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Abstract: Alteration of the microbiota–gut–brain axis has been recently recognized as a possible
contributor to the physiopathology of autism spectrum disorder (ASD). In this context, microRNA
(miRNAs) dysfunction, implicated both in several neuropathological conditions including ASD and
in different gastrointestinal disorders (GIDs), could represent an important modulating factor. In this
contextual framework, we studied the transcriptional profile of specific circulating miRNAs associated
with both ASD (miR-197-5p, miR-424-5p, miR-500a-5p, miR-664a-5p) and GID (miR-21-5p, miR-
320a-5p, miR-31-5p, miR-223-5p) in a group of pre-schoolers with ASD and in typically developing
(TD) peers. In the ASD group, we also assessed the same miRNAs after a 6-month supplementation
with probiotics and their correlation with plasma levels of zonulin and lactoferrin. At baseline,
the expression of miRNAs involved in ASD were significantly reduced in ASD pre-schoolers vs.
TD controls. Regarding the miRNAs involved in GID, the expression levels of miR-320-5p, miR-
31-5p, and miR-223-5p were significantly higher in ASD than in TD subjects, whereas miR-21-5p
showed significantly reduced expression in the ASD group vs. TD group. Supplementation with
probiotics did not significantly change the expression of miRNAs in the ASD population. We found
a significative negative correlation between zonulin and miR-197-5p and miR-21-5p at baseline, as
well as between lactoferrin and miR-223-5p after 6 months of probiotic supplementation. Our study
confirms the presence of an altered profile of the miRNAs investigated in ASD versus TD peers that
was not modified by supplementation with probiotics.

Keywords: microRNA; autism spectrum disorder; pre-schoolers; probiotics; real-time PCR

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition char-
acterized by impaired social interaction and communication, as well as the presence of
restricted interests, repetitive behavior, and alterations of sensory processing [1]. The
worldwide median prevalence of ASD is approximately of 1% [2], with a strong male bias
that is consistent across epidemiological studies [3]. In addition to core symptoms, ASD
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individuals are more likely to experience a number of comorbidities that can be psychi-
atric (including attention deficit hyperactivity disorder (ADHD), anxiety, and depressive
disorders) or somatic (including epilepsy, gastrointestinal, and sleep disorders) [4]. These
additional issues, along with further complicating clinical presentation and treatment,
may negatively impact on quality of life and economic burden [5]. ASD diagnosis in-
cludes direct behavioral observation of the child and a detailed developmental history;
no valid diagnostic biomarkers for ASD have been detected according to a recent system-
atic review encompassing biochemical, genetic, neuroimaging, neurophysiological, and
neuropsychological measures [6].

The ASD etiopathogenesis is multifactorial and derives from a complex interplay of
genetic susceptibility and pre-perinatal environmental factors [7,8]. In this context, the
existing evidence supports the possible contributing role of epigenetic modifications, which
have been detected in both syndromic and idiopathic ASD [9,10]. Specifically, epigenetic
regulation coordinates gene expression (without inducing DNA sequence changes [11])
by influencing several genes [12], including those modulating neurogenesis and brain
development [13]. Among the epigenetic regulators are microRNAs (miRNAs), which
are small, noncoding RNAs regulating gene expression at the post-transcriptional level
of various cellular processes, including those involved in neurodevelopment, by marking
specific mRNAs to repress their translation or to induce their degradation [14]. They are
abundantly present in the brain, and their dysfunction has been implicated in several
neuropathological conditions including ASD. miRNAs, previously known to be expressed
only in cells and tissues, have also been detected in extracellular body fluids such as serum,
plasma, saliva, and urine [15]. Altered expression of cellular and circulating miRNAs
has been observed in ASD individuals compared with typically developing (TD) controls,
and they are now considered as potential targets for the development of ASD novel
therapeutic strategies [15,16]. In particular, dysregulation of some miRNAs (miR-197-5p,
miR-424-5p, miR-500a-5p, miR-664a-5p) is associated with ASD and these molecules can
potentially constitute molecular biomarkers [17], whereas other miRNAs (miR-21-5p, miR-
320a-5p, miR-31-5p, miR-223-5p) may serve as important causative factors of different
gastrointestinal disorders [18].

In addition, the alteration of the microbiota–gut–brain axis has been recently recog-
nized as a possible contributing factor in the etiopathogenesis of ASD [19–26]. Indeed,
a considerable number of subjects with ASDs have significant gastrointestinal (GI) dys-
functions, including altered bowel habits and chronic abdominal pain (for a recent review,
see Holingue et al., 2018) [27]. Previous studies have analyzed the associations between
GI symptoms and ASD symptoms and had discrepant results: some investigations re-
ported that children with and without GI problems did not differ in autism symptom
severity [28–30], whereas others observed an association between GI symptoms and some
altered behaviors [31–35]. An increased gut permeability, or “leaky gut”, might be impli-
cated in favoring GI symptoms, allowing bacterial metabolites to cross the gut barrier and
potentially impacting the early neurodevelopmental processes [36].

In this framework, some recent reviews have stressed the importance of taking pro-
biotics in order to maintain gut homeostasis, to improve gut microbiota, and ultimately
to confer several health benefits [37–39]. In the ASD field, probiotics have already been
administered to children both in randomized controlled trials (RCT) and non-randomized
interventions (for a recent systematic review, see [40]). Although the results of probiotic
supplementation may not be translated into clinical recommendations, this intervention
could be considered as an add-on option for patients with ASD [41] in association with
evidence-based psychoeducational interventions [42].

Based on these assumptions, the current study aims to evaluate: (i) the transcriptional
profile of specific circulating miRNAs in ASD pre-schoolers and in TD peers; (ii) whether
the miRNA expression profile changed after 6-months of probiotic supplementation in ASD
pre-schoolers divided according to the presence or absence of gastrointestinal symptoms;
(iii) the concentrations of markers of intestinal barrier protection (circulating lactoferrin)
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and markers of increased intestinal permeability [43] in ASD children; and (iv) the possible
relationships between miRNAs and the plasma levels of zonulin and lactoferrin.

2. Methods
2.1. Subjects and Plasma Collection

The study is part of a larger RCT on the effects of probiotic supplementation in ASD
pre-schoolers [25,26]. Participants with ASD were recruited from the Child and Adolescence
Mental Health Services of the Tuscany Region and the Unit of Child Psychiatry and the
Unit of Child Rehabilitation of IRCCS Stella Maris Foundation (Pisa, Italy), a tertiary-care
university hospital.

The inclusion criteria were age range between 18 and 72 months and ASD diagnosis
performed by an experienced multidisciplinary team according to the criteria reported
in the Diagnostic and Statistical Manual of Mental Disorders—5th Edition [1] (DSM-5).
The exclusion criteria were neurological syndromes or focal neurological signs, history of
birth asphyxia, severe premature birth or perinatal injuries, epilepsy, significant sensory
impairment (e.g., blindness, deafness), diagnosis of not functional gastrointestinal disorder
(e.g., gastroesophageal reflux, food allergies) or coeliac disease, special diets already under-
way (i.e., gluten-free diet, casein-free diet, high-protein diet, ketogenic diet), and known
brain anomalies.

The study population was represented by 31 ASD pre-schoolers and by 10 sex/age-
matched TD subjects who served as the control group. The age and the anthropometric
characteristics are reported in Table 1.

Table 1. Demography, clinical characteristics, and body compositions of study populations.

ASD Subjects (n = 31) TD Subjects
(n = 10) p-Value

Males (%) 77.4 77.7 n.s.

AGE (years) 4.28 ± 0.22 5.00 ± 0.61 n.s.

WEIGHT (kg) 17.62 ± 0.67 15.18 ± 1.45 n.s.

HEIGHT (cm) 104.68 ± 1.62 100.85 ± 5.53 n.s.

BMI (kg/m2) 15.93 ± 0.35 14.73 ± 0,11 n.s.

BMI Z-SCORE 0.03 ± 0.26 −0.93 ± 0.29 n.s.
ASD: autism spectrum disorder; TD: typical development; n.s.: not significant; BMI: Body Mass Index.

ASD subjects were supplemented with probiotics for 6 months (De Simone Formula-
tion (DSF)—Vivomixx® in EU, Visbiome® in USA—containing 450 billion bacteria of eight
different probiotic strains: Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium
longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus
paracasei, Lactobacillus delbrueckii subsp. Bulgaricus).

ASD subjects were classified as belonging to the gastrointestinal group (GI) or to the
non-GI (NGI) group on the basis of the Gastrointestinal Severity Index (GSI) [44]. Specif-
ically, this questionnaire allows obtaining a composite score based on the severity of GI
signs and symptoms (constipation, diarrhea, average stool consistency, stool smell, flatu-
lence, abdominal pain, unexplained daytime irritability, night-time awakening, abdominal
tenderness) reported by parents in the previous two weeks. We adopted a GSI cut-off of 4
(the range of this scale is 0–17), with at least 3 score points obtained from the first six items
of the scale, evaluated by Adams et al. [45] as more specifically related to GI symptoms
and named the 6-GI Severity Index (6-GSI).

In a previous study performed by our research group [15,26], we investigated possible
changes in the gastrointestinal and ASD symptoms at the end of probiotic administration.
Accordingly, the ASD population was subdivided in responders (R) and non-responders
(NR) as regards to gastrointestinal (R-GI/NR-GI) and neurodevelopmental (R-ASD/NR-
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ASD) symptoms following an improvement (R) or an unchanged/worsening (NR) of the GI
index and ADOS-calibrated severity score (ADOS-CSS) [46,47], respectively. In the present
study, we examined the possible variations of both the circulating miRNA expression trend
and lactoferrin and zonulin plasma levels in this cohort of ASD patients.

Typically developing children were healthy subjects referred as outpatients to the
Unit of Pediatric Endocrinology and Diabetes, Department of Clinical and Experimental
Medicine, University of Pisa, Italy, who repeated blood examinations after an intervening
disease. At the time of blood sampling, they had not received drugs for at least one
week and their bio-humoral parameters, including indices of inflammation, were in the
normal range.

We collected blood samples from all the subjects by venipuncture performed the
morning after overnight fasting. For ASD subjects, the samples were collected before (T0)
and after 6 months of probiotic administration (T1) into an ethylene diaminetetraacetic
acid (EDTA) (1 mg/mL) vacutainer. After collection, the samples were quickly separated
by centrifugation for 15 min at 4 ◦C and the plasma was stored frozen at −80 ◦C in 1mL
aliquots in polypropylene tubes until assay.

2.2. Zonulin and Lactoferrin Assays

Lactoferrin and Zonulin were measured in 10 µL and 100 µL of plasma, respectively, us-
ing immunometric assays (Zonulin ELISA kit, Elabscience and Lactoferrin ELISA (Human),
DRG Diagnostics, Houston, TX, USA).

The assay sensitivities were 1.1 ng/mL and 0.47 ng/mL for lactoferrin and zonulin,
respectively. Within-assay variability, evaluated for each kit, was <10% for both analytes
(CKLattoferrin: 717.7 ± 29.8 ng/mL (n = 4 duplicate assays, CV = 8.3%) and CKZonulin:
50.5 ± 1.001 ng/mL (n = 4 duplicate assays, CV = 4%)). Assay accuracy was evaluated by
dilution tests (1:5 and 1:2 serial dilutions for lactoferrin and for zonulin) and the linearity
of the response was observed for both immunometric assays. Two control samples were
assayed in each run for quality control.

2.3. miRNA Extraction, Reverse Transcription, and Real-Time PCR

Extraction of miRNAs was performed by using the miRNeasy Serum/Plasma Kit
(Qiagen S.p.a., Milano, Italy). As previously reported [48], 200 µL of plasma was lysed
in adequate lysis reagent and applied to silica-membrane columns that bind total RNA,
allowing phenol and other contaminants to be efficiently washed away. To help to monitor
RNA recovery and reverse transcription efficiency, a spike-in control was used as an internal
control for plasma miRNA expression profiling. The miRNeasy Serum/Plasma spike-in
control is a C. elegans miR-39 miRNA mimic that can be easily detected via real-time PCR
using the miScript PCR System (Qiagen S.p.a., Milano, Italy) in combination with the
Ce_miR-39_1 miScript Primer Assay (Qiagen S.p.a., Milano, Italy). High-quality RNA was
then eluted in a small volume (14 µL) of RNase-free water; all miRNA samples were stored
at −80 ◦C after evaluation of their integrity, purity, and concentration.

Mature miRNA sequences, used as forward primers for the detection of miRNAs,
were downloaded from the miRBase database (v22.1, 2018-10) (www.mirbase.org) (Table 2).

Real-time PCR reactions were performed in duplicate using a Bio-Rad C1000™ thermal
cycler system (CFX-96 Real-Time detection system, Bio-Rad Laboratories Inc., Hercules,
CA, USA). In order to monitor cDNA amplification, a fluorogenic DNA binding dye was
used (SsoFAST EvaGreen Supermix Bio-Rad Laboratories Inc., Hercules, CA, USA) and the
optimal real-time PCR conditions were set for each miRNA analysed, except for Ce_miR-
39_1, which was a standardized assay. To assess product specificity, amplicons were
systematically checked by melting curve analysis (from 65 ◦C to 95 ◦C with increments of
0.5 ◦C/cycle). All experiments followed the MIQE (Minimum Information for Publication
of Quantitative Real-Time PCR Experiments) guidelines [49].

www.mirbase.org
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Table 2. Mature miRNA sequence.

Gene Forward Primer Sequence
(5′-3′)

Genbank
Accession Number Location Ta, ◦C

hsa-miR-197-5p CGGGTAGAGAGGGCAGTGGGAGG NR_029583.1 chr 1p13.3 55

hsa-miR-424-5p CAGCAGCAATTCATGTTTTGAA NR_029946.1 chr Xq26.3 55

hsa-miR-664a-3p TATTCATTTATCCCCAGCCTACA NR_031705.1 chr 1q41 55

hsa-miR-500a-5p TAATCCTTGCTACCTGGGTGAGA NR_030224.1 chr Xp11.23 55

hsa-miR-21-5p TAGCTTATCAGACTGATGTTGA NR_029493.1 chr 17q23.1 55

hsa-miR-320a-5p GCCTTCTCTTCCCGGTTCTTCC NR_029714.2 chr 8p21.3 55

hsa-miR-31-5p AGGCAAGATGCTGGCATAGCT NR_029505.1 chr 9p21.3 55

hsa-miR-223-5p CGTGTATTTGACAAGCTGAGTT LM608368 chr Xq12 55

Table legend. hsa-miR-197-5p: homo sapiens microRNA-197 with 5p strand present in the forward position;
hsa-miR-424-5p: homo sapiens microRNA-424 with 5p strand present in the forward position; hsa-miR-664-3p:
homo sapiens microRNA-142 with 3p strand present in the reverse position; hsa-miR-500a-5p: homo sapiens
microRNA-500a with 5p strand present in the forward position; hsa-miR-21-5p: homo sapiens microRNA-21
with 5p strand present in the forward position; hsa-miR-320a-5p: homo sapiens microRNA-320a with 5p strand
present in the forward position; hsa-miR-31-5p: homo sapiens microRNA-31 with 5p strand present in the
forward position; hsa-miR-223-5p: homo sapiens microRNA-31 with 5p strand present in the forward position.

3. Statistics

Statistical analysis was performed using Statview 5.0.1 software released from Win-
dows Statistical (SAS Institute, Inc., Cary, NC, USA).

Relative quantification was performed via the ∆∆Ct method using Bio-Rad’s CFX96
Manager software 3.1.1621 (CFX-96 Real-Time PCR detection systems, Bio-Rad Laboratories
Inc., Hercules, CA, USA). Skewed variables were log transformed before statistical analysis.
Differences between more than two independent groups were analyzed using Fisher’s test
after ANOVA and relations between the variables were assessed by bivariate and simple
and multiple linear regression analyses. Results are expressed as mean ± S.E.M. and a
p-value < 0.05 was considered significant.

4. Results

At baseline, before probiotic supplementation, we observed different expression pat-
terns of miRNAs between ASD pre-schoolers and TD peers. Specifically, the expression
levels of miRNAs involved in ASD (miR-500a-5p, miR-197-5p, miR-424-5p, and miR-664-5p)
were markedly reduced in ASD pre-schoolers as compared with TD peers (Figure 1a–d),
reaching statistical significance for all except for miR-424-5p.

On the other hand, for miRNAs involved in gastrointestinal disorders, the expression
levels of miR-320-5p, miR-31-5p, and miR-223-5p were (p = 0.006) higher in ASD than in
TD subjects, whereas the levels of miR-21-5p were significantly reduced (p < 0.0001) in ASD
vs. TD children (Figure 1e–h). As reported in Table 3, we also observed significant positive
correlations among the analyzed miRNAs.

As shown in Figure 2, a 6-month supplementation with probiotics did not significantly
change the expression levels of miRNAs with respect to baseline (T0 vs. T1), considering
the ASD population both as a whole (Figure 2a–h) and split into GI and NGI subgroups.

Plasma lactoferrin and zonulin levels did not differ in ASD children between T0 and
T1 (146.7 ± 13.1 vs. 163.71 ± 23.67 ng/m; p = ns and 19.5 ± 2.3 vs. 19.4 ± 2.8 ng/mL;
p = ns). Circulating lactoferrin levels were higher in the GI group than in the NGI group
after administration of probiotics, p = 0.04 (Figure 3a,b).
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Figure 1. Expression levels of circulating miRNAs, (a) miR-500a-5p, (b) miR-197-5p, (c) miR-424-5p,
(d) miR-664a-3p, (e) miR-21-5p, (f) miR-320a-5p, (g) miR-31-5p, and (h) miR-223-5p, in typically
developing (TD, white bar) and autism spectrum disorder (ASD, dark grey bar) children.
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Figure 2. Expression levels of circulating miRNAs, (a) miR-500a-5p, (b) miR-197-5p, (c) miR-424-
5p, (d) miR-664a-3p, (e) miR-21-5p, (f) miR-320a-5p, (g) miR-31-5p, and (h) miR-223-5p, in autism
spectrum disorder (ASD) children before (T0, grey bar) and after 6 months of probiotic administration
(T1) (dark grey bar).



J. Clin. Med. 2023, 12, 7162 7 of 14

0

50

100

150

200

250

300

350

L
a
c
to

fe
r
r
in

, 
n

g
/m

L

ASD – NGI

T0

ASD – NGI

T6

ASD – GI

T0

ASD – GI

T6

p= 0.001

p= 0.04

0

5

10

15

20

25

30

35

40

ASD – NGI

T0

ASD – NGI

T6

ASD – GI

T0

ASD – GI

T6

Z
o
n

u
li

n
, 

n
g
/m

L

p= 0.02

a)                                                                                                      b)

Figure 3. Plasma levels of (a) lactoferrin and (b) zonulin in autism spectrum disorder (ASD) children
split into gastrointestinal (GI) and non-GI (NGI) groups before (T0) and after 6 months of probiotic
administration (T1).

We also compared the plasma levels of lactoferrin and zonulin in R-GI/NR-GI at T0
and T1 (Figure 4a,b), observing slight, non-significantly higher levels of both biomarkers in
R-GI at T0 that increased significantly only in R-GI at T1. For R-ASD/NR-ASD, circulating
levels of lactoferrin and zonulin were similar at T0 (143.6 ± 13.9 vs 149.9 ± 23.2 ng/mL,
p = ns; 17.6± 2.6 vs. 21.5± 3.8 ng/mL, p = ns) and T1 (123.8± 14.2 vs. 206.4± 44.5 ng/mL,
p = ns; 18.1 ± 3.7 vs. 20.8 ± 4.3 ng/mL, p = ns). The expression of miRNAs at T0 and T1
did not differ in R-GI/NR-GI nor in R-ASD/NR-ASD.
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Figure 4. Plasma levels of (a) lactoferrin and (b) zonulin in the autism spectrum disorder population
subdivided into responders (R) and non-responders (NR) as regards gastrointestinal (R-GI/NR-
GI) symptoms.

We found a significant negative correlation between zonulin and miR-197-5p and
miR-21-5p at T0, as well as between lactoferrin and miR-223-5p at T1 (Figure 5).
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Figure 5. Regression analysis between zonulin plasma levels and (a) miR-127-5p and (b) miR-21-5p
and (c) between lactoferrin and miR-223-5p after logarithmic transformation.

5. Discussion

A crosstalk between mRNAs and miRNAs indicates the existence of a network that
plays a critical role in brain development [50], and the putative involvement of these tran-
scripts is reported in the current literature. Dysregulated miRNAs are related to several
neurological and neurodevelopmental disorders [51–54] due to their role in brain function
and, in particular, in neuronal plasticity and development [55]. Studies on ASD pathogene-
sis have shown the possible involvement of miRNAs in ASD development (for a recent
systematic review and meta-analysis, see [56]); these molecules, in fact, have been impli-
cated in different cellular processes, such as development, proliferation, differentiation,
growth control, homeostasis, and apoptosis. Animal models have shown that synaptogene-
sis is influenced by miRNAs controlling the expression of genes coding for proteins such
as neuroligin and neurexin, which are involved in neurotransmitter release or in synaptic
targeting and strongly associated with ASD [57–59].

In humans, miRNA measurements have been obtained from different samples, includ-
ing lymphoblastoid cells [60], the post-mortem cerebral cortex [61], saliva [62], and serum,
and possibly have different signatures on the basis of the samples analyzed.

Among the investigations evaluating miRNA in serum samples, [63] thirteen miRNAs
were differentially expressed between children and adolescents with ASD (n = 55, age range:
6–16 years) and sex and age matched TD controls (n = 55), some being downregulated
(miR-151a-3p, miR-181b-5p, miR-320a, miR-328, miR-433, miR-489, miR-572, and miR-663a)
and others being upregulated (miR-101-3p, miR-106b-5p, miR-130a-3p, miR-195-5p, and
miR-19b-3p). Crucially, a recent study identified miR-140-3p as differentially upregulated
in children with ASD compared not only with TD controls but also with subjects with
Tourette’s syndrome (TS) or with TS plus ASD, suggesting its potential role in supporting
the differential diagnosis of ASD [64]. Yu and colleagues [65] highlighted that miR-483-3p
is upregulated in ASD children, leading to a cascading impact on dendritic and synaptic
development, which, in turn, possibly contributed to the pathogenesis of ASD in terms of
impairments in intellective functioning and behavior. Upregulated miR-15b-5p was found
in both the discovery and replication cohorts of adults with ASD [66]; however, this was
in contrast to a previous investigation reporting downregulated expression of peripheral
miR-15b-5p in ASD subjects [67].

The heterogeneity of miRNA, evaluated after combining the different analysis methods
used, makes the results difficult to compare and still far from having clinical implications
and being able to be used as biomarkers for ASD.

In addition to miRNA profiling, multi “omic” profiling methods have been suggested
for improving diagnosis accuracy, expanding their application in clinical settings [68].

In this study, we evaluated the transcriptional profile of plasma miR-500a-5p, miR-197-
5p, miR-424-5p, and miR-664-5p levels, since these miRNAs have been validated as good
candidates for non-invasive molecular biomarkers in ASD patients. The highest diagnostic
potential was manifested by miR-500a-5p and miR-197-5p, whose combined ROC curve
demonstrated very strong predictive accuracy [17]. When miRNA plasma samples from
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ASD pre-schoolers were compared with TD children, significantly lower expression levels
in ASD subjects were reported [17,63].

The apparent involvement of miR-424-5p in the control of cell division in different
tissues could also play a role in ASD pathogenesis. Recently, Wu et al. [69] hypothesized
that the evolutionary role of some miRNAs in the primate brain is related to the inhibition
of excessive cell proliferation, a phenomenon observed in children with ASD [63,69–72].
Therefore, the downregulation of miR-424-5p in ASD probands may reflect an insufficient
capability to limit early postnatal brain overgrowth.

Additionally, miRNA-500a-5p has been observed to take part in biological processes
in the CNS: its expression has been demonstrated in the brain, in the spinal cord, and, with
a peculiar asymmetric pattern of expression, in embryonic structures associated with limb
development in a murine model during embryogenesis [73].

In addition, since children with ASD frequently have a high prevalence of GI disorders,
we also investigated the expression levels of miRNAs such as miR-21-5p, miR-320-5p, miR-
31-5p, and miR-223-5p, which are known to be involved in gastrointestinal disorders [18].
Although the expression levels of miR-320-5p, miR-31-5p, and miR-223-5p were signifi-
cantly higher in ASD than in TD children, the expression of miR-21-5p was significantly
lower in ASD children than in their TD peers.

Interestingly, it was recently reported that the expression level of miR-21-5p was
upregulated in the brains of ASD patients, suggesting a possible involvement in ASD as
well as in gastrointestinal disorders [74].

We also estimated the miRNA expression trend after supplementation with probiotics
in ASD children but did not find any significant modifications. It is known that host–
microbiota interactions play a vital role in intestinal homeostasis and miRNAs have been
considered key molecular regulators mediating such mutualistic relationships. In contrast
to our results, some investigations reported that administering probiotics can modify
these interactions, influencing the expression of miRNAs [75,76]. We do not have a clear
explanation for these different results. However, we cannot exclude that differences in the
enrolled populations, in their clinical characteristics, or in the dosage and composition of
administered probiotics might have been responsible for the differing results. Interestingly,
we found a significant increase in lactoferrin levels in the GI subgroup after probiotic
supplementation, which could suggest an improvement in the intestinal barrier function
as a consequence of probiotic administration. Lactoferrin has been reported to perform
diverse biological functions, including antibacterial activity, anti-inflammatory activity,
intestinal barrier protection, and immune cell modulation, and is involved in maintaining
intestine mucosal immune homeostasis [77].

The increase in lactoferrin after probiotic supplementation seems to involve the up-
regulation of miRNA 223: indeed, we detected an inverse relationship between lactoferrin
levels and miRNA 223 expression at T1 (Figure 5). Specifically, miRNA 223 acts as pro-
inflammatory marker directly targeting Claudin-8, a critical family member in the main-
tenance of normal intestinal barrier properties [78]. This improvement is also exhibited
by an increase in the production of lactoferrin by virtue of its anti-inflammatory activities.
Lactoferrin is a first-line defense protein for protection against microbial infections and
subsequent development of systemic disease [79,80]. The clinical importance of lactoferrin
to control these processes has been clearly demonstrated through a ground-breaking study
on neonates [81], where dietary supplementation with lactoferrin reduced the occurrence of
late-onset sepsis. Lactoferrin has indeed been proven as a major innate immune responder
that is important in the control of the development of acute septic inflammation [82].

High levels of serum zonulin and impaired function of the intestinal barrier have
been described in children with neuropsychiatric disorders, including ASD [83]; in the
current study, we found an inverse correlation between zonulin and miRna 21 levels at
T0 (Figure 5). The finding of increased zonulin levels in the GI responder group after
the administration of probiotics is counterintuitive and not straightforward to interpret.
We could hypothesize that the improvement of gastrointestinal symptoms observed in



J. Clin. Med. 2023, 12, 7162 10 of 14

the responder group does not directly involve zonulin-mediated mechanisms. Moreover,
two recent investigations have detected a direct correlation between zonulin levels and
the severity of ASD symptoms evaluated through the Childhood Autism Rating Scale
(CARS) [84,85]. In our work, we observed an inverse relationship between the zonulin
levels and miRNA 197, a miRNA previously detected as deregulated in ASD [65,86,87].

However, despite compelling evidence for the involvement of miRNAs in neurode-
velopment, their contribution to the pathogenesis of ASD has, to date, been inadequately
assessed. A few miRNAs have been identified as consistently dysregulated in ASD by
independent studies, specifically, miR-144-3p, miR-23b, miR-106b, 150-5p, 320a, 92a-2-5p,
486-3p, and miR-451a [56]. The latter is the only miRNA that was associated with the
impairment of social interaction in two independent investigations [88,89]. A systematic
characterization of the miRNAs targeting high-confidence ASD genes is likely to provide
new insights into the mechanisms underlying ASDs, which in turn may pave the way for
designing appropriate miRNA therapeutics for ASDs.

6. Limitations

Among the limitations of the current study, we recognize the unequal sample size
between ASD patients and TD controls (31 versus 10). The small sample size of the control
group is due to the limited availability of TD pre-schoolers who have a venipuncture per-
formed for clinical reasons. Therefore, the current investigation, although giving interesting
information, indicates that further studies are needed with larger sample sizes for both the
ASD and TD subjects.

Another possible limitation concerns the measurement of miRNAs in the blood. In-
deed, a recent systematic review and meta-analysis indicated saliva as the most advan-
tageous biofluid in ASD in terms of detected circulating miRNAs [56]. However, serum
miRNAs are known to be remarkably stable, reproducible, and resistant to the actions of
RNase, underlying their potential as non-invasive biomarkers for ASD; additionally, the
same direction of regulation has been observed in the brain [90].

Furthermore, even if the literature on ASD children is still emerging, we measured
lactoferrin and zonulin in the blood as markers of intestinal function. Recent studies
confirmed serum zonulin as a potential marker for intestinal permeability [83,91]. Zonulin
secretion is modulated by various factors, including nutrition and the microbial composition
of the intestinal microbiota; for this reason, the recent literature considers zonulin as a
potential therapeutic target in microbiota–gut–brain axis disorders [92]. In addition, we
studied lactoferrin because of its antibacterial activity, anti-inflammatory activity, intestinal
barrier protection, and immune cell modulation, which makes it a pivotal factor in the
maintenance of immune homeostasis of the intestinal mucosa [77]. Therefore, the evaluation
of the plasma lactoferrin and zonulin levels in groups of ASD children and their correlations
with other clinical and biochemical parameters will provide a further, promising pathway
to take into consideration in the study of the gut–brain axis in ASD.
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