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Abstract: Various immune mediators identified to date are associated with the development of
advanced forms of diabetic retinopathy (DR), such as proliferative DR and diabetic macular edema,
although the exact pathophysiological mechanisms of early stages of DR such as simple DR remain
unclear. We determined the immune mediator profile in the aqueous humor of eyes with simple DR.
Fifteen eyes of fifteen patients with simple DR were studied. Twenty-two eyes of twenty-two patients
with cataracts and no DR served as controls. Undiluted aqueous humor samples were collected, and
a cytometric bead array was used to determine the aqueous humor concentrations of 32 immune
mediators comprising 13 interleukins (IL), interferon-γ, interferon-γ-inducible protein-10 (IP-10),
monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, regulated
on activation, normal T cell expressed and secreted (RANTES), monokine induced by interferon-γ,
basic fibroblast growth factor (bFGF), Fas ligand, granzyme A, granzyme B, interferon-inducible
T-cell alpha chemoattractant (ITAC), fractalkine, granulocyte macrophage colony-stimulating factor,
granulocyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), angio-
genin, tumor necrosis factor-α, and CD40 ligand. Among the 32 immune mediators, 10 immune
mediators, including bFGF, CD40 ligand, fractalkine, G-CSF, IL-6, IL-8, MIP-α, MIP-1β, and VEGF,
showed significantly higher aqueous humor concentrations and the Fas ligand had significantly
lower concentration (p < 0.05) in eyes with simple DR compared with control eyes. Of these 10 cy-
tokines with significant concentration alteration, protein–protein interaction analysis revealed that
8 established an intricate interaction network. Various immune mediators may contribute to the
pathogenesis of simple DR. Attention should be given to the concentrations of immune mediators
in ocular fluids even in simple DR. Large-scale studies are warranted to assess whether altered
aqueous humor concentrations of these 10 immune mediators are associated with an increased risk of
progression to advanced stages of DR.

Keywords: diabetic retinopathy; simple diabetic retinopathy; immune mediator; cytokine; chemokine;
growth factor

1. Introduction

Diabetic retinopathy (DR) is the major cause of blindness in the older population.
Currently, 284.6 million people worldwide are estimated to have diabetes mellitus; approxi-
mately one third of those with diabetes are at risk of developing DR to some extent, and
approximately one third of those with DR may advance to the vision-threatening stage [1].
Two major advanced forms of DR, diabetic macular edema and proliferative DR (PDR),
develop from pre-retinal neovascularization (abnormal growth of new blood vessels) that
causes the majority of diabetes-related severe visual impairment. Microaneurysms, retinal
hemorrhages, and hard or soft exudates occur early in DR development, and characterize
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simple DR or non-proliferative DR. The progression of simple DR to subsequent stages
like pre-PDR or macular edema varies among individuals. Several studies have estimated
that the cumulative rate of progression from non-proliferative stages to vision-threatening
stages ranges between 14 and 16% [2,3]. While the etiology remains poorly known, DR is
clearly a complex multifactorial disease caused by a combination of genetic, environmental,
and immunological factors [4–8]. Multiple immune mediators have been identified in eyes
with PDR and diabetic macular edema, suggesting a pathogenetic role of the mediators.

However, there is no report to date which describes immune mediator concentrations
in the ocular fluids of eyes with simple DR. Recently, two-color flow cytometry has been
used for the simultaneous detection of many immune mediators using a very small volume
of a sample such as aqueous humor [9]. The predominant advantage of cytometric bead
array (CBA) technology lies in its ability to measure multiple parameters concurrently
using a relatively small sample volume such as aqueous humor, making it faster and
more cost-effective than ELISA technology. Previous studies on cytokines or chemokines
associated with PDR or diabetic macular edema quantified a small number of cytokines
or chemokines using the Enzyme-linked Immunosorbent Assay (ELISA) system [10,11].
Because single-assay measurements of immune mediators provide limited information,
multiple immune mediators measured simultaneously must be analyzed to obtain a more
comprehensive picture of DR.

The purpose of this study was to identify and quantify a wide spectrum of immune me-
diators including cytokines, chemokines, growth factors, and apoptosis-related molecules
in aqueous humor samples collected from eyes with simple DR. Understanding how im-
mune mediators are associated in the early stages of simple DR may shed light on the
pathophysiology of DR progression and help to develop new biomarkers for early diagnosis.

2. Materials and Methods
2.1. Subjects

In this retrospective study, 15 patients (15 eyes) with simple DR were identified from
the medical records between September 2011 and May 2022, and 22 patients (22 eyes) with
cataract and no diabetic mellitus (DM) were included as disease controls. The 15 patients
(11 males and 4 females) diagnosed with simple DR according to Davis classification were
65.8 ± 11.6 years of age; all had type 2 diabetes mellites (T2DM) with mean hemoglobin
A1C (HbA1C) of 7.5 ± 1.4 and mean duration of diabetes of 12.1 ± 7.5 years (Table 1). The
22 cataract patients (9 males and 13 females) with no DR based on Davis classification
were aged 72.1 ± 8.8 years. All patients were Japanese adults. The absence of diabetic
macular edema was defined as no retinal thickening at the macula based on clinical and
OCT examinations. This study was reviewed and approved by the institutional review
board of Tokyo Medical University. Informed consent was obtained from each participant,
who were provided with explanations regarding the purpose and methods of the study for
effective disease control.

Table 1. Demographic and clinical data of patients with simple diabetic retinopathy (DR), and disease
controls.

Subject Control

Number of eyes 15 22
Number of cases 15 22

Sex Male 11 9
Female 4 13

Age (years) 65.8 ± 11.6 72.1 ± 8.8
HbA1c (%) 7.5 ± 1.42 —

2.2. Measurements

Undiluted aqueous humor samples (approximately 100 µL) were collected via an
anterior chamber tap with a 25 needle from patients with simple DR during outpatient con-
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sultation, and from cataract patients with no DM before cataract surgery. All samples were
stored at −80 ◦C until use. The CBA Flex immunoassay kit (BD Biosciences, San Jose, CA,
USA) was used to determine the aqueous humor concentrations of 32 immune mediators
comprising interleukins (IL)-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12p70,
IL-17A, and IL-21, interferon (IFN)-γ, interferon-γ-inducible protein (IP)-10, monocyte
chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, MIP-1β,
regulated on activation, normal T-cell expressed and secreted (RANTES), monokine in-
duced by interferon-γ (Mig), basic fibroblast growth factor (bFGF), Fas ligand, granzyme
A, granzyme B, interferon-inducible T-cell alpha chemoattractant (ITAC), fractalkine, gran-
ulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating
factor (G-CSF), vascular endothelial growth factor (VEGF), angiogenin, tumor necrosis
factor (TNF)-α, and CD40 ligand. This method allows the simultaneous detection of many
analytes with a very small volume of sample (100 µL), as described previously [12].

2.3. Analysis for the Interaction of Altered Immune Mediators

To elucidate the interaction network of immune mediators with significantly altered ex-
pression levels in simple DR, we utilized Metascape [13] (https://metascape.org/, accessed
on 5 November 2023). The STRING database ver.12 [14] (https://string-db.org/, accessed
on 5 November 2023) was used to visualize the protein–protein interactions among the
immune modulators with significantly altered aqueous humor concentrations in simple
DR compared to disease controls.

2.4. Statistical Analysis

Statistical analyses were performed using JMP version 10 (SAS, Cary, NC, USA) and
the graphs were generated using GraphPad Prism 9 (ver. 9.5.1). Two-group comparisons of
categorical variables were performed using Fisher’s exact test. Continuous variables were
compared using Student’s t-test or a Mann–Whitney U test depending on the normality of
the data distribution. Specifically, we employed the non-parametric Mann–Whitney U test
to analyze immune mediator concentrations since the data were not normally distributed.
Data in the text and table are presented as mean ± standard deviation or median with
interquartile range in parenthesis. Immune mediator concentrations below the lowest limit
of detection were treated as 0 pg/mL in statistical analyses. The significance level for all
tests was 5%.

3. Results

The demographic data of the simple DR group and control group are shown in
Table 1. Table 2 presents the immune mediator concentrations in the simple DR group and
control group. Aqueous humor concentrations [mean (interquartile range)] of nine immune
mediators comprising bFGF, CD40 ligand, fractalkine, G-CSF, IL-6, IL-8, MIP-1α, MIP-1β,
and VEGF were significantly higher in simple DR than in controls (Table 2). On the other
hand, Fas ligand concentration in aqueous humor was significantly lower in simple DR
than in controls. The aqueous humor concentrations of some immune mediators including
Fas ligand and IL-9 in all patients with simple DR, and CD40 ligand, G-CSF, IL-1α, IL-5,
IL-7, IL-9, TNF-α, and ITAC in all controls, were below the lowest limits of detection in
all samples.

https://metascape.org/
https://string-db.org/
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Table 2. Immune mediator levels in aqueous humor of patients with simple diabetic retinopathy.

Simple DR Controls
(n = 15) (n = 22)

Name Median Range Median Range p Values

Angiogenin (pg/mL) 4468.9 1495–58426 5257 943–9489 0.614
bFGF (pg/mL) 9 0–301 0 0–38 0.026
CD40 ligand (pg/mL) 0 0–3.47 0 0–0 0.042
Fas ligand (pg/mL) 0 0–0 0 0–13.5 0.036
Fractalkine (pg/mL) 16.5 0–68 0 0–65 0.007
G-CSF (pg/mL) 0 0–38 0 0–0 0.042
GM-CSF (pg/mL) 0 0–4.86 0 0–4.8 0.819
Granzyme A (pg/mL) 0 0–6.51 0 0–13.5 0.262
Granzyme B (pg/mL) 0 0–133.44 0 0–13.5 0.725
IFN-γ (pg/mL) 0.5 0–3.93 0 0–6.64 0.939
IL-1α (pg/mL) 0 0–7.62 0 0–0 0.748
IL-2 (pg/mL) 0 0–76.6 0 0–17.8 0.593
IL-3 (pg/mL) 0 0–8.04 0 0–4.8 0.531
IL-4 (pg/mL) 0 0–9.23 0 0–2 0.915
IL-5 (pg/mL) 0 0–3.43 0 0–0 0.092
IL-6 (pg/mL) 15.9 0–11230 4.3 0–15.03 <0.001
IL-7 (pg/mL) 0 0–112 0 0–0 0.181
IL-8 (pg/mL) 13.47 0–153 3 0–15.99 0.01
IL-9 (pg/mL) 0 0–0 0 0–0 1
IL-10 (pg/mL) 0 0–18.6 0 0–3.7 0.135
IL-12p70 (pg/mL) 0 0–96.8 0 0–13.5 0.075
IL-17A (pg/mL) 0 0–26.2 0 0–4.68 0.065
IL-21 (pg/mL) 0 0–181 0 0–17 0.829
IP-10 (pg/mL) 89.2 0–873 84.5 0–417 0.843
MCP-1 (pg/mL) 494.5 77–11859 327.8 72–780 0.152
Mig (pg/mL) 32 8–187 18.4 0–174 0.237
MIP-1α (pg/mL) 10.7 0–32.4 0 0–29 0.039
MIP-1β (pg/mL) 24.7 12.3–94.9 10.8 0–42 0.005
RANTES (pg/mL) 0.5 0–31.5 0 0–3.8 0.225
TNF-α (pg/mL) 0 0–0.84 0 0–0 0.748
VEGF (pg/mL) 34 0–159 11.9 0–69.3 0.033
ITAC (pg/mL) 0 0–17 0 0–0 0.511

Disease controls were patients with cataracts and no diabetic retinopathy. Immune mediator levels are expressed
as median with interquartile range in parenthesis. bFGF, basic fibroblast growth factor; G-CSF, granulocyte-colony
stimulating factor; GM-CSF, granulocyte macrophage-colony stimulating factor; IFN, interferon; IL, interleukin;
IP-10, interferon gamma-induced protein 10 kDa; ITAC, interferon-inducible T-cell alpha chemoattractant; MCP,
monocyte chemoattractant protein; Mig, monokine induced by interferon γ; MIP, macrophage inflammatory
protein; RANTES, regulated upon activation, normal T expressed, and presumably secreted; TNF, tumor necrosis
factor; VEGF, vascular endothelial growth factor.

Notably, the aqueous humor concentration of IL-8 in simple DR was significantly
different compared to controls [13.47 (0–153) pg/mL versus 3 (0–15.99) pg/mL, p = 0.01]
in this study. This aligns with previous reports, indicating a significant upregulation
of aqueous humor IL-8 concentration in diabetic macular edema and PDR relative to
controls [15,16]. Therefore, IL-8 upregulation may play a key role even in the very early
stages of diabetic retinopathy.

In addition, we investigated the relationship among immune mediators with altered
aqueous humor concentrations in simple DR. Among the 10 cytokines with significantly
altered aqueous humor concentrations, a protein–protein interaction analysis using the
STRING database revealed that eight were closely interconnected, forming a complex
interaction network (Figure 1). These results suggest that diabetic retinopathy progresses
via the interaction of multiple pathways, rather than through a single altered pathway.
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Figure 1. The graph generated from the STRING database represents protein–protein interactions
among immune modulators that exhibited significant alterations in aqueous humor concentration
in simple diabetic retinopathy. Each node, labeled by the cytokine name, is linked to an associated
cytokine through a connection termed an “edge.” Next to each node, a bar graph shows the aqueous
humor concentration from this study. Among the 10 immune mediators, eight cytokines established
edges with multiple cytokines. Conversely, Fas ligand and fractalkine showed no interactions
with others.

4. Discussion

The etiology of DR remains largely unknown. Exposure to hyperglycemia over an
extended period is considered to promote changes that cause vascular endothelial impair-
ment. The early histologic features of DR are capillary basement membrane thickening,
leukostasis, a loss of endothelial cells, and a loss of pericytes [17,18]. Sustained capillary oc-
clusion causes hypoxia that is further accelerated by the release of VEGF and other immune
mediators [19,20], leading to the development of intraretinal microvascular abnormalities,
providing alternative collateral routes for blood to travel from the arteries to the veins. In
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up to 20% of patients with diabetes, ischemia of the inner retina secondary to the closure of
parts of the retinal capillary bed leads to neovascularization on the surface of the retina
and optic disc, signaling the presence of PDR [21].

Sustained hyperglycemia is considered to be the major initiating factor of DR. However,
detailed mechanisms causing retinal abnormality remain unclear. The disease involves
the progression of retinovascular damage with stepwise clinical progression from mild
stages to advanced proliferative changes. The rate of progression varies among patients and
depends mainly on systemic factors such as blood glucose level, blood pressure control, and
blood lipid profile, which constitute independent risk factors of DR development [22]. Our
results suggest that alterations to the aqueous humor concentrations of immune mediators
in patients with simple DR may reflect the early stages of disease progression.

DR tends to cause ocular inflammation. Although the precise mechanisms underlying
such chronic inflammation are not yet known, macrophages and many immune mediators
including angiogenic growth factors, cytokines, and chemokines are involved in the onset
and progression of DR. In advanced stages of DR, such as PDR and diabetic macular edema,
immune cells and mediators play important roles in disease progression [19,20,23–25].
Indeed, macrophages have been shown to play a pivotal role in PDR and diabetic macular
edema development, by invading the retina [24,26,27]. High levels of VEGF, a potent
proangiogenic factor, are expressed in the retinas of diabetic patients, resulting in marked
increases in intraocular VEGF concentration correlating with the presence of soft exudates,
intraretinal microvascular abnormality, venous bleeding, venous loops, and neovascular-
ization [19,28]. Genetic polymorphisms in VEGF-A have also been associated with an
increased risk of developing proliferative DR, further corroborating the critical role of this
factor in DR [29]. Vitreous and aqueous concentrations of VEGF and IL-6 may serve as
biomarkers of disease progression, because they correlate with the severity of macular
thickness alteration in diabetic macular edema [30]. The CD40 ligand is a member of the
TNF receptor superfamily and is expressed on inflammatory cells, primarily activated
CD4+ T cells, as a receptor for CD40. The CD40-CD40 ligand pathway plays a significant
role in both autoimmunity and adaptive immunity [31,32], Studies have suggested that this
pathway also contributes to the pathophysiology of diabetes mellitus [33,34]. Lamine et al.
reported that circulating soluble CD40 ligand concentration in serum was associated with
the severity of diabetic retinopathy in patients with T2DM [35]. In this study, the CD40
ligand concentration in aqueous humor was elevated in early-stage DR. Combined with
previous research, this finding suggests the potential involvement of the CD40 ligand in
diabetic retinopathy pathogenesis from the onset. Notably, the Fas ligand, an apoptosis-
inducing ligand, was the sole cytokine showing a decrease in simple DR compared to
controls. Previous in vitro studies demonstrated the suppression of Fas ligand expression
by VEGF [36], which aligns with our observation of reduced Fas ligand concentrations in
the aqueous humor of patients with simple DR.

Among the nine immune mediators that were upregulated in simple DR in this
study, fractalkine, also known as chemokine CX3C Receptor 1, is particularly interesting
for its dual roles as a chemotaxin and an activator of retinal microglia and infiltrating
macrophages, as well as being a physiologically active compound that potently increases
vascular permeability and promotes angiogenesis [37–39]. In addition, a previous study in
mice suggested that microglia modulate neurovascular function in the retina, and dysfunc-
tion of the microglial–vascular function may potentially cause early vascular compromise,
leading to the development of DR [40]. Therefore, the altered cytokines identified in
this study may reflect the responses of various cells, including vascular endothelial cells,
inflammatory cells, and retinal microglia, due to diabetic vascular abnormality.

Of the ten cytokines that showed significant alterations in simple DR in our study,
nine immune mediators form a tightly interwoven and complex interaction network. This
finding suggests that many immune mediators act synergistically, interacting to trigger the
development of DR. Further research is warranted to uncover the functional roles of these
10 cytokines in the initiation and progression of early-stage DR.
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This study has several limitations. First, because retrospectively collected samples
were used, the time from HbA1c measurement or disease onset to aqueous humor collec-
tion varied among samples. This may suggest a variable degree of disease progression
across the samples. Second, the single-center case–control study design may give rise to
potential sampling or clinical biases, including collection bias, in specific periods related to
geographic location, ethnicity, age, and sex distribution. Third, selection bias when using
cataract patients instead of healthy controls is included as a limitation. Notably, the simple
DR group in this study consisted of predominantly males, which is a potential bias. In
addition, our sample size was small to detect the generalized alternation with simple DR.
To address these concerns, future prospective multi-center studies on a global scale would
be needed to validate the present findings.

5. Conclusions

The aqueous humor concentrations of 10 immune mediators comprising bFGF, CD40
ligand, Fas ligand, fractalkine, G-CSF, IL-6, IL-8, MIP-1α, MIP-1β, and VEGF were altered
in patients with simple DR. Although this is the first study of the aqueous humor immune
mediator profile in simple DR, our results are mostly in agreement with previous studies
showing that various immune mediators associated with inflammation and angiogenesis
are related to the development of DR. Combinations of these immune mediators may also
be useful biomarkers for the early detection of DR and the prediction of prognosis. Future
large-scale studies are needed to evaluate whether altered aqueous humor concentrations
of these cytokines or their interactions are associated with an increased risk of progression
to advanced stages of DR.
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