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Abstract: Over the last decades, the field of medicine has witnessed significant progress in arti-
ficial intelligence (AI), the Internet of Medical Things (IoMT), and deep learning (DL) systems.
Otorhinolaryngology, and imaging in its various subspecialties, has not remained untouched by
this transformative trend. As the medical landscape evolves, the integration of these technologies
becomes imperative in augmenting patient care, fostering innovation, and actively participating in the
ever-evolving synergy between computer vision techniques in otorhinolaryngology and AI. To that
end, we conducted a thorough search on MEDLINE for papers published until June 2023, utilizing
the keywords ‘otorhinolaryngology’, ‘imaging’, ‘computer vision’, ‘artificial intelligence’, and ‘deep
learning’, and at the same time conducted manual searching in the references section of the articles
included in our manuscript. Our search culminated in the retrieval of 121 related articles, which
were subsequently subdivided into the following categories: imaging in head and neck, otology, and
rhinology. Our objective is to provide a comprehensive introduction to this burgeoning field, tailored
for both experienced specialists and aspiring residents in the domain of deep learning algorithms in
imaging techniques in otorhinolaryngology.

Keywords: otorhinolaryngology; deep learning; artificial intelligence; convolutional neural network;
computer vision; imaging

1. Introduction

Artificial intelligence (AI) refers to the simulation of human intelligence in computer
systems. It involves the development of algorithms and models that enable machines to
perform tasks that typically require human intelligence, such as problem-solving, learning
from experience, recognizing patterns, and making decisions. AI encompasses various
subfields, including machine learning, natural language processing, computer vision, and
robotics, all aimed at creating systems that can mimic human cognitive functions and
behaviors [1].

These new technologies have been evolving during the last decades in all areas of
medicine, including otorhinolaryngology, but it was the COVID-19 pandemic that led to
the widespread adoption of such novel tools. During that time, AI applications assisted in
increasing consciousness regarding the health and safety of both patients and healthcare
practitioners and in driving behavioral alterations. At the same time, more sophisticated
and accurate algorithms were developed [2].

J. Clin. Med. 2023, 12, 6973. https://doi.org/10.3390/jcm12226973 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12226973
https://doi.org/10.3390/jcm12226973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-0592-6921
https://orcid.org/0000-0002-2287-1275
https://orcid.org/0000-0001-7198-2628
https://orcid.org/0000-0001-8398-556X
https://orcid.org/0009-0002-8988-8124
https://doi.org/10.3390/jcm12226973
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12226973?type=check_update&version=1


J. Clin. Med. 2023, 12, 6973 2 of 16

The next contribution that complex AI systems promise is the IoMT. The recent
COVID-19 pandemic but also the demands of everyday life can provoke inconvenience in
visiting healthcare facilities for minor health issues. An IoMT system, comprising different
interconnected medical devices through the internet, facilitates medical monitoring [3].
Basic IoMT architectures require the acquisition of patient medical information through
smart sensors embedded in wearable devices. These devices are interconnected through a
body sensors network (BSN) or a wireless sensor network (WSN), and the collected data
are transmitted via the internet to the next stage, where analysis and data evaluation take
place through delicate AI algorithms. The final step is medical intervention in case of a
possible serious medical issue [4].

Machine learning techniques consist a large category of AI models. These systems
are granted the ability to learn and enhance themselves through experience, gradually
becoming adept at performing specific tasks, and human involvement remains necessary
during their training phase. A categorization of AI systems is depicted in Figure 1.
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Novel deep learning (DL) systems, a subset of machine learning models, employ intri-
cate algorithms and neural networks with multiple complex layers for training, but often
require a significant direct human input [5,6]. The tasks that these algorithms undertake
include, in general, intricate computations [7], predictions [8], and repetitive analytical
activities [9]. The combination of computer vision with DL applications presents the capa-
bility to manage extensive medical image datasets, enabling precise and effective diagnosis.
Additionally, it has the potential to mitigate the considerable intra- and inter-observer
variability, which can compromise the reliability of clinical assessments [10].

Deep learning systems, as revolutionary tools in the field of medical imaging, have
significantly enhanced diagnostic accuracy and efficiency. These systems employ intricate
neural networks to autonomously analyze complex medical images in the head and neck
area, such as CT scans, MRIs, PET-scans, and U/S images.

This wide area of available techniques offers several possibilities, spanning from
improving the quality of medical images and segmentizing specific structures or lesions
to detecting anomalies. Their ability to detect patterns and abnormalities within images
has led to the early and precise identification of various conditions, including both benign
and malignant diseases. Moreover, deep learning algorithms continually refine their
performance through exposure to vast amounts of medical data, making them increasingly
adept at recognizing subtle variations that might escape human observation. As a result,
these systems hold the potential to revolutionize diagnostics and decision-making in
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otorhinolaryngology, offering ear, nose, and throat (ENT) specialists invaluable support in
delivering timely and accurate diagnoses to improve patient outcomes.

The future significance of AI in the practice of medicine, and specifically in our spe-
cialty, is undisputed, and thus it is deemed, nowadays, necessary for the otolaryngologists
to be familiar with the concepts and the existing techniques in computer vision and DL al-
gorithms. The goal of this narrative review is to serve as an introduction, for the specialists
and residents in ENT medicine, to the domain of these models. To our knowledge, this is
the first paper addressing this issue in its entirety, in terms of a review.

2. Head and Neck
2.1. Head and Neck Imaging

Head and neck surgery relies majorly on imaging, which is often a pre-requisite
before any further management. Different techniques offer significant advantages in
disease diagnosis but also follow-up. Computed tomography (CT) and magnetic resonance
imaging (MRI), during the last decades, have usually been used combinatorically in a large
variety of medical conditions to acquire both bone and soft tissue information.

Lately, deep learning algorithms have emerged, which enable the conversion of one
imaging modality to another. For example, MRI scans, which involve bone techniques, give
us the possibility of a subsequent MRI to CT reconstruction, avoiding exposure to ionizing
energy and aiding non-experts in diagnosis at the same time [11]. A combination of two
generative adversarial networks has also been implemented to generate accurate synthetic
CT images from MRI scans [12]. On the other hand, non-contrast CT scans can be converted
to PET-like images with generative models, eliminating the need for radioactive tracers.
The generated PET images demonstrate comparable accuracy to actual FDG-PET images in
predicting clinical outcomes [13]. It seems rational to hypothesize that such deep learning
pipelines can transform head and neck imaging into a one-step-procedure in the future.

Next, CNNs are believed to exhibit superior performance compared to a traditional
radiomic framework regarding their ability to detect image patterns, often undetectable
by the latter, while systems such as ultra-high-resolution CT with a DL-based image
reconstruction engine offer significant amelioration in subjective and objective image
quality, with a higher sound-to-noise ratio, lower noise, and lower radiation exposure [14].

The DL technique utilized in the analysis of medical images allows the incorporation
of both qualitative and quantitative imaging characteristics to create prediction models
characterized by exceptional diagnostic accuracy. These principles have been applied
generally to HNSCC imaging, but also specifically to specific types of HNSCC. Notably,
in the imaging of oral and oropharyngeal cancer, FDG-PET/CT scans can be processed
by DL systems to predict local treatment outcomes [15], disease-free survival with high
sensitivity and specificity [16], overall survival [17], and they can even assist in differentiat-
ing human papillomavirus positive from human papillomavirus negative oropharyngeal
carcinomas [18].

At the same time, progress in computer vision and deep learning provide potent
techniques for creating supplementary tools capable of automatically screening the oral
cavity. These cost-effective and non-invasive tools can offer real-time insights for health-
care practitioners during patient assessments and can also facilitate self-examinations for
individuals. The automated diagnosis of oral cancer through images is predominantly
focused on the utilization of specialized imaging technologies, namely optical coherence
tomography [19,20], hyperspectral imaging [21], and autofluorescence imaging [22], but
also white-light photographs [23]. Such DL techniques can come in the form of mHealth
applications, assisting in oral and oropharyngeal lesion detection in both hospitals and
resource-limited areas, and enabling telediagnosis [24]. Finally, systems offering a real-
time estimation of cancer risk and biopsy assistance maps on the oral mucosa are very
promising [25].

Furthermore, diseases of the nasopharynx have been an area of focus during the last
years for DL system developers. From MRI-based applications focusing on the differ-
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ential diagnosis between benign and malignant nasopharyngeal diseases [26,27] to the
automatic detection of pathological lymph nodes and assessment of the peritumoral area
in nasopharyngeal carcinoma, DL algorithms can significantly assist in disease prognosis
and treatment planning [28]. Interestingly, peritumoral information, especially the largest
areas of tumor invasion, has been shown to provide valuable insights for distant metastasis
prediction in individuals with nasopharyngeal carcinoma [29].

Imaging of the salivary glands constitutes another significant challenge for radiolo-
gists and otolaryngologists, who have many different imaging modalities in their quiver.
Specialized DL algorithms have been developed to assist in differential diagnosis between
benign and malignant parotid gland tumors in contrast-enhanced CT images [30], and
ultrasonography [31]. MRI remains the gold standard in the diagnosis of salivary gland
diseases, where DL models intend to automatically classify salivary gland tumors with
very high accuracy [32,33].

Relative to thyroid disease diagnosis, ultrasound (US) is widely acknowledged as
the primary diagnostic technique for examining thyroid nodules and assessing papillary
thyroid carcinomas (PTCs) before surgery [34]. DL networks with excellent diagnostic
efficiency have been deployed to distinguish between benign nodules and thyroid carci-
noma [35], improve the detection of follicular carcinoma, differentiate between atypical and
typical medullary carcinoma [36], and assess for gross extrathyroidal extension in thyroid
cancer [37]. AI systems can be very useful in eliminating the operator dependence of US
and ameliorating diagnosis precision, especially in inexperienced radiologists.

Nevertheless, plenty of other DL techniques are associated with thyroid gland eval-
uation. Thus, apart from thyroid gland contouring in non-contrast-enhanced CT im-
ages [38], special applications used intraoperatively to assist surgeons in recurrent laryngeal
nerve [39] and parathyroid gland identification have been designed. Such algorithms have
the potential to improve surgical workflows in the intricate environment of open surgery.

The head and neck region is among the most common locations for cancer, with a
substantial occurrence of lymph node involvement and metastases observed in both nearby
and distant regions. The identification of distant metastases is linked to an unfavorable
prognosis, often resulting in a median survival period of around 10 months [40]. The
role of imaging in metastasis diagnosis is uncontroversial and novel convolutional neural
networks have been developed in this direction. For example, extended 2D-CNN and
3D-CNN models have been deployed to perform time-to-event analysis for the binary
classification of distant metastasis in head and neck cancer patients. These models result
in the generation of distant metastasis-free probability curves and stratify patients into
high- and low-risk groups [41]. CNN are generally able to detect image patterns that can
be untraceable with traditional methods. Thus, it has been shown that CNN can be trained
to forecast the treatment results for individuals with HNSCC, relying exclusively on the
information from CT scans conducted prior to treatment [42].

CNN assessing pre-treatment MRI scans to predict the possibility of distant metastases
in individuals with nasopharyngeal carcinoma can also be useful, since the occurrence of
a metastasis is the main reason for radiotherapy failure in this patient group. Predicting
the high risk for distant metastasis in a patient can lead to a more aggressive treatment
approach [29]. Moreover, pre-therapy MRI scans have been used in patients with advanced
(T3N1M0) nasopharyngeal carcinoma to guide the clinicians in deciding between induc-
tion chemotherapy plus concurrent chemoradiotherapy or concurrent chemoradiotherapy
alone [43].

DL models diagnosing lymph node involvement can boost clinical decision-making in
the future. A relative model has been developed that detects pathological lymph nodes in
individuals with oral cancer [44], while another one predicts lymph node involvement in
patients with thyroid cancer through the interpretation of their multiphase dual-energy
spectral CT images [45].

The utilization of deep learning techniques allows for the complete automation of
image analysis providing the user with multiple possibilities (Table 1). Nevertheless, it



J. Clin. Med. 2023, 12, 6973 5 of 16

demands a substantial volume of accurately labeled images. Additionally, prediction-
making necessitates detailed patient endpoint data, a process that is both expensive and
time-intensive. Developing more effective models with constrained datasets stands as a
critical challenge in the field of AI today.

Table 1. The contributions of deep learning systems in head and neck imaging and radiotherapy.

Deep Learning Contributions in Head and Neck

Imaging Generation of an imaging modality from another

Prediction making based on imaging

Automated diagnosis of malignant and benign diseases

Automated diagnosis of pathological lymph nodes

Automated diagnosis of metastases

Analysis of specific tumor characteristics

Contouring of significant structures

Cancer risk assessment of a lesion

Biopsy assistance mapping

Intraoperative surgeon assistance

Radiotherapy Auto-segmentation of structures based on imaging

Automation of the procedure

Automated clinical target volume contouring

Endoscopy and laryngoscopy Image quality improvement

Segmentation of images

Optical detection

Pathological pattern detection

Endoscopic image classification

Lesion histology (benign/malignant) prediction

Self-screening tumor recurrence detection

Intra-operative endoscopic lesion detection

Anatomical structure and lesion automatic segmentation

Automatic assessment of aspiration and dysphagia

Evaluation of laryngeal mobility

2.2. Head and Neck Radiotherapy

Radiotherapy (RT) stands as a fundamental pillar in head and neck cancer (HNC) treat-
ment, whether administered independently, post-surgery, or concurrently with chemother-
apy. Defining organs at risk (OARs) and clinical target volumes represents a crucial phase
in the treatment protocol. This process typically involves manual work, is time-consuming,
and necessitates substantial training. Ideally, these tasks would be substituted by auto-
mated procedures requiring minimal clinician involvement, and AI appears competent to
undertake this role.

A major challenge and the primary drawback of radiation therapy is that, apart
from the cancerous mass, it unavoidably exposes nearby healthy tissues, known as OARs,
to some level of radiation. This can potentially result in various adverse effects and
toxicities, since contouring organs like the parotid and the submandibular gland and
excluding them from radiation intake can be quite arduous [46]. Additionally, DL-based
automated segmentation of the masticatory area has successfully reduced the incidence of
RT-associated trismus [47].
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Several applications aiming to realize normal tissue structure auto-segmentation from
CT images [48,49] exist. These can include three-dimensional segmentation models and
convolutional neural networks for final OAR identification [50]. DL pipelines focusing
on tumor segmentation in specific organs, such as the oropharynx [51], and the salivary
glands promise to gradually automatize the RT procedure, and at the same time reduce
post-segmentation editing [52].

On the other hand, 3D CNNs aim to consistently and precisely generate clinical
target volumes contouring for the different lymph node levels in HNSCC RT [53,54].
Such applications show quicker contouring adjustments in comparison to automated
delineations, closely aligning with corrected delineations for specific levels, and reducing
interobserver variability.

The possibilities that DL systems offer are countless, with distant metastasis and over-
all survival prediction in HNSCC using PET-only models without gross tumor volume seg-
mentation [55], or automatically delineating the gross tumor volume in the FDG-PET/CT
images of HNSCC patients [56]. Overall, DL systems present the potential to offer person-
alized RT guidance in HNSCC patients, with limited contribution from medical experts.

2.3. Endoscopy and Laryngoscopy

Machine learning has been recently experimentally applied to diagnostic ENT en-
doscopy to leverage meaningful information from digital images, videos, and other visual
inputs and take actions or make recommendations based on that information. Mediated
from the early experience acquired in the more standardized field of gastrointestinal en-
doscopy, AI-based video analysis, or videomics [57], has been variously applied to improve
automatic image quality control, classification, optical detection, and the segmentation of
images. After numerous proof-of-concept studies, videomics is rapidly moving to viable
clinical approaches for detecting pathological patterns in real-time assistance during the
endoscopic evaluation of the upper aerodigestive ways.

A deep learning model consists of complex multilayer artificial neural networks,
among which convoluted neural networks are the most popular in the image analysis
field. The CNN does not require instructions on which features describe an object and
can autonomously learn how to identify it by observing a sufficient number of examples.
Various available AI models exist and have been applied [58], although a specific com-
parison between the various algorithm architectures for the task is still lacking. After this
preliminary conceptualization phase, the model undergoes a supervised learning session,
in which expert otolaryngologists provide the AI human annotated images to transfer
their ability in recognizing the lesions. The higher the quality and quantity of items in
the validation set, the more accurate the model will be. After the training validation set,
the performance of the system is measured on the testing set by comparing the model
prediction with the original human annotations. The performance will be evaluated using
diagnostic metrics relative to the task analyzed.

AI can be used to classify endoscopic images. In that case, the diagnostic metrics
of interest are accuracy (percentage of correctly classified images), precision (positive
predictive value), and sensitivity (percentage of correctly identified images compared to
all the ones that should have been recognized); F1 score (harmonic mean of precision and
sensitivity); and the receiver operating characteristic curve (graphically identifying the true
positive rate against the false positive one) [59]. In this framework, it is possible to apply AI
to classify videos based on their image quality, selecting only the most informative frames
for further analysis [60,61]. Another classification task is the optical biopsy [62], predicting
the histology of a lesion based on its appearance. At the current state, AI is more accurate in
binary classification, e.g., premalignant/malignant [63], whereas it loses diagnostic power
in multiclass operation [64]. By expanding and diversifying the validation dataset, it is
possible to achieve high accuracy in simultaneously identifying different conditions such
as glottic carcinoma, leucoplakia, nodules, and vocal cord polyps [65], outperforming other
approaches according to AUC and F1 otolaryngologist trainees [66].
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Another task the AI is devised for is the automatic detection of lesions during en-
doscopic evaluation. The main diagnostic metrics for this function are the F1 score, the
intersection over union (how well the selected area overlaps with the original annotated
area), and the mean average precision (precision and sensitivity according to the chosen
IoU). Using narrow band images, AI can be trained to localize mucosal cancerous lesions
in the pharynx and larynx during endoscopy [67–69]. This concept has been recently
applied to automatically detect laryngeal cancer in real time video-laryngoscopy using the
open-source YOLO CNN, achieving 67% precision, 62% sensitivity, and 0.63 mean average
precision at 0.5 IoU [70], which could be implemented in a self-screening approach for
early tumor recurrence detection [71]. Based on simple diagnostic endoscopy, the same ap-
proach can be applied intraoperatively to detect pathological tissues, such as in endoscopic
parathyroid surgery [72,73].

Finally, CNN has been used to automatically delineate the boundaries of anatomi-
cal structure and lesions in the upper aerodigestive ways. Segmentation performance is
evaluated with IoU and the dice similarity coefficient (similarity between the predicted seg-
mentation mask and the ground truth mask). The rationale of segmentation in videomics
is to improve lesion follow-up, the definition of tumor resection margins in the operation
room, and the area of interest for general laryngology. The automated segmentation of
cancer tissue has been successfully attempted in the nasopharynx (DSC 0.78) [74], orophar-
ynx (DSC 0.76) [75], and laryngeal lesion (DSC 0.814) [76]. Aside from cancer pathology,
segmentation may be used to select the region of interest for automated functional laryn-
geal analysis, such us the identification of the glottis angle [77,78], glottal midline [79],
vocal cord paralysis [80], postintubation granuloma [81], vocal cord dynamics [82,83], or
in the endoscopic evaluation of aspiration and penetration risk in dysphagia (FESS-CAD,
DSC 0.92.5) [84].

Building a sufficiently large and heterogeneous training image dataset is a necessary
task required to improve the deep learning-based image classifier. The main obstacles re-
main the lack of standardization of endoscopic techniques and study structures, hampering
a comparison between the different experiences, and the complex anatomy of the upper
aerodigestive ways, making image acquisition and standardization difficult. Although
deep learning models can be very good at analyzing images belonging to the same group of
the training cohort, they may lack accuracy when tested on different populations. To effec-
tively apply videomics in real world situations, future research should focus on validating
the trained models with an external dataset, acquired in different institutions and thus
being diverse in terms of acquisition technique and population demographics. Although
AI-aided endoscopy is still in a preclinical state, the results are promising and may soon
efficiently assist the otolaryngologist in many tasks, such as the quality assessment of
endoscopic examination, detection of mucosal lesions during endoscopy, optical biopsy of
selected lesions, segmentation of cancer margins, and the assessment of laryngeal mobility.

3. Otology
3.1. Computer Vision in Otoscopy

The otoscopic ear inspection remains the first and most important step in the diag-
nosis of ear disease, especially otitis media and its variants. However, otoscopy requires
extensive training, and there are still high rates of errors even with experienced otolaryngol-
ogists [85]. The growing use of video-otoscopy provides reliable data for developing deep
learning models for automated image recognition, potentially assisting the less experienced
physician in the identification and classification of pathological findings [86].

The most common machine learning approach used in automatized video-otoscopy
is the convolutional neural network, a type of deep learning model which undergoes a
supervised learning session using human-labeled data to master in order to recognize
specific pathological patterns in a dataset of retrospectively collected images. CNN can be
used for image classification, detection, and segmentation. As in videomics, one application
is the optimization of the diagnostic image, such as the selection of the best quality image
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frames in an otoscopic video recording in order to create an informative composite image,
stitching together only the best quality frames and excluding the less informative ones [87].
Moreover, CNN can provide an automatized segmentation of the eardrum from otoscopic
images, orienting the clinician and future CNN to special areas of interest for the diagno-
sis [88]. Automatic image preprocessing, reducing imperfections such as motion artifacts
or earwax [89], and selecting the proper color wavelength [90] may further enhance the
informativeness of the pictures. Once the images have been properly selected, the final step
of building an AI image classifier requires training on a large, annotated image dataset and
validation of the results. The accuracy of the system is usually determined by a comparison
with the diagnosis of a panel of experienced physicians or otolaryngologists. AI image
classifiers have been mostly studied for the automatic diagnosis of otitis media. Many
different available CNN models have been variously trained and compared (ResNet-50,
Inception-V3, Inception-Resnet-V2, MobileNetV2) to binarily differentiate between normal
and abnormal images [91] or to attempt multiclass classification [92–95], achieving on aver-
age a 90.47% accuracy in differentiating between normal and abnormal images and 97.6%
between normal, otitis media acuta, and otitis media with effusion [96]. AI algorithms
experimentally outperformed human assessors in classifying otoscopy images, achieving
93.4% versus 73.2% accuracy [93,94,97,98]. The same approach has been investigated for
other otologic conditions, such as eardrum perforation [99], attic atelectasis [100], and
otomycosis [101]. Comparing different studies and approaches is, however, difficult for
the heterogeneity of the collected dataset, making the standardization of otoscopic image
acquisition and annotation an important step for future developments [102].

It is also possible to apply deep learning models, which cluster data together based on
similarity to provide predictions and reveal common themes, to make clinical predictions
based on the collected images. For example, the optical recognition of pathological tym-
panic membranes can be paired with hearing loss predictions. In a preliminary study, a
deep learning algorithm created to analyze video pneumatic otoscopy images accurately
detected the presence of conductive hearing losses caused by middle ear effusion, ossicular
fixation, otosclerosis, and adhesive otitis media, outperforming experienced otologists [103].
Similarly, CNN proved better than clinicians and logistic regression models in predicting
a conductive hearing loss greater than 10 dB, focusing on the retraction pockets in otitis
media images [104].

Although experimentally AI image classifiers can achieve accuracies comparable to
those of experienced otologists, separately trained CNN still fails to maintain the same high
internal performance when applied to a different cohort from the one used for training,
although organized in the same way, as demonstrated in a multicenter study [105]. The
accuracy of CNN image classifiers heavily relies on the quality and quantity of the image
dataset used for training. Not having access to big quality data remains a persistent
hindrance in many pilot studies; consequently, internal solutions such as data augmentation
with rotation and cropping have been generally applied, with still-debatable consequences.
A possible solution to the problem is represented by transfer learning procedures, in which
knowledge learned from a task is extracted and re-used to boost performance in a related
task. A CNN pretrained on another huge image database performs better in a small
number of subjects as compared to one starting from scratch [106]. Potentially, creating
a shared virtual imaging database could offer a better training dataset for future deep
learning models, enhancing accuracy even in real-world applications. Although the bulk
of the available literature is still at an infancy level in terms of practical implementation,
the experimental outcomes have overall diagnostic accuracies not inferior to those of an
experienced clinician.

3.2. Imaging in Otology

Deep learning is poised to integrate and assist the clinician in complex diagnosis
by identifying patterns often imperceptible to humans, providing innovative health care
solutions, especially in the field of telemedicine and early diagnosis. Artificial intelligence
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applications in otology are rapidly moving from simple proofs of concept to preliminary
clinical applications in the field of applied radiomics.

A promising application of artificial intelligence in otology is the automatic segmenta-
tion and analysis of specific radiological images of the temporal bone. As in other cases
of radiomics, the current approach consists of training the AI to automatically identify
regions of interest based on sets of training images previously annotated by experienced
radiologists. In this case, the measure of interest is the dice score, which compares the
manual segmentation from human experts with the AI ones.

Highly accurate automatic segmentation of radiological images has been demon-
strated in CT scans [107], MRI scans [108] and cone-beam scans [109,110]. After selecting
the region of interest, deep learning models can be specifically trained to classify specific
diseases, such as chronic otitis media [111], cholesteatoma [112,113], otosclerosis [114,115],
mastoiditis [116,117], and Meniere disease [118,119], achieving detection results compara-
ble to subspeciality-trained radiologists. AI-assisted radiomics can be extremely useful in
the follow-up of specific diseases, such as vestibular schwannoma, whose surveillance is
nowadays performed through analogical segmentation and an analysis of serial MRI scans
to detect tumor enlargement. A deep learning approach can be applied for tumor detec-
tion and segmentation in treatment-naïve patients [120], both after radiosurgery [121], in
evaluating residual disease [122], and in predicting tumor enlargement based on radiomics
parameters during follow-up [123].

Although highly successful in experimental settings, all these studies are currently
performed only on a small number of patients for AI standards, making real-world clinical
applications challenging. There is a growing need for image collection standardization
and a multicenter approach to pull more different data together to better approximate
real-life situations.

Although promising and quickly expanding (Table 2), the use of AI in otology is still
associated with difficult translation in clinical practice. As soon as the trained AI is applied
to a different group of patients or data as compared with the experimental setting, the
prediction accuracy decreases. The greatest limitation remains that AI relies on training
using a massive dataset. To build a sufficiently large and reliable database to encompass a
real-world clinical situation is challenging and time consuming in a still unstandardized
clinical practice. Another obstacle is the difficulty encountered in interpreting how the AI
draws its conclusions, as it is impossible to evaluate which features are used by the AI to
make its predictions. The learning mechanisms remain mostly unclear.

Table 2. The contributions of deep learning techniques in otology.

Deep Learning Contributions in Otology

Otoscopy Automatic detection and categorization of ear lesions

Automatic segmentation of anatomical structures and lesions

Optimization of the diagnostic images

Lesion-based predictions

Imaging Complex pattern identification

Tele-diagnosis

Automatic analysis and segmentation of images

Automatic recognition of region of interest

Automatic diagnosis

Imaging follow-up of complex diseases

4. Imaging in Rhinology

The field of rhinology, as a subspecialty, has witnessed numerous technological ad-
vancements, from endoscopic diagnosis and the treatment of paranasal diseases some
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decades ago to innovations like image-guided surgical navigation more recently. In an
effort to provide personalized treatment and ameliorate surgical practice and accuracy, it is
no wonder that a growing amount of research has focused on computer vision in rhinologic
diseases (Table 3).

Table 3. The contributions of deep learning systems in rhinology.

Deep Learning Contributions in Rhinology

Identification and categorization of paranasal sinuses

Diagnosis of benign/malignant lesions

Prediction of disease recurrence

Detection of pathology related to chronic sinusitis

Imaging in rhinology concentrates a plethora of DL systems aiming to augment
diagnostic accuracy in particular domains of plain radiography, CT, and MRI imaging. As
a general rule, the dependability of radiography in assessing sinusitis is debatable, since
the documented sensitivity is relatively low for all sinuses, except for maxillary sinusitis.
An algorithm capable of identifying and categorizing individual paranasal sinuses using
both Waters’ and Caldwell’s views, all without requiring manual cropping, is available
and could be useful, especially in areas and health facilities with limited resources [124].
In another study, panoramic imaging was applied to help dentists diagnose maxillary
sinusitis [125]. Additionally, a generative adversarial network system offers amelioration
of the diagnostic efficacy of sinus radiography since it requires considerably less real
healthcare datasets [126].

Computed tomography imaging, which constitutes the gold standard in the imaging
of the paranasal sinuses, presents a variety of challenges that DL algorithms are called
upon to face. Firstly, preoperative sinus CT scans have been utilized to train a system
to differentiate between non-eosinophilic and eosinophilic chronic rhinosinusitis (CRS),
relying solely on CT imaging [127]. Second, CRS presents a tendency to recur and poor
prognosis even following surgery. DL techniques aim to confront this problem by predicting,
pre-operatively, the risk of disease recurrence [128]. Such a solution could augment patient-
oriented therapy modalities.

Chronic rhinosinusitis (CRS) constitutes a diverse range of conditions defined by
chronic inflammation of the paranasal sinuses. Although clinical examination has a key
role in the diagnosis of the disease, CT is of vital importance in appraising sinusitis. Thus,
the need for objective, enhanced, and standardized evaluation has led to the development
of systems that realize the prompt evaluation of the paranasal sinuses’ opacification on CT
images in patients with chronic rhinosinusitis [129,130]. The efficacy of these algorithms
is strongly correlated to the Lund–Mackay score since they are, as the Lund–Mackay
score, moderately correlated to the Lund–Kennedy endoscopy score [130]. Similarly, a
CNN system can assess occlusion of the osteomeatal complex in individuals with chronic
rhinosinusitis, relying on coronal CT images [131].

Applications evolving MRI techniques have also been developed, with the example of
a three-dimensional CNN which can differentiate between benign and malignant inverted
papilloma [132].

5. Conclusions

DL systems utilize complex algorithms and neural networks featuring numerous
intricate layers in order to make decisions and solve advanced problems. Their application
in medicine, and specifically in otorhinolaryngology, has increased rapidly, with a plethora
of different and usually overlapping algorithms appearing in each and every subspecialty
of ENT surgery. Due to their already wide utilization in everyday clinical practice, which
is expected to rise expeditiously during the coming years, the modern otolaryngologist is
obliged to be aware of and familiar with their multiple utilities.
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