS

AIS D. The level of
injury is classified as
upper motor neuron
(UMN) involvement.

-

Varoqui 2014
[31] USA 30 RCT

The Lokomat group
participated in three weekly
sessions for four weeks, each
lasting one hour. The control
group, on the other hand, did
not receive any intervention.

6MWT,
10MWT,

TUG

AIS C and D. The
level of damage is
located above the

tenth thoracic
vertebra (T10).

-

Duffell 2015
[32] USA 56 RCT

The study involved allocating
participants with an

incomplete SCI into three
groups: a control group

receiving no intervention, a
group receiving Lokomat
intervention, and a group

receiving tizanidine
intervention.

TUG

AIS C and D The
level of damage is
located above the

tenth thoracic
vertebra (T10).

-

Lam 2015
[33] Canada 15 RCT

The Lokomat-assisted BWSTT
intervention was conducted

for 45 min, three times a week,
for three months.

6MWT,
10MWT

AIS C and D.
Exclusion criteria

encompassed
individuals with

lower motoneuron
damage or lesion
levels than T11.

-

Stampacchia
2016 [34] Italy 21 Single

group

The robotic exoskeleton (Ekso
GT) exercise lasted

approximately 40 min.
MAS, VAS

AIS A, B, and D. The
observed lesions

were located at the
low cervical level
(C7), dorsal level,
and high lumbar

level (L1–L2).

7

Mazzoleni
2017 [35] Italy 7 Single

group

The study consisted of
20 sessions, with a frequency

of three sessions per week.
The first set of sessions

utilized a FES cycling system
called Pegaso. It was followed

by another group of
20 sessions, again with a

frequency of three sessions
per week, where participants
used an overground robotic

exoskeleton called the
Ekso GT.

MAS, VAS,
6MWT,

10MWT,
and TUG

AIS A. Injury
severity: T4–T12 7
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Table 1. Cont.

Author, Year Country
Total

Sample
(TS)

Study
Design Intervention Outcome Level of Injury NOS

Watanabe
2019 [36] Japan 2 Case

report

HAL has been used 3–4 times
weekly for eight sessions. It is

performed with regular
physical therapy, each lasting

approximately 20–30 min.

MAS,
LEMS

AIS C and D Injury
severity: T8–T10, L1 7

Wirz 2017
[37] USA 21 RCT

The intervention group
received a training duration
of 50 min per session, while

the control group had a
training duration of 25 min

per session using the Lokomat
device. Both groups

underwent training sessions
3–5 days per week for a total

period of 8 weeks.

10MWT AIS B and C. C4 to
T12 are affected. -

AS: Ashworth Scale; MAS: Modified Ashworth Scale; VAS: Visual Analog Scale; 6MWT: 6 Minute Walk Test;
10MWT: 10 Meter Walking Test; LEMS: Lower Extremity Motor Score; TUG: Timed Up And Go Test; BWSTT:
Body Weight-Supported Treadmill Training; HAL: Hybrid Assistive Limb; FES: Functional Electrical Stimulation;
AIS: ASIA Impairment Scale; SCI: Spinal Cord Injury; NOS: Newcastle Ottawa Scale.

3.2. Bias Assessment

All studies considered in the analysis demonstrate a minimal likelihood of selection
bias. The existence of a wide range of rehabilitation procedures in numerous research
studies has led to a significant occurrence of performance and detection bias. All research
investigations demonstrate a low-risk level of attrition and reporting bias. Several studies
exhibit a lack of clarity concerning potential biases, including issues related to loss of
follow-up in Figure 2, Tables 1 and 2.

1 

 

 

 

 
  Figure 2. The risk of bias include the study are Alcobendas et al., 2012 [25]; Duffel et al., 2015 [32];

Field et al., 2011 [24]; Hornby et al., 2005 [22]; Labruyère et al., 2014 [28]; Lam et al., 2015 [33];
Niu et al., 2014 [29]; Shin et al., 2014 [30]; Varoqui et al., 2014 [31]; Wirz et al., 2017 [37].
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3.3. Analysis of the ML Group

The analysis of all AIS grades A, B, C, and D included three RCT articles that fulfilled
the inclusion criteria. We gathered data on the ability of ML to forecast outcomes based on
the AIS score upon the patient’s initial hospital admission. We categorized these results
into two groups: unimproved and improved in the AIS score. According to the findings of
a meta-analysis, predicting using ML in SCI patients with AIS grade A does not improve
their condition after re-evaluation following therapy. It may happen due to the presence of
a complete injury. The results of the OR CI 95% for AIS grade A were 0.093 (0.011–0.754,
p = 0.026).

Meanwhile, in AIS B, several patients demonstrated progress in the forest plot, but
this outcome is because there is no significant difference of 0.875 (0.395–1.939, p = 0.743).
Considerable improvement in AIS grade C was 3.626 (1.556–8.449, p = 0.003), and AIS grade
D was 8.496 (1.394–51.768, p = 0.020). The final result is shown in Figures 3–6.

Figure 3

Figure 3. Forest plot of AIS grade A using OR ratio analysis between unimproved and improved
prediction groups. The square box represents the point estimate for the respective study, while
the horizontal line is the 95% CI. The diamonds represent pooled results. DeVries et al., 2009 [38];
Torres et al., 2021 [39]; Agarwal et al., 2022 [40].

Figure 4

Figure 4. Forest plot of AIS grade B using OR ratio analysis between unimproved and improved
prediction groups. The square box represents the point estimate for the respective study, while
the horizontal line is the 95% CI. The diamonds represent pooled results. DeVries et al., 2009 [38];
Torres et al., 2021 [39]; Agarwal et al., 2022 [40].
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Figure 5

Figure 5. Forest plot of AIS grade C using OR ratio analysis between unimproved and improved
prediction groups. The square box represents the point estimate for the respective study, while
the horizontal line is the 95% CI. The diamonds represent pooled results. DeVries et al., 2009 [38];
Torres et al., 2021 [39]; Agarwal et al., 2022 [40].Figure 6

Figure 6. Forest plot of AIS grade D using OR ratio analysis between unimproved and improved
prediction groups. The square box represents the point estimate for the respective study, while
the horizontal line is the 95% CI. The diamonds represent pooled results. DeVries et al., 2009 [38];
Torres et al., 2021 [39]; Agarwal et al., 2022 [40].

3.4. Analysis of the RAGT Group

Four RCTs [23,28,30,32] were conducted to evaluate the effects of interventions on
spasticity. In the conducted investigations, all participants’ spasticity levels were catego-
rized as mild, as indicated by a MAS score ranging from 0 to 2. Furthermore, it was noted
that there were no significant alterations in spasticity levels following the implementation
of RAGT. The robotic group exhibited a notable reduction in AS (95% CI = −0.239 to −0.045,
p = 0.004) and MAS (95% CI = −3.657 to −1.066, p ≤ 0.001) measures. The pooled MD
using MAS and AS was −2.149 and −0.142, respectively (Figures 7 and 8).

We also analyzed the pain parameter using the VAS variable. The findings from
the analysis of the primary outcomes of pain following RAGT are depicted in Figure 9,
consisting of two RCTs [28,32] and three non-RCTs [22,29,37]. Despite the observed trend
indicating a potential reduction in pain in the robotic group, there was no statistically
significant difference between the robotic and control groups. This lack of significance was
consistent in the analysis (p = 0.243). The pooled MD was −1.418. The studies included in
the research reported various pain levels, varying from mild to moderate.
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Figure 7

Figure 7. Forest plot of AS using standardized mean difference analysis between robotic and control
groups. The square box represents the mean differences for the respective study, while the horizontal
line is the 95% CI. The diamonds represent pooled results. Wirz et al., 2005 [23]; del-Ama et al.,
2014 [27].Figure 8

Figure 8. Forest plot of MAS using standardized mean difference analysis between robotic and
control groups. The square box represents the mean differences for the respective study, while the
horizontal line is the 95% CI. The diamonds represent pooled results. Stampacchia et al., 2016 [34];
Mazzoleni et al., 2017 [35].Figure 9

Figure 9. Forest plot of VAS using standardized mean difference analysis between robotic and control
groups. The square box represents the mean differences for the respective study, while the horizontal
line is the 95% CI. The diamonds represent pooled results. Alcobendas et al., 2012 [25]; del-Ama et al.,
2014 [27]; Labruyère et al., 2014 [28]; Stampacchia et al., 2016 [34]; Mazzoleni et al., 2017 [35].
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Table 2. ML concise overview of the chosen papers’ key characteristics and bias risk.

Author, Year Country
Total

Sample
(TS)

Study
Design Intervention Outcome AIS Grade NOS

DeVries 2019
[38] Canada 862 Retrospective

The comparison of
unsupervised MLA

and LR, utilizing
comprehensive

neurological data for
total admission, did

not reveal any
clinically significant

disparities in
functional prediction
compared to previous

models.

The F1-score has been
demonstrated to
possess greater

reliability in
evaluating algorithms

than the area under
the operating curve.

AIS A, B, C,
and D 8

Torres 2021 [39] USA 118 Retrospective

A similar network has
been developed

among patients to
predict neurological
recovery following
spinal cord damage,

focusing on MAP
recorded before

surgery.

The findings from the
network analysis

indicate that
deviations from the
optimal MAP range,
either in the form of

hypotension or
hypertension, during
surgical procedures
are correlated with a

reduced probability of
achieving neurological

recovery.

AIS A, B, C,
D, and E 8

Agarwal 2022
[40] USA 74 Retrospective

This study uses a
deep-tree-based

machine learning
approach to evaluate

the impact of
intraoperative MAP

and vasopressor
administration on

enhancing
neurological outcomes

in individuals with
acute spinal cord

injury.

An association
between a MAP

ranging from 80 to 96
mmHg and enhanced
neurological function

has been observed.
Conversely, 93 min or
more spent outside the

MAP range of 76 to
104 mmHg had been

associated with a
worse outcome.

AIS A, B, C,
D, and E 7

MLA: Machine Learning Algorithms; LR: Logistic Regression; MAP: Mean Arterial Pressure; NOS: Newcastle
Ottawa Scale.

This study investigated walking ability by combining the LEMS, 6MWT, 10MWT, and
TUG group analyses. In the LEMS analysis, we found five RCTs [22,24,25,28,29] and three
non-RCTs [23,26,37] with statistically significant beneficial effects in favor of the robotic
group (95% [CI] = 0.515 to 2.995, p ≤ 0.05). The mean difference is 1.755, as depicted in
Figure 10. The 6MWT is a commonly used assessment tool in four RCTs [22,25,30,32], and
four non-RCTs [23,26,27,34] were conducted to evaluate the 6MWT. Irrespective of the
type of study design, there was a significant increase in walking distance in the group
that received robotic assistance. The CI is 95% (21.665–69.884, p ≤ 0.001), with MD 45.774,
as shown in Figure 11. The 10MWT comprises five RCTs [25,28,30,32,36] and five non-
RCTs [23,26,27,34,37]. The 10MWT demonstrated a substantial improvement in the robotic
group, as indicated by CI 95% 0.015–0.117, p = 0.012, with MD 0.066, as shown in Figure 12.
The TUG study comprised a total of three RCTs [28,30,31]. The findings indicated a
noteworthy enhancement in favor of the robotic group, with a CI of 95% −21.742 to 5.225,
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p = 0.230. The MD obtained by pooling the data using a random effects model was −8.258,
as shown in Figure 13.

Figure 10

Figure 10. Forest plot of LEMS using standardized mean difference analysis between robotic and
control groups. The square box represents the mean differences for the respective study, while the
horizontal line is the 95% CI. The diamonds represent pooled results. Hornby et al., 2005 [22];
Wirz et al., 2005 [23]; Field et al., 2011 [24]; Alcobendas et al., 2012 [25]; Aach et al., 2014 [26];
Labruyère et al., 2014 [28]; Shin et al., 2014 [30]; Watanabe et al., 2019 [36].

Figure 11

Figure 11. Forest plot of 6MWT using standardized mean difference analysis between robotic and
control groups. The square box represents the mean differences for the respective study, while
the horizontal line is the 95% CI. The diamonds represent pooled results. Hornby et al., 2005 [22];
Wirz et al., 2005 [23]; Alcobendas et al., 2012 [25]; Aach et al., 2014 [26]; del-Ama et al., 2014 [27];
Varoqui et al., 2014 [31]; Lam et al., 2015 [33]; Mazzoleni et al., 2017 [35].
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Figure 12

Figure 12. Forest plot of 10MWT using standardized mean difference analysis between robotic and
control groups. The square box represents the mean differences for the respective study, while
the horizontal line is the 95% CI. The diamonds represent pooled results. Wirz et al., 2005 [23];
Alcobendas et al., 2012 [25]; Aach et al., 2014 [26]; del-Ama et al., 2014 [27]; Labruyère et al., 2014 [28];
Varoqui et al., 2014 [31]; Lam et al., 2015 [33]; Mazzoleni et al., 2017 [35]; Watanabe et al., 2019 [36];
Wirz et al., 2017 [37].

Figure 13

Figure 13. Forest plot of TUG using standardized mean difference analysis between robotic
and control groups. The square box represents the mean differences for the respective study,
while the horizontal line is the 95% CI. The diamonds represent pooled results. Wirz et al.,
2005 [23]; Aach et al., 2014 [26]; Niu et al., 2014 [29]; Varoqui et al., 2014 [31]; Duffel et al., 2015 [32];
Mazzoleni et al., 2017 [35].

4. Discussion

The findings demonstrated encouraging outcomes in forecasting the improvement
of AIS. Clinicians have used the AIS to categorize SCI and assess the extent of recovery.
It may involve documenting enhancements, such as an improvement in AIS grade or
deteriorations [41]. Within the confines of a conventional clinical environment, the primary
determinants recognized for the prognostication of SCI recovery encompass patient age,
patient gender, duration of hospitalization, manner of hospital release, SCI classification,
procedural timing, nature of procedure, and presence of comorbidities. The prognosis
of SCI is typically assessed using bedside evaluation and MRI or through classic clinical
analysis, such as the calculation of odds ratios [42]. Hence, it is possible to identify the
factors that can predict the recovery of SCI by incorporating the initial AIS scores into
ML algorithms. This framework leverages big data and precision medicine, serving as a
valuable tool for clinicians to enhance the overall prognosis of SCI patients. The current ML
study [43] demonstrates a higher test accuracy of 73.6% than the MRI accuracy of 71.4%. A
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few studies [43–47] collectively utilize a patient sample size that is one to two times larger
and incorporates a comprehensive evaluation of feature importance. Furthermore, even
considering all AIS grades and employing a far less complex model that can be readily
implemented, the outcomes are generally similar or superior.

The reduction of spasticity can be attributed to various theoretical frameworks. The
RAGT technique elicits rhythmic movements in the lower limbs and offers sensory input.
Prior research has indicated that rhythmic passive exercise has the potential to cause the
reorganization of spinal circuitry and reduce stiffness in individuals with SCI [12]. The
potential impact of repetitive elements within a therapy program on the enhancement
of spasticity and locomotor function through the stimulation of spinal locomotor centers
has been suggested [48]. Repetitive functional task training, sometimes called RAGT,
represents a form of intervention that involves repeating available tasks. The mechanisms
above could explain the observed reduction in spasticity resulting from RAGT [48]. As
previously mentioned, despite decreasing spasticity, RAGT improves the detection of
rhythmic muscle activations.

Furthermore, it is worth considering the significance of weight bearing as a contribut-
ing component. RAGT offers assistance that enables individuals to apply load to their
lower extremities while engaging in training activities. The application of weight bearing
on the lower limbs and the subsequent increase in muscle activation can positively impact
the recovery of lower extremity motor function in individuals with LEMS. Furthermore,
the findings of this meta-analysis indicate that the 6MWT can enhance endurance levels
without imposing the strain associated with deliberate muscular contractions [34]. As
evidenced by the findings of the LEMS improvement results, enhanced lower extremity
strength probably contributes to an augmentation in walking speed, as observed in the
10MWT variable [49].

5. Limitations

One constraint of the analysis is the methodology employed for data collection in
non-RCTs, particularly in the context of informing predictive modeling. It is generally
acknowledged that prospective approaches are more suitable for developing accurate
predictive models. The existing body of literature on this subject is minimal and exhibits
variability in both topic and research design, hindering the possibility of conducting a
meta-analysis or facilitating direct comparisons. Undoubtedly, the degree of injury has been
demonstrated as a fundamental determinant in predicting the long-term functional result.
Ultimately, models must undergo external validation and be meticulously implemented
before their utilization and dependence in clinical settings. Regrettably, the identified
articles lacked specific descriptions of the symptoms exhibited by patients. Furthermore,
most of the research evaluated treatment efficacy solely during a predetermined timeframe,
impeding our ability to examine this aspect comprehensively. The limitations of our study
include the potential for future research to explore and offer additional insights into the
symptoms and follow-up duration.

6. Conclusions

The ML approach exhibited enhanced precision in forecasting AIS result scores. The
implementation of RAGT has been shown to positively impact the reduction of spasticity
and the improvement of walking ability. The implementation of RAGT has been proven
to be beneficial in the normalization of muscle tone and enhancement of lower extremity
function. The presence of variability among individuals with SCI presents a distinct and
advantageous prospect for AI to facilitate desired results and evaluate risk within this
specific group of patients.
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