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Abstract: Atrial fibrillation (AF) is the most common arrhythmia with a high burden of morbidity
including impaired quality of life and increased risk of thromboembolism. Early detection and
management of AF could prevent thromboembolic events. Artificial intelligence (AI)--based methods
in healthcare are developing quickly and can be proved as valuable for the detection of atrial
fibrillation. In this metanalysis, we aim to review the diagnostic accuracy of AI-based methods for the
diagnosis of atrial fibrillation. A predetermined search strategy was applied on four databases, the
PubMed on 31 August 2022, the Google Scholar and Cochrane Library on 3 September 2022, and the
Embase on 15 October 2022. The identified studies were screened by two independent investigators.
Studies assessing the diagnostic accuracy of AI-based devices for the detection of AF in adults
against a gold standard were selected. Qualitative and quantitative synthesis to calculate the pooled
sensitivity and specificity was performed, and the QUADAS-2 tool was used for the risk of bias and
applicability assessment. We screened 14,770 studies, from which 31 were eligible and included.
All were diagnostic accuracy studies with case–control or cohort design. The main technologies
used were: (a) photoplethysmography (PPG) with pooled sensitivity 95.1% and specificity 96.2%,
and (b) single-lead ECG with pooled sensitivity 92.3% and specificity 96.2%. In the PPG group,
0% to 43.2% of the tracings could not be classified using the AI algorithm as AF or not, and in
the single-lead ECG group, this figure fluctuated between 0% and 38%. Our analysis showed that
AI-based methods for the diagnosis of atrial fibrillation have high sensitivity and specificity for the
detection of AF. Further studies should examine whether utilization of these methods could improve
clinical outcomes.

Keywords: atrial fibrillation; artificial intelligence; screening

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia in adults worldwide. AF can
be completely asymptomatic, and often its initial presentation includes thromboembolic
events, such as strokes. It is estimated that more than 25% of strokes are caused by
previously asymptomatic atrial fibrillation. In most of the cases, the stroke could have been
prevented if the atrial fibrillation had been detected earlier, and the patients were started
on anticoagulation therapy [1].
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Given that many of the complications are preventable, many screening strategies
have been suggested [2,3]. Currently, the European Society of Cardiology (ESC) guidelines
suggest opportunistic screening for people above 65 years old, and systematic screening
for people > 75 years old or those with increased risk of stroke [3]. The recommended
screening tools include pulse check, single-lead ECG > 30 s. or 12-lead ECG interpreted by
a physician [3]. However, since AF is often paroxysmal, these screening methods result in
many false negative results, and therefore their use is limited [2].

Over the last few years, mobile heath technology has been developing quickly [4]. So
far, various mobile devices and smartwatches with AI algorithms have been developed
to detect AF and they demonstrate high diagnostic accuracy against a gold standard
(i.e., 12-lead ECG, single-lead ECG, telemetry, Holter monitor, or implantable cardiac
monitor) [5–7].

So far, the two main technologies used by AI-based devices to automatically detect
AF are the photoplethysmography (PPG) and the single-lead ECG. The former is a pho-
toelectric method that measures changes in blood volume in the peripheral vessels. PPG
devices consist of a light source and receptor, and based on the reflected light can detect
changes in the blood volume. These changes can be captured in a PPG trace which is then
interpreted by an AI algorithm [8,9]. The single-lead ECG methods consist of a portable or
wearable device which can record a single-lead ECG trace. To complete this assessment,
the individual is asked to keep two parts of their body (e.g., wrist and finger or two fingers,
etc.) in touch with the device for a pre-determined time. The recording is then transmitted
to an AI application for interpretation [10–12]. These AI methods classify their recordings
as “possible AF”, “normal” or “no AF”, “undiagnosable/unclassified”, or “error” [11,12].

Compared to the conventional methods, AI-based devices for the diagnosis of AF are
widely available, easy to use, and offer prolonged monitoring times, which increase the
chances of detecting paroxysmal episodes of AF [12]. If accurate, they can also accelerate
the decision-making process by the physicians, who could use these data without the need
to wait for further time-consuming investigations. In addition, single-lead ECG devices
can save the ECG tracings, which can then be reviewed by a physician.

On the other hand, the rapid increase in uncertified devices and applications can lead
to many false results. This can cause stress to the patients, unnecessary treatments and
investigations, and a cost burden for the health care systems [12]. Also, single-lead ECGs
are conducted by untrained individuals rather than trained health care professionals, which
can result in poor quality tracings and thus unreliable outcomes [12].

The aim of our study is to provide a systematic review and meta-analysis of the diag-
nostic accuracy of all the available AI-based methods for the diagnosis of atrial fibrillation.

2. Materials and Methods

This systematic review–metanalysis was designed and conducted based on the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [13]. PROSPERO registration: https://www.crd.york.ac.uk/prospero/display_record.
php?RecordID=357232 accessed on 10 July 2023 [14].

2.1. Inclusion and Exclusion Criteria

We included: (1) diagnostic studies with a cohort or case–control design, (2) studies
conducted in adults 18 years old and above, (3) studies which tested AI-based devices
to detect AF, (4) studies which used an acceptable reference standard interpreted via a
healthcare professional, including 12-lead ECG, 6-lead ECG, single-lead ECG, 3-lead Holter
monitor and telemetry, (5) studies that provided true positive, true negative, false positive,
and false negative results or provided enough data to calculate them, (6) studies in which
unclassified/unreadable results by the devices were reported separately.

Exclusion criteria included: (1) conference abstracts or studies without available full
text, (2) studies published in a language other than English, (3) studies that only provided
measurement-based instead of individual-based results, (4) studies that validated novel
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devices without automated interpretation, (5) studies in which the reference standard test
was not completed in all the participants.

Unclassified results are the ones that could not be classified by the automated algo-
rithm as AF or not AF. Unreadable results are the ones that could not be interpreted by the
automated algorithm, e.g., poor quality or short tracings.

2.2. Data Sources and Search Strategy

To identify all the relevant studies, we searched the databases: (1) PubMed, (2) Embase,
(3) Cochrane Library, and (4) Google Scholar. In addition, we conducted a manual search
for further eligible studies.

The search in PubMed was undertaken on 31 August 2022, in Cochrane Library and
Google Scholar on 3 September 2022 and in the Embase database on 15 October 2022.

The search strategy we used was:
((ai OR artificial intelligence OR machine learning OR ml OR deep learning OR neural

network OR wearables OR smartwatches OR wearable OR smartwatch OR applewatch
OR alivecor OR iECG) AND (diagnosis OR diagnosing OR detection OR detect OR detect-
ing) AND (af OR atrial fibrillation OR afib OR arrhythmia OR svt OR supraventricular
tachycardia OR atrial flutter OR tachycardia)).

The search strategy was created by the first author (NMS), reviewed by a second
member of the team (IMS), and approved by the supervising professor (AB).

2.3. Screening

The identified citations were imported in the web application Covidence, which is
endorsed by the Cochrane Collaboration for the conduction of systematic reviews [15]. The
screening was performed by two independent and blinded researchers (NMS and IMS).
Initially, duplicates were removed either automatically by the Covidence web app, or, less
frequently, manually by the researchers. Following that, we screened the studies by reading
the title and abstract, and then, for the selected studies, we performed a full-text review.
Studies that met our inclusion and exclusion criteria were selected. In case of disagreement,
the 2 researchers discussed until an agreement was reached.

2.4. Data Extraction

Data extraction was executed in Microsoft Excel, version 16.69. In case of uncertainty,
a second researcher was asked to extract the data for the study in question, which was then
discussed. In addition, when data calculation was impossible, the authors were contacted.
If this was impossible, the study was reviewed by the second researcher before exclusion.
For all the included studies, we extracted data including among others: the first author,
the year of publication, the setting (inpatient vs. outpatient), the study design, the name of
the device, the type of AI algorithm, the duration of the index test, the reference standard,
basic demographics, true positive and negative results, false positive and negative results,
and unclassified and unreadable results.

2.5. Assessment of Risk of Bias and Applicability

For the assessment of risk of bias and applicability, we used the quality assessment of
diagnostic accuracy studies—2 (QUADAS-2) tool, which is recommended by the Cochrane
Collaboration and the U.K. National Institute for Health and Care Excellence [16]. We
assessed each study in 4 domains (1) selection of participants, (2) index test, (3) reference
standard, (4) flow and timing. For each study, we also assessed the first 3 domains regarding
its applicability. We used predetermined signaling questions tailored to our review. The
assessment of risk of bias and applicability was performed by the main researcher (NMS).

2.6. Statistical Analysis

Data synthesis was conducted separately for the two main types of technology, photo-
plethysmography (PPG) and single-lead ECG. For the studies that tested technologies other
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than the above two, we did not perform a quantitative analysis due to lack of sufficient
data, however, we describe their results. As effect measures of diagnostic accuracy, we used
sensitivity and specificity. For the unclassified/unreadable results, we did not perform a
quantitative analysis, however we describe them separately for each group. To present
the unclassified/unreadable outcomes, we used their percentages out of total results as
the effect measure. Studies that tested more than one device/technology are included as
separate studies. We performed subgroup analysis on the PPG (inpatients vs. outpatients)
and single-lead ECG groups (inpatients vs. outpatients and duration of index test).

To calculate our summary values and create the graphical interpretations, we used
the mada package in R, version 4.2.3 (which uses the bivariate model of Reitsma, which is
equivalent with the HSROC of Rutter and Gatsonis when covariates are not used). Also, we
used the interactive online application MetaDTA, version 2.0 [17]. For the data synthesis,
we used the random effects methodology due to the expected clinical heterogeneity among
the studies. Due to the lack of a gold standard for the assessment of heterogeneity in
diagnostic accuracy studies, we used the Zhou and Dendukuri approach, which considers
the correlation between sensitivity and specificity for the calculation of I2 [18].

3. Results
3.1. Study Selection

The flowchart (Figure 1) illustrates our study selection process. We identified 14,770 stud-
ies from which 43 were selected. From those, 12 studies were excluded in a later stage. Six
of them were excluded because they only provided measurement-based, and not patient-
based, results [19–23]. The remaining six studies were excluded because they either did not
provide enough data or we were unable to communicate with the authors to provide data
for analysis [24–29]. In the end, 31 studies were included in our analysis (Figure 1).

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 5 of 30 
 

 

 
Figure 1. Flow chart (n: number). 

3.2. Diagnostic Performance of Photoplethysmography (PPG) Devices 
3.2.1. Study Characteristics of PPG Studies 

We identified 12 diagnostic accuracy studies that tested PPG devices for the diagnosis 
of atrial fibrillation. Their characteristics are summarized in Table 1. Nine studies had a 
case–control design and three had a cohort design. The total number of participants was 
4579. The smallest study included 51 patients [30], and the biggest, 1057 [31]. Five studies 
were conducted in an outpatient setting [11,31–34], five studies in an inpatient setting 
[30,35–38] and two studies in both settings [39,40]. Eight studies [30,31,33,36–40] used 
smartwatches, three studies [11,32,35] used mobile phones and one study [34] tested the 
technology of a remote PPG with the use of industrial camera. Seven studies tested the 
devices for up to 5 min [11,32,35–37,39,40], and the rest tested the devices from 10 min to 
up to 1 week [30,31,33,34,38]. Three studies [36–38] tested more than one device/technol-
ogy, therefore each one was included as a separate study. 

Figure 1. Flow chart (n: number).



J. Clin. Med. 2023, 12, 6576 5 of 24

3.2. Diagnostic Performance of Photoplethysmography (PPG) Devices
3.2.1. Study Characteristics of PPG Studies

We identified 12 diagnostic accuracy studies that tested PPG devices for the diagnosis
of atrial fibrillation. Their characteristics are summarized in Table 1. Nine studies had
a case–control design and three had a cohort design. The total number of participants
was 4579. The smallest study included 51 patients [30], and the biggest, 1057 [31]. Five
studies were conducted in an outpatient setting [11,31–34], five studies in an inpatient
setting [30,35–38] and two studies in both settings [39,40]. Eight studies [30,31,33,36–40]
used smartwatches, three studies [11,32,35] used mobile phones and one study [34] tested
the technology of a remote PPG with the use of industrial camera. Seven studies tested the
devices for up to 5 min [11,32,35–37,39,40], and the rest tested the devices from 10 min to up
to 1 week [30,31,33,34,38]. Three studies [36–38] tested more than one device/technology,
therefore each one was included as a separate study.

3.2.2. Assessment of Risk of Bias and Applicability of PPG Studies

Fourteen studies [11,34–40] were deemed high risk of bias in the participants’ domain,
and two studies [11,35] in the index test domain. The rest were deemed either low or
unclear risk of bias (Figure 2). The studies were low in risk regarding their applicability
(Figure 2).

3.2.3. Data Synthesis of the PPG Studies

The total sensitivity for the diagnosis of atrial fibrillation in the PPG group was 95.1%
(95% C.I. 92.5–96.8%), the specificity was 96.2% (95%C.I. 94.3–97.5%), the area under the
curve (AUC) for the SROC curve was 0.983 and the partial AUC was 0.961. The I2 was
12.5% (Figures 3 and 4).

Among the studies, the AF prevalence was found to be between 2.5% and 57%, with a
median prevalence of 44%. Based on these data, we used the total sensitivity and specificity
to calculate the predictive false results in 1000 patients, by using different prevalence
values. For prevalence of 5%, PPG devices would have resulted in 47 (95% C.I. 30–71) false
positive results and 2 (95% C.I. 1–3) false negative results in 1000 patients. For the median
prevalence of our studies, 44%, PPG devices would have resulted in 27 (95% C.I. 18–42)
false positive results and 17 (95% C.I. 11–25) false negative results in 1000 patients. For
a high prevalence of 60%, PPG devices would have resulted in 20 (95% C.I. 13–30) false
positive results and 23 (95% C.I. 15–34) false negative results in 1000 patients.

3.2.4. Subgroup Analysis (Inpatients vs. Outpatients) of the PPG Studies

We did not proceed to a formal subgroup analysis for the PPG studies due to the
low number of studies per subgroup, but also because we did not observe clusters in this
subgroup’s SROC curve (Figure 5).

3.2.5. Unclassified Unreadable Results of the PPG Studies

We found significant heterogeneity among the studies, regarding the unclassified/
unreadable results. The reported unclassified/unreadable results ranged from 0% at the
lowest [30–33,38] to 43.2% at the highest (Table 1) [37].
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Table 1. Study characteristics (PPG, single-lead ECG and miscellaneous).

Author, Year Setting Study Design Device Algorithm Time Used Gold
Standard Age (Mean ± SD) Sex (Females %) N N in AF

Group

N in Control Group
(Type of Control

Group)

Group of
AFL TP TN FP FN Unclassified/

Uninterpretable

Bacevicius
et al., 2022

[39]

Inpatients
and

outpatients

Case–control
selected

cross-sectional
study

Prototype of
the wearable

device

Automatic
PPG-based

algorithm (PPG)
2 min. 3-lead Holter AF: 65.6 ± 11.2,

SR: 67.3 ± 14.2
AF: 47.1%
SR: 46.1% 344 121 223 (SR) Excluded

from study 114 216 7 7 Excluded

Chang et al.,
2022 [33] Outpatients

Cohort selected
cross-sectional

study

Garmin
Forerunner

945
smartwatch

Garmin Forerunner
945 smartwatch
algorithm (PPG)

24 h 3-lead Holter

All participants:
66.1 ± 12.6

AF: 69.3 ± 11.5
Non-AF: 62.0 ± 12.9

All participants:
36.5%

AF: 30.4%
Non-AF: 44.3%

200 112 88 (non-AF) AF group 109 78 10 3 0%

Chen et al.,
2020 (A) [40]

Inpatients
and

outpatients

Case–control
selected

cross-sectional
study

Amazfit
Health Band

1S

RealBeats Artificial
Intelligence

Biological Data
Engine (Huami

Technology) (PPG)

3 min. 12-lead ECG AF: 70.4 ± 11.5
Non-AF: 59.3 ± 14.8

AF: females: 43.3%
Non-AF: females:

52.6%
401 139 244 (non-AF) Control

group 132 242 2 7 4.5%

Van Haelst
et al., 2018

(A) [11]
Outpatients

Case–control
selected

cross-sectional
study

Fibricheck Fibricheck
algorithm (PPG) 3 min. 12-lead ECG

All participants:
77.3 ± 8.0

AF: 78.8 ± 8.0
No AF: 75.9 ± 7.9

All participants:
57.4% AF: 51.1%
Non-AF: 63.3%

190 75 93 (non-AF) AF group 73 83 10 2 11.6%

Mol et al.,
2020 [35] Inpatients

Case–control
selected

cross-sectional
study

iPhone 8

Algorithm
developed by

Happitech
(Amsterdam, The

Netherlands) (PPG)

90 s
Continuous

electrocardio-
graphy

All participants: 69 ± 9 All participants:
43% 257 149 108 (SR) Excluded

from study 139 101 2 3 4.7%

Sun et al.,
2022 [34] Outpatients

Case–control
selected

cross-sectional
study

Industrial
camera (FLIR

BFLY-U3-
03S2C-CS)

DCNN model (PPG)
10 min. max

or as much as
tolerated

12-lead ECG

All participants:
69.3 ± 13.0

AF: 74.3 ± 12.5
Non-AF: 67.8 ± 13.0

All participants:
46%

AF: 51.4%
Non-AF: 44.8%

453 105 348 (no-AF) Control
group 98 342 6 7 Excluded

Tison et al.,
2018 [30] Inpatients

Case–control
selected

cross-sectional
study

Apple Watch
Optimized

Cardiogram app
(PPG)

20 min prior-
and 20 min

post-
cardioversion

12-lead ECG All participants:
66.1 ± 10.7

All participants:
16% 51 51 51 (SR) Excluded

from study 50 46 5 1 0%

Väliaho et al.,
2019 (A) [36] Inpatients

Case–control
selected

cross-sectional
study

Empatica E4
wrist band

MATLAB®

software version
R2017b using

AFEvidence or
COSEn (PPG)

5 min 3-lead Holter AF: 72.0 ± 14.3 years
SR: 54.5 ± 18.6 years

AF: 42.5%
SR: 44.9% 213 106 107 (SR) Excluded

from study 102 105 2 4 Excluded

Väliaho et al.,
2019 (B) [36] Inpatients

Case–control
selected

cross-sectional
study

Empatica E4
wrist band

MATLAB®

software version
R2017b using

AFEvidence or
COSEn (PPG)

5 min 3-lead Holter AF: 72.0 ± 14.3 years
SR: 54.5 ± 18.6 years

AF: 42.5%
SR: 44.9% 213 106 107 (SR) Excluded

from study 101 105 2 5 Excluded

Väliaho et al.,
2021 (A) [41] Inpatients

Case–control
selected

cross-sectional
study

Empatica E4
wrist band

MATLAB®

software (version
R2017b) with a

novel
autocorrelation (AC)

feature (PPG)

1 min every
10 min,
20 min,
30 min,
60 min

3-lead Holter AF: 77.1 ± 9.7
SR: 67.3 ± 15.8

AF: 46.1%
SR: 55.7% 173 76 97 (SR) Unclear 75 79 18 1 0%

Väliaho et al.,
2021 (B) [41] Inpatients

Case–control
selected

cross-sectional
study

Empatica E4
wrist band

MATLAB®

software (version
R2017b) with a

novel
autocorrelation (AC)

feature (PPG)

1 min every
10 min,
20 min,
30 min,
60 min

3-lead Holter AF: 77.1 ± 9.7
SR: 67.3 ± 15.8

AF: 46.1%
SR: 55.7% 173 76 97 (SR) Unclear 75 87 10 1 0%
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Table 1. Cont.

Author, Year Setting Study Design Device Algorithm Time Used Gold
Standard Age (Mean ± SD) Sex (Females %) N N in AF

Group

N in Control Group
(Type of Control

Group)

Group of
AFL TP TN FP FN Unclassified/

Uninterpretable

Väliaho et al.,
2021 (C) [41] Inpatients

Case–control
selected

cross-sectional
study

Empatica E4
wrist band

MATLAB®

software (version
R2017b) with a

novel
autocorrelation (AC)

feature (PPG)

1 min every
10 min,
20 min,
30 min,
60 min

3-lead Holter AF: 77.1 ± 9.7
SR: 67.3 ± 15.8

AF: 46.1%
SR: 55.7% 173 76 97 (SR) Unclear 72 94 3 4 0%

Väliaho et al.,
2021 (D) [41] Inpatients

Case–control
selected

cross-sectional
study

Empatica E4
wrist band

MATLAB®

software (version
R2017b) with a

novel
autocorrelation (AC)

feature (PPG)

1 min every
10 min,
20 min,
30 min,
60 min

3-lead Holter AF: 77.1 ± 9.7
SR: 67.3 ± 15.8

AF: 46.1%
SR: 55.7% 173 76 97 (SR) Unclear 70 96 1 6 0%

Chan et al.,
2016 (A) [32] Outpatients

Cohort selected
cross-sectional

study
iPhone 4S

Cardiio Rhythm
smartphone

application (Cardiio
Inc.) (PPG)

51.3 s single-lead
ECG

All participants:
68.4 ± 12.2

All participants:
53.2% 1013 28 985 (non-AF) Excluded

from study 26 963 22 2 0%

Dörr et al.,
2019 (A) [37] Inpatients

Case–control
selected

cross-sectional
study

Gear Fit 2,
Samsung

Heartbeats
application

(Preventicus GmbH,
Jena, Germany)

(PPG)

1 min, 3 min
and 5 min

single-lead
ECG

All participants:
76.4 ± 9.5

AF: 77.4 ± 9.1
SR: 75.6 ± 9.8

All participants:
44.3%

SR: 46.1%
AF: 42.2%

650 237 271 (SR) Excluded
from study 222 266 5 15 21.8%

Dörr et al.,
2019 (B) [37] Inpatients

Case–control
selected

cross-sectional
study

Gear Fit 2,
Samsung

Heartbeats
application

(Preventicus GmbH,
Jena, Germany)

(PPG)

1 min, 3 min
and 5 min

single-lead
ECG

All participants:
76.4 ± 9.5

AF: 77.4 ± 9.1
SR: 75.6 ± 9.8

All participants:
44.3%

SR: 46.1%
AF: 42.2%

650 204 243 (SR) Excluded
from study 191 235 8 13 31.2%

Dörr et al.,
2019 (C) [37] Inpatients

Case–control
selected

cross-sectional
study

Gear Fit 2,
Samsung

Heartbeats
application

(Preventicus GmbH,
Jena, Germany)

(PPG)

1 min, 3 min
and 5 min

single-lead
ECG

All participants:
76.4 ± 9.5

AF: 77.4 ± 9.1
SR: 75.6 ± 9.8

All participants:
44.3%

SR: 46.1%
AF: 42.2%

650 167 202 (SR) Excluded
from study 156 198 4 11 43.2%

Lubitz et al.,
2022 [31] Outpatients

Cohort selected
cross-sectional

study
Fitbit device Fitbit app (PPG) 1 week single-lead

ECG

All participants *:
≥75 years: 9.7%

65–74 years: 33.2%
55–64 years: 37.4%
40–54 years: 16.6%
22–39 years: 6.1%

All participants:
48.2% 1057 340 717 (non-AF) AF group 230 706 11 110 0%

Badertscher
et al., 2022

[42]
-

Cohort selected
cross-sectional

study

Withings
Scanwatch

Withings Scanwatch
detection algorithm
(single-lead ECG)

30 s 12-lead ECG All participants:
67 (54–76 years)

All participants:
48% 319 34 285 (SR) No comment 19 247 3 6 13.8%

Bumgarner
MD et al.,
2018 [43]

Inpatients

Case–control
selected

cross-sectional
study

Kardia Band
Kardia Band

detection algorithm
(single-lead ECG)

30 s 12-lead ECG All participants:
68.2 ± 10.86

All participants:
17% 169 91 78 (SR) In AF group 63 37 7 5 33.7%

Campo et al.,
2022 [44]

Inpatients
and

outpatients

Case–control
selected

cross-sectional
study

Withings
Scanwatch

Withings Scanwatch
detection algorithm
(single-lead ECG)

30 s 12-lead ECG

All participants:
67.7 ± 14.8

AF: 74.3 ± 12.3
SR: 61.8 ± 14.3

Other arrhythmias:
66.9 ± 15.2

Unreadable ECGs:
78.8 ± 12.5

All participants:
61.1% AF: 42%

SR: 34.5%
Other arrhythmias:

40%
Unreadable ECGs:

75%

258 87 155 (non-AF) Control
group 77 144 11 10 6.2%
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Table 1. Cont.

Author, Year Setting Study Design Device Algorithm Time Used Gold
Standard Age (Mean ± SD) Sex (Females %) N N in AF

Group

N in Control Group
(Type of Control

Group)

Group of
AFL TP TN FP FN Unclassified/

Uninterpretable

Chen et al.,
2020 (B) [40]

Inpatients
and

outpatients

Cohort selected
cross-sectional

study

Amazfit
Health Band

1S

RealBeats Artificial
Intelligence

Biological Data
Engine (Huami

Technology)
(single-lead ECG)

60 s 12-lead ECG AF: 70.4 ± 11.5
Non-AF: 59.3 ± 14.8

AF: 43.3%
Non-AF: 52.6% 401 150 25 (non-AF) No comment 131 249 0 6 3.7%

Cunha et al.,
2020 [45] Inpatients

Cohort selected
cross-sectional

study

Kardia®

mobile

Kardia® mobile
algorithm

(single-lead ECG)
30 s 12-lead ECG - - 129 22 78 (SR) No comment 20 76 2 2 22.4%

Desteghe
et al., 2017

(A) [46]
Inpatients

Cohort selected
cross-sectional

study
AliveCor AliveCor algorithm

(single-lead ECG) 30 s 12-lead ECG

All participants:
67.9 ± 14.6

AF: 73.1 ± 12.2
SR: 65.1 ± 15.0

All participants:
43.1%

AF: 51.8%
SR: 38.3%

265 22 243 (SR) In AF group 12 237 6 10 0%

Desteghe
et al., 2017 (B)

[46]
Inpatients

Cohort selected
cross-sectional

study
MyDiagnostick

MyDiagnostick
algorithm

(single-lead ECG)
60 s 12-lead ECG

All participants:
67.9 ± 14.6

AF: 73.1 ± 12.2
SR: 65.1 ± 15.0

All participants:
43.1%

AF: 51.8%
SR: 38.3%

265 22 243 (SR) In AF group 18 229 14 4 0%

Desteghe
et al., 2017 (C)

[46]
Inpatients

Cohort selected
cross-sectional

study
AliveCor AliveCor algorithm

(single-lead ECG) 30 s 6-lead ECG - - 113 19 94 (SR) In AF group 15 92 2 4 0%

Desteghe
et al., 2017

(D) [46]
Inpatients

Cohort selected
cross-sectional

study
MyDiagnostick

MyDiagnostick
algorithm

(single-lead ECG)
60 s 6-lead ECG - - 113 19 94 (SR) In AF group 17 90 4 2 0%

Ford et al.,
2022 (A) [10] outpatients

Case–control
selected

cross-sectional
study

Apple Watch
4

Apple Watch
4 algorithm

(single-lead ECG)
30 s 12-lead ECG All participants: 76 ± 7 All participants:

38% 125 31 94 (SR) In AF group 6 76 0 6 29.6%

Ford et al.,
2022 (B) [10] outpatients

Case–control
selected

cross-sectional
study

KardiaBand
KardiaBand
algorithm

(single-lead ECG)
30 s 12-lead ECG All participants: 76 ± 7 All participants:

38% 125 31 94 (SR) In AF group 26 68 5 1 20%

Fu et al., 2021
(A) [47] -

Case–control
selected

cross-sectional
study

Wearable
Dynamic

ECG
Recorder

Amazfit CardiDoc
application

(single-lead ECG)
60 s 12-lead ECG

All participants:
59 ± 11.16

AF: 64.00 ± 9.38
SR:55.15 ± 11.01

All participants:
34%

AF: 45.3%
SR: 41%

114 53 61 (SR) Excluded 47 61 0 4 1.8%

Fu et al., 2021
(B) [47] -

Case–control
selected

cross-sectional
study

Wearable
Dynamic

ECG
Recorder

Amazfit CardiDoc
application

(single-lead ECG)
60 s 12-lead ECG

All participants:
59 ± 11.16

AF: 64.00 ± 9.38
SR:55.15 ± 11.01

All participants:
34%

AF: 45.3%
SR: 41%

114 53 61 (SR) Excluded 50 61 0 2 0.9%

Fu et al., 2021
(C) [47] -

Case–control
selected

cross-sectional
study

Wearable
Dynamic

ECG
Recorder

Amazfit CardiDoc
application

(single-lead ECG)
60 s 12-lead ECG

All participants:
59 ± 11.16

AF: 64.00 ± 9.38
SR:55.15 ± 11.01

All participants:
34%

AF: 45.3%
SR: 41%

114 53 61 (SR) Excluded 50 61 0 2 0.9%

Van Haelst
et al., 2018 (B)

[11]
Outpatients

Cohort selected
cross-sectional

study
AliveCor AliveCor algorithm

(single-lead ECG) 30 s 12-lead ECG
All patients: 77.3 ± 8.0

AF: 78.8 ± 8.0
Non-AF: 75.9 ± 7.9

All participants:
57.4%

AF: 51.1%
No AF: 63.3%

190 75 93 (non-AF) In AF group 73 83 10 2 19.3%

Himmelreich
JCL et al.,
2019 [48]

Outpatients
Cohort selected
cross-sectional

study
KardiaMobile

KardiaMobile
(AliveCor, Inc.)

algorithm
(single-lead ECG)

30 s 12-lead ECG All participants:
64.1 ± 14.7

All participants:
46.3% 214 23 191 (SR) In AF group 20 187 4 0 1.4%
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Table 1. Cont.

Author, Year Setting Study Design Device Algorithm Time Used Gold
Standard Age (Mean ± SD) Sex (Females %) N N in AF

Group

N in Control Group
(Type of Control

Group)

Group of
AFL TP TN FP FN Unclassified/

Uninterpretable

Lown et al.,
2018 (A) [49] Outpatients

Case–control
selected

cross-sectional
study

AliveCor

AliveCor (Kardia
version 4.7.0)

algorithm
(single-lead ECG)

30 s 12-lead ECG All participants:
73.9 ± 6.1 - 418 82 336 (non-AF) In AF group 72 332 2 2 2.4%

Rajakariar
et al., 2020

[50]
Inpatients

Cohort selected
cross-sectional

study
KardiaBand

AliveCor Kardia
application V.5.0.2

(AliveCor,
Mountain View, CA,

USA) (single-lead
ECG)

30 s 12-lead ECG

All participants:
67 ± 16

AF: 76 ± 11
SR: 64 ± 17

All participants:
43.5%

AF: 48%
SR: 36%

200 38 162 (SR) No comment 36 124 13 2 12.5%

Santala et al.,
2021 (1) [41] Inpatients

Case–control
selected

cross-sectional
study

Suunto
Movesense,

Suunto,
Vantaa,
Finland

(heart belt)

Awario, Heart2Save,
Kuopio, Finland

(single-lead ECG)
24 h 12-lead ECG AF: 77 ± 10

SR: 68 ± 16
AF: 48%
SR: 60% 159 73 86 (SR) No comment 73 82 4 0 0%

Santala et al.,
2021 (2) (A)

[51]
Inpatients

Case–control
selected

cross-sectional
study

single-lead
Necklace-

embedded
ECG recorder

(Including
Movesense
ECG-sensor,

Suunto,
Vantaa,
Finland,

Necklace-
ECG)

Awario, Heart2Save,
Kuopio, Finland

(single-lead ECG)
30 s 3-lead Holter

ECG
AF (years): 72.7 ± 14.1
SR (years): 61.5 ± 18.1

AF: 56.1%
SR: 53.2% 145 66 79 (SR) No comment 54 78 0 3 6.9%

Santala et al.,
2021 (2) (B)

[51]
Inpatients

Case–control
selected

cross-sectional
study

single-lead
Necklace-

embedded
ECG recorder

(Including
Movesense
ECG-sensor,

Suunto,
Vantaa,
Finland,

Necklace-
ECG)

Awario, Heart2Save,
Kuopio, Finland

(single-lead ECG)
30 s 3-lead Holter

ECG
AF (years): 72.7 ± 14.1
SR (years): 61.5 ± 18.1

AF: 56.1%
SR: 53.2% 145 66 79 (SR) No comment 58 75 0 1 7.6%

Santala et al.,
2022 [52] Inpatients

Case–control
selected

cross-sectional
study

Firstbeat
Bodyguard 2,

Firstbeat
Technologies

Awario, Heart2Save
(single-lead ECG) 24 h 3-lead Holter

ECG
AF: 77 ± 10
SR: 68 ± 15

AF: 47%
SR: 60% 178 79 99 (SR) No comment 79 94 5 0 0%

Abu-Alrub
et al., 2022

(A) [53]
-

Case–control
selected

cross-sectional
study

Apple Watch

Series 5®

Apple Watch Series

5® (single-lead
ECG)

30 s 12-lead ECG All participants: 62 ± 7 All participants:
44% 200 100 100 (SR) Excluded 87 86 1 7 9.5%

Abu-Alrub
et al., 2022 (B)

[53]
-

Case–control
selected

cross-sectional
study

Samsung
Galaxy Watch

Active 3®

Samsung Galaxy

Watch Active 3®

(single-lead ECG)
30 s 12-lead ECG All participants: 62 ± 7 All participants:

44% 200 100 100 (SR) Excluded 88 81 6 5 10%

Abu-Alrub
et al., 2022 (C)

[53]
-

Case–control
selected

cross-sectional
study

Withings

Move ECG®

Withings Move

ECG® algorithms
(single-lead ECG)

30 s 12-lead ECG All participants: 62 ± 7 All participants:
44% 200 100 100 (SR) Excluded 78 80 3 2 18.5%
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Table 1. Cont.

Author, Year Setting Study Design Device Algorithm Time Used Gold
Standard Age (Mean ± SD) Sex (Females %) N N in AF

Group

N in Control Group
(Type of Control

Group)

Group of
AFL TP TN FP FN Unclassified/

Uninterpretable

Wegner et al.,
2020 (A) [54] Inpatients

Cohort selected
cross-sectional

study

AliveCor
Kardia ECG

monitor

AliveCor Kardia
ECG monitor

algorithm
(single-lead ECG)

30 s 12-lead ECG All participants:
64 ± 15

All participants:
38.4% 92 27 65 (SR) In AF group 19 45 8 0 21.7%

Wegner et al.,
2020 (B) [54] Inpatients

Cohort selected
cross-sectional

study

AliveCor
Kardia ECG

monitor

AliveCor Kardia
ECG monitor

algorithm
(single-lead ECG)

30 s 12-lead ECG All participants:
64 ± 15

All participants:
38.4% 92 27 65 (SR) In AF group 15 39 3 0 38%

William et al.,
2018 [55] Inpatients

Case–control
selected

cross-sectional
study

Kardia
Mobile
Cardiac
Monitor

Kardia Mobile
Cardiac Monitor

(single-lead ECG)
30 s 12-lead ECG All participants:

68.1 [42.6–85.6]
All participants:

32.7% 223 80 143 (SR) In AF group 57 96 6 2 27.8%

Chan et al.,
2016 (B) [32] Outpatients

Cohort selected
cross-sectional

study

1st
generation;

AliveCor Inc.

AliveECG
application (version

2.2.2) (single-lead
ECG)

30 s

single-lead
interpreted

by
cardiologists

All participants:
68.4 ± 12.2

All participants:
53.2% 1013 28 (AF) 985 (non-AF) In control

group 20 979 6 8 0%

Dörr et al.,
2019 (D) [37] Inpatients

Case–control
selected

cross-sectional
study

AliveCor
Kardia
system

Heartbeats
application

(Preventicus GmbH,
Jena, Germany)

(single-lead ECG)

30 s

single-lead
interpreted

by
cardiologists

All participants:
76.4 ± 9.5

AF: 77.4 ± 9.1
SR: 75.6 ± 9.8

All participants:
44.3%

SR: 46.1%
AF: 42.2%

650 319 331 (SR) Excluded 279 262 7 1 15.5%

Orchard
et al., 2016

[56]
Outpatients

Cohort selected
cross-sectional

study

AliveCor
Heart

Monitor

AliveCor Heart
Monitor algorithm
(single-lead ECG)

30 s

single-lead
interpreted

by
cardiologists

- - 972 38 934 (SR) Excluded 36 844 8 2 8.4%

Leńska-
Mieciek

et al., 2022
[57]

Inpatients
Cohort selected
cross-sectional

study

Kardia
Mobile

portable
device

(AliveCor
Inc., San

Francisco,
CA, USA)

AliveCor app.
(single-lead ECG) 30 s

Single-lead
ECG

interpreted
by

cardiologist

All participants:
64.44 ± 10.52

All participants:
48% 50 1 49 (non-AF) No comment 1 42 7 0 0%

Lown et al.,
2018 (B) [49] Outpatients

Case–control
selected

cross-sectional
study

WatchBP
WatchBP algorithm
(modified sphygmo-

manometer)
- 12-Lead ECG All participants:

73.9 ± 6.1 - 418 82 336 (No AF) In AF group 79 314 22 3 -

Lown et al.,
2018 (C) [49] Outpatients

Case–control
selected

cross-sectional
study

Polar H7

PH7: (A Real-Time
Atrial Fibrillation

Detection
Algorithm Based on

the Instantaneous
State of Heart Rate)
(ECG data sensor)

- 12-Lead ECG All participants:
73.9 ± 6.1 - 418 82 336 (No AF) In AF group 79 330 6 3 -

Lown et al.,
2018 (D) [49] Outpatients

Case–control
selected

cross-sectional
study

Bodyguard 2

BG2 (A Real-Time
Atrial Fibrillation

Detection
Algorithm Based on

the Instantaneous
State of Heart Rate)

(heart rate
variability)

- 12-Lead ECG All participants:
73.9 ± 6.1 - 418 82 336 (No AF) In AF group 79 331 5 3 -
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Table 1. Cont.

Author, Year Setting Study Design Device Algorithm Time Used Gold
Standard Age (Mean ± SD) Sex (Females %) N N in AF

Group

N in Control Group
(Type of Control

Group)

Group of
AFL TP TN FP FN Unclassified/

Uninterpretable

Reverberi
et al., 2019

[58]
Inpatients

Case–control
selected

cross-sectional
study

consumer-
grade

Bluetooth
low-energy
(BLE) HR

monitor, of
the

chest-strap
type

RITMIA™ (Heart
Sentinel srl, Parma,
Italy) (HR monitor)

- 12-lead ECG All participants:
66.2 ± 10.7

All participants:
21.5%

182
** 99 83 (non-AF) Excluded 96 79 4 3 -

Chen et al.,
2020 (C) [40]

Inpatients
and

outpatients

Case–control
selected

cross-sectional
study

Amazfit
Health Band
1S (Huami
Technology,

Anhui,
China)

RealBeats Artificial
Intelligence

Biological Data
Engine (Huami

Technology) (PPG
combined with

single-lead ECG)

- 12-lead ECG AF: 70.4 ± 11.5
Non-AF: 59.3 ± 14.8

AF: 43.3%
Non-AF: 52.6% 401 150 251 (non-AF) Unclear - - - - -

(N: number of participants; AF: Atrial Fibrillation; SR: Sinus Rhythm; AFL: Atrial Flutter; SD: standard deviation; * age distribution; ECG: electrocardiogram; DCNN: deep convolutional
neural networks; rPPG: remote photoplethysmography; min: minutes; max: maximum; app: application; s: seconds; TP: true positive; TN: true negative; FP: false positive; FN: false
negative; x (): median age (interquartile range); x []: average age [min. age–max. age]; Väliaho et al., 2019 (A): testing the AFEvidence algorithm; Chen et al., 2020 (A): testing PPG device;
Chen et al., 2020 (B): testing single-lead ECG device; Chen et al. (C): testing combination of PPG and single-lead ECG; Väliaho et al., 2019 (B): testing the COSEn algorithm; Väliaho et al.,
2021 (A): testing device performance when time interval between every measurement is 10 min; Väliaho et al., 2021 (B): testing device performance when time interval between every
measurement is 20 min; Väliaho et al., 2021 (C): testing device performance when time interval between every measurement is 30 min; Väliaho et al., 2021 (D): testing device performance
when time interval between every measurement is 60 min; Dörr et al., 2019 (A): testing performance of device when recording for 1 min; Dörr et al., 2019 (B): testing performance of
device when recording for 3 min; Dörr et al., 2019 (C): testing performance of device when recording for 5 min; Dörr et al. (D): testing AliveCor; Desteghe et al., 2017 (A): testing the
AliveCor in the cardiology ward population; Desteghe et al., 2017(B): testing the MyDiagnostick in the cardiology ward population; Desteghe et al., 2017 (C): testing the AliveCor in
the geriatric ward population; Desteghe et al., 2017 (D): testing the MyDiagnostick in the geriatric ward population; Ford et al., 2022 (A): testing the Apple Watch 4; Ford et al., 2022
(B): testing the KardiaBand; Fu et al., 2021 (A): testing the device in supine position; Fu et al., 2021 (B): testing the device in upright position; Fu et al., 2021 (C): testing the device after
individuals climbed to the 3rd floor; Van Haelst et al., 2018 (A): testing PPG device; Van Haelst et al., 2018 (B): testing single-lead ECG device; Santala et al., 2021 (1): published in October
2021; Santala et al., 2021 (2) (A): published in May 2021 and testing the device between the palms; Santala et al., 2021 (2) (B): published in May 2021 and testing the device in the chest;
Abu-Alrub et al., 2022 (A): testing the Apple Watch 5; Abu-Alrub et al., 2022 (B): testing the Samsung Galaxy Watch Active 3; Abu-Alrub et al., 2022 (C): testing the Withings Move ECG;
Wegner et al., 2020 (A): testing the lead I; Wegner et al., 2020 (B): testing the novel parasternal lead; Chan et al., 2016 (A): testing PPG device; Chan et al., 2016 (B): testing single-lead ECG
device; Lown et al. (A): testing AliveCor; Lown et al., 2018 (B): testing the Watch BP; Lown et al., 2018 (C): testing the Polar H7 device; Lown et al., 2018 (D): testing the Bodyguard 2
device; ** N refers to ECGs before and after cardioversion.
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Väliaho et al., 2021 (B): testing device performance when time interval between every measurement 
is 20 min; Väliaho et al., 2021 (C): testing device performance when time interval between every 
measurement is 30 min; Väliaho et al., 2021 (D): testing device performance when time interval be-
tween every measurement is 60 min; Dörr et al., 2019 (A): testing performance of device when re-
cording for 1 min; Dörr et al., 2019 (B): testing performance of device when recording for 3 min; Dörr 
et al., 2019 (C): testing performance of device when recording for 5 min). 

3.2.3. Data Synthesis of the PPG Studies 
The total sensitivity for the diagnosis of atrial fibrillation in the PPG group was 95.1% 

(95% C.I. 92.5–96.8%), the specificity was 96.2% (95%C.I. 94.3–97.5%), the area under the 
curve (AUC) for the SROC curve was 0.983 and the partial AUC was 0.961. The I2 was 
12.5% (Figures 3 and 4). 

Figure 2. Assessment of risk of bias and applicability of the PPG studies. (Väliaho et al., 2019
(A): testing the AFEvidence algorithm; Väliaho et al., 2019 (B): testing the COSEn algorithm; Väliaho
et al., 2021 (A): testing device performance when time interval between every measurement is 10 min;
Väliaho et al., 2021 (B): testing device performance when time interval between every measurement
is 20 min; Väliaho et al., 2021 (C): testing device performance when time interval between every
measurement is 30 min; Väliaho et al., 2021 (D): testing device performance when time interval
between every measurement is 60 min; Dörr et al., 2019 (A): testing performance of device when
recording for 1 min; Dörr et al., 2019 (B): testing performance of device when recording for 3 min;
Dörr et al., 2019 (C): testing performance of device when recording for 5 min).

3.3. Diagnostic Performance of Single-Lead ECG Devices
3.3.1. Study Characteristics of the Single-Lead ECG Studies

During our search, we identified 22 diagnostic accuracy studies that tested single-
lead ECG devices with AI-based algorithms for the diagnosis of atrial fibrillation. Their
characteristics are summarized in Table 1. Eleven studies had cohort design [11,32,40,42,
45,46,48,50,54,56,57] and the rest had case–control design [10,37,41,43,44,47,49,51–53,55].
The total number of participants was 6597. The smallest study included 50 patients [57]
and the biggest study included 1013 patients [32]. Eleven studies were conducted in
inpatient setting [37,41,43,45,46,50–52,54,55,57], 6 studies were conducted in outpatient
setting [10,11,32,48,49,56], 2 studies were conducted in both settings [40,44] and in 3 studies
the setting was not clear [42,47,53]. Eight studies tested smartwatches [10,40,42–44,47,50,
53] and the rest of studies tested other devices [11,32,37,41,45,46,48,49,51,52,54–57]. Five
studies [10,46,47,51,53] tested more than one device/technology, and therefore each one
included as a separate study.
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et al., 2021; (A): testing device performance when time interval between every measurement is 10 
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urement is 20 min, Väliaho et al., 2021; (C): testing device performance when time interval between 
every measurement is 30 min, Väliaho et al., 2021; (D): testing device performance when time inter-
val between every measurement is 60 min, Dörr et al., 2019; (A): testing performance of device when 
recording for 1 min, Dörr et al., 2019; (B): testing performance of device when recording for 3 min, 
Dörr et al., 2019; (C): testing performance of device when recording for 5 min). 

 
Figure 4. PPG group random effects meta-analysis. 

Among the studies, the AF prevalence was found to be between 2.5% and 57%, with 
a median prevalence of 44%. Based on these data, we used the total sensitivity and speci-
ficity to calculate the predictive false results in 1000 patients, by using different prevalence 

Figure 3. PPG group: (a) Forest plot of sensitivity; (b) forest plot of specificity. (Väliaho et al., 2019;
(A): testing the AFEvidence algorithm, Väliaho et al., 2019; (B): testing the COSEn algorithm, Väliaho
et al., 2021; (A): testing device performance when time interval between every measurement is 10 min,
Väliaho et al., 2021; (B): testing device performance when time interval between every measurement
is 20 min, Väliaho et al., 2021; (C): testing device performance when time interval between every
measurement is 30 min, Väliaho et al., 2021; (D): testing device performance when time interval
between every measurement is 60 min, Dörr et al., 2019; (A): testing performance of device when
recording for 1 min, Dörr et al., 2019; (B): testing performance of device when recording for 3 min,
Dörr et al., 2019; (C): testing performance of device when recording for 5 min).
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3.3.2. Assessment of Risk of Bias and Applicability of the Single-Lead ECG Studies

Twelve studies [11,37,40,41,43,45,47,49,52,55] were deemed to be at high risk of bias in
the participants’ domain, nine studies [11,32,45,49,51,54,57] in the index test domain, four
studies [45,53] in the reference standard domain, and two studies [11,45] were deemed to
be at high risk of bias in the flow and timing domain (Figure 3). The studies were low in
risk regarding their applicability (Figure 6).

3.3.3. Data Synthesis of the Single-Lead ECG Studies

The total sensitivity for the detection of atrial fibrillation by using single-lead ECG
was 92.3% (95% C.I. 88.9–94.8%), the specificity was 96.2% (95%C.I. 94.6–97.4%), the area
under the curve (AUC) for the SROC curve was 0.979, and the partial AUC was 0.939. The
I2 was 9.2% (Figures 7 and 8).

Among the studies, the AF prevalence was found to be between 2% and 61%, with
median prevalence 31%. Based on these data, we used the total sensitivity and specificity to
calculate the predictive false results in 1000 patients, by using different prevalence values.
For a prevalence of 5%, a single-lead ECG device would have resulted in 73 (95% C.I.
49–106) false positive results and 2 (95% C.I. 1–3) false negative results in 1000 patients. For
the median prevalence of our studies, 31%, a single-lead ECG device would have resulted
in 53 (95% C.I. 36–77) false positive results and 12 (95% C.I. 8–17) false negative results in
1000 patients. For a high prevalence of 60%, a single-lead ECG device would have resulted
in 31 (95% C.I. 21–44) false positive results and 23 (95% C.I. 16–32) false negative results in
1000 patients.

3.3.4. Subgroup Analysis (Inpatients vs. Outpatients) of the Single-Lead ECG Studies

We conducted a subgroup analysis according to the setting. In this analysis, we did
not include either the studies in which the setting was not clear, or the ones that included
both inpatients and outpatients.
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Figure 6. Assessment of risk of bias and applicability of the single-lead ECG studies. (Desteghe et al.,
2017(A): testing the AliveCor in the cardiology ward population; Desteghe et al., 2017 (B): testing the
MyDiagnostick in the cardiology ward population; Desteghe et al., 2017 (C): testing the AliveCor in
the geriatric ward population; Desteghe et al., 2017 (D): testing the MyDiagnostick in the geriatric
ward population; Ford et al., 2022 (A): testing the Apple Watch 4; Ford et al., 2022 (B): testing the
KardiaBand; Fu et al., 2021 (A): testing the device in supine position, Fu et al., 2021 (B): testing the
device in upright position, Fu et al., 2021 (C): testing the device after individuals climbed to the 3rd
floor; Santala et al., 2021 (1): published in October 2021, Santala et al., 2021 (2) (A): published in May
2021 and testing the device between the palms, Santala et al., 2021, (2) (B): published in May 2021
and testing the device in the chest; Abu-Alrub et al., 2022(A): testing the Apple Watch 5, Abu-Alrub
et al., 2022 (B): testing the Samsung Galaxy Watch Active 3, Abu-Alrub et al., 2022 (C): testing the
Withings Move ECG; Wegner et al., 2020 (A): testing the lead I; Wegner et al., 2020 (B): testing the
novel parasternal lead).



J. Clin. Med. 2023, 12, 6576 16 of 24

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 21 of 30 
 

 

KardiaBand; Fu et al., 2021 (A): testing the device in supine position, Fu et al., 2021 (B): testing the 
device in upright position, Fu et al., 2021 (C): testing the device after individuals climbed to the 3rd 
floor; Santala et al., 2021 (1): published in October 2021, Santala et al., 2021 (2) (A): published in May 
2021 and testing the device between the palms, Santala et al., 2021, (2) (B): published in May 2021 
and testing the device in the chest; Abu-Alrub et al., 2022(A): testing the Apple Watch 5, Abu-Alrub 
et al., 2022 (B): testing the Samsung Galaxy Watch Active 3, Abu-Alrub et al., 2022 (C): testing the 
Withings Move ECG; Wegner et al., 2020 (A): testing the lead I; Wegner et al., 2020 (B): testing the 
novel parasternal lead). 

3.3.3. Data Synthesis of the Single-Lead ECG Studies 
The total sensitivity for the detection of atrial fibrillation by using single-lead ECG 

was 92.3% (95% C.I. 88.9–94.8%), the specificity was 96.2% (95%C.I. 94.6–97.4%), the area 
under the curve (AUC) for the SROC curve was 0.979, and the partial AUC was 0.939. The 
I2 was 9.2% (Figures 7 and 8). 

 
Figure 7. Single-lead ECG group: (a) forest plot of sensitivity, (b) forest plot of specificity. (Desteghe 
et al., 2017 (A): testing the AliveCor in the cardiology ward population; Desteghe et al., 2017 (B): 
testing the MyDiagnostick in the cardiology ward population; Desteghe et al., 2017 (C): testing the 
AliveCor in the geriatric ward population; Desteghe et al., 2017(D): testing the MyDiagnostick in 
the geriatric ward population; Ford et al., 2022 (A): testing the Apple Watch 4, Ford et al., 2022 (B): 
testing the KardiaBand; Fu et al., 2021 (A): testing the device in supine position, Fu et al., 2021 (B): 
testing the device in upright position, Fu et al., 2021 (C): testing the device after individuals climbed 
to the 3rd floor; Santala et al., 2021 (1): published in October 2021, Santala et al., 2021 (2) (A): pub-
lished in May 2021 and testing the device between the palms, Santala et al., 2021 (2) (B): published 
in May 2021 and testing the device in the chest; Abu-Alrub et al., 2022 (A): testing the Apple Watch 
5, Abu-Alrub et al., 2022 (B): testing the Samsung Galaxy Watch Active 3, Abu-Alrub et al., 2022 (C): 
testing the Withings Move ECG, Wegner et al., 2020 (A): testing the lead I, Wegner et al., 2020 (B): 
testing the novel parasternal lead). 

Figure 7. Single-lead ECG group: (a) forest plot of sensitivity, (b) forest plot of specificity. (Desteghe
et al., 2017 (A): testing the AliveCor in the cardiology ward population; Desteghe et al., 2017 (B): testing
the MyDiagnostick in the cardiology ward population; Desteghe et al., 2017 (C): testing the AliveCor
in the geriatric ward population; Desteghe et al., 2017 (D): testing the MyDiagnostick in the geriatric
ward population; Ford et al., 2022 (A): testing the Apple Watch 4, Ford et al., 2022 (B): testing the
KardiaBand; Fu et al., 2021 (A): testing the device in supine position, Fu et al., 2021 (B): testing the
device in upright position, Fu et al., 2021 (C): testing the device after individuals climbed to the 3rd
floor; Santala et al., 2021 (1): published in October 2021, Santala et al., 2021 (2) (A): published in May
2021 and testing the device between the palms, Santala et al., 2021 (2) (B): published in May 2021
and testing the device in the chest; Abu-Alrub et al., 2022 (A): testing the Apple Watch 5, Abu-Alrub
et al., 2022 (B): testing the Samsung Galaxy Watch Active 3, Abu-Alrub et al., 2022 (C): testing the
Withings Move ECG, Wegner et al., 2020 (A): testing the lead I, Wegner et al., 2020 (B): testing the
novel parasternal lead).

For the inpatients, the total sensitivity was 92.9% (95% C.I. 87.6–96) and the specificity
was 94.2% (95% C.I. 91.8–95.9). The AUC was 0.974 and the partial AUC was 0.898. The
I2 was 14.4%. For the outpatients, the total sensitivity was 90.7% (95% C.I. 76.8–96.6) and
the specificity was 98.1% (95% C.I. 95.1–99.3). The AUC was 0.983 and the partial AUC
was 0.949. The I2 was 26.9%. Although the sensitivity was higher in the inpatient group,
the specificity was higher in the outpatients. However, the 95% confidence intervals were
overlapping. In addition, there was a difference in I2 between the subgroups. In the
inpatient group, the I2 was 14.4%, and in the outpatient group it was 26.9% (Figure 9).

3.3.5. Subgroup Analysis (Duration of Index Test) of the Single-Lead ECG Studies

We did not proceed to a formal subgroup analysis regarding the duration of the index
test since most of the studies used it for 30 s (Figure 10).
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3.3.6. Unclassified/Unreadable Results of the Single-Lead ECG Studies

Regarding the unclassified/unreadable results, we also identified significant hetero-
geneity in the single-lead ECG group. The reported unclassified/unreadable results ranged
from 0% the minimum [32,41,46,52,57] to 38% the maximum (Table 1) [54].
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3.4. Diagnostic Performance of Technologies Other Than PPG or Single-Lead ECG

As mentioned earlier, some of the studies tested technologies other than PPG and
single-lead ECG. Due to there only being a few studies, we did not proceed to quantitative
synthesis, but we have described them separately. Their characteristics are summarized in
Table 1 and Figure 11.
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2018 (A): testing the Watch BP, Lown et al., 2018 (B): testing the Polar H7 device, Lown et al., 2018
(C): testing the Bodyguard 2 device; D: domain; RoB: risk of bias; AC: applicability).
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The study of Lown et al., 2018 [49], apart from single-lead ECG, tested three more
devices in the same population. It tested the Watch BP device, which is a modified sphyg-
momanometer, and compared it with a 12-lead ECG. The resulting sensitivity was 96.34%
(95% C.I. 89.68–99.24%) and the specificity was 93.45% (95% C.I. 90.25–95.85%). The same
study tested two more devices that can detect AF by using heart rate variability. The Polar
H7 device had a sensitivity of 96.34% (95% C.I. 89.68–99.24%) and specificity of 98.21% (95%
C.I. 96.17–99.34%), and the Bodyguard 2 had a sensitivity of 96.34% (95% C.I. 89.68–99.24%)
and a specificity of 98.51% (95% C.I. 96.56–99.52%).

The study of Reverberi et al., 2019 [58] is a diagnostic case–control study, which tested
a chest-strap heart rate monitor in combination with the mobile application, RITMIA™, for
the diagnosis of atrial fibrillation. The resulted sensitivity was 97.0% (95% C.I. 91.4–99.4%)
and the specificity was 95.2% (95% C.I. 89.1–98.8%).

Finally, the study of Chen et al., 2020 [40], which was described in both the PPG and
single-lead ECG groups, also tested the combination of both technologies. Specifically,
during this test, the PPG mode was on, and if AF was detected, then participants were
notified to perform a single-lead ECG. If the single-lead ECG was also positive for AF, then
the result was considered positive. Otherwise, the final result was considered negative.
The sensitivity for this mode was 80% (95% C.I. 72.52–85.90) and the specificity was 96.81%
(95% C.I. 93.58–98.51).

4. Discussion

In this metanalysis, the two main technologies used to automatically detect AF (PPG
and single-lead ECG) demonstrated very high diagnostic accuracy. Although the PPG
technology proved to be more sensitive than the single-lead ECG, their 95% confidence
intervals were overlapping. On the other hand, the two technologies had equal specificity.

In the PPG group, we noticed that four studies [31,33,36,42] showed significantly lower
specificity compared to the rest (Figure 3). A further review of the studies demonstrated
that, in most cases, the duration of the index test was prolonged, which may increase the
false positive results. On contrary, the prolonged period of the index test can decrease the
unclassified/unreadable results, since most of the studies with 0% unclassified/unreadable
results used the devices for a longer period of time, and specifically from 10 min [35] to
1 week [41]. In the subgroup analysis between inpatients and outpatients in the PPG group,
we did not observe any differences in the SROC curve; however, the small number of
studies did not allow us to proceed to a quantitative synthesis.

In the single-lead ECG group, the lower pooled sensitivity could be partially explained
by the lower duration of the index test. In most of the studies, it was applied for 30 to 60 s,
compared to the PPG which was applied for at least 1 min. In addition, operation of a
single-lead ECG requires action by the individual, and therefore unsupervised recordings
could result in more poor-quality tracings. In this group, we performed two subgroup
analyses. In the inpatients versus outpatients subgroup, the 95% confidence intervals were
overlapping, and in the duration of the index test analysis (30 s vs. 60 s), we did not observe
any clusters in the SROC curve. In relation to the unclassified/unreadable results, we
observed significant heterogeneity in this group as well. Similarly with the PPG group, we
noticed that most of the single-lead ECG studies with 0% unclassified/unreadable results
used the index test for a prolonged period of time and/or allowed multiple measurements.

In both of the above groups, risk of bias was high or unknown in the participants
selection domain, mainly due to case–control design in combination with ambiguity of the
selection process. The rest of the domains were deemed mostly low risk of bias, and the
applicability of the diagnostic test was satisfactory.

Other technologies, such as the modified sphygmomanometer and the heart rate
variability, demonstrated very high sensitivity and specificity in their respective studies;
however, the data were not enough to conduct a metanalysis. The study of Chen et al.,
2020 [40] is especially interesting, because it tested the combination of PPG and single-
lead ECG. During this study, individuals were being tested by continuous PPG, and they
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were asked to perform a single-lead ECG only when the PPG outcome was “possible AF”.
Only if the single-lead ECG confirmed the diagnosis, then the individual was notified
that they may suffer from AF. This study showed very high specificity but not as high
sensitivity (~80%). Since more and more devices offer the possibility of both PPG and
single-lead ECG, its combination can be proved valuable. All the technologies resulted
in unclassified/unreadable results, which demonstrated significant heterogeneity among
the studies.

Our findings are comparable with previous similar metanalyses [5–7,59] and suggest
that widely available AI-based devices can accurately detect AF and can be used as a
screening tool. So far, screening for AF is a controversial area. ESC guidelines support
screening in targeted populations [3]; however, the American guidelines advise that the
evidence is limited [60]. Long-term continuous screening in high-risk populations proved
effective in detection of AF in a randomized study [61]. Another randomized trial showed
that screening for AF led to fewer events for the combined primary outcome which included
stroke, systemic embolism, bleeding leading to hospitalization and all-cause death [62].
Simulation studies using contemporary screening methods in elderly populations showed
that screening is cost-effective, reduces stroke episodes, but increases bleeding risk and
events [63,64].

In this context, our findings suggest that easily accessible AI-based devices can be
convenient and non-invasive tools for AF screening. Compared to the traditional methods,
these devices allow long-term passive monitoring, which is a paramount advantage given
the paroxysmal and often asymptomatic nature of AF. Also, it provides individuals with
the opportunity to record a trace at any time which can be useful when, for example, they
develop symptoms. Most importantly, the AI-based devices do not require a health care
professional at the stage of rhythm diagnosis; therefore, the devices allow more time for
physicians to focus on the rest of the management.

5. Strengths and Limitations

Our study was designed and conducted according to the PRISMA guidelines. The
review was very extended, since it identified almost 15,000 studies, and more than 1000 stud-
ies were reviewed based on their full text. The screening was conducted by two blinded
and independent investigators, and the statistical analysis was performed for the two main
technologies separately. Furthermore, we proceeded to subgroup analysis and described
technologies other than the main two. We also calculated the false results for different
prevalence values, which eventually is directly applicable to daily clinical practice.

On the other hand, our study demonstrates certain weaknesses. First of all, part of
our study’s drawbacks arises from the limitations of the included studies. To start with
the unclassified/unreadable results, there was significant heterogeneity among the studies.
Many authors excluded them completely, some included them as false, and others included
them as true or false depending on the reference standard. In our study, these results were
excluded from the calculation of sensitivity and specificity and were described separately.
Also, in many studies, atrial flutter and fibrillation were considered as the same disease,
with the argument that their complications and treatment are very similar. However, others
either excluded patients with atrial flutter completely or included them in the control
group. Lastly, there was heterogeneity in the control groups, since some studies used only
patients in sinus rhythm as control, and others used patients with any rhythm other than
AF. Another issue was the use of multiple different devices and AI algorithms. On several
occasions, the name or the version of the device and/or the AI algorithm were not even
reported. Many authors tested the same devices with different algorithms, or they tested
an amended version of the commercial algorithm. This heterogeneity constitutes a burden
in the validation of devices and algorithms since it is difficult to appreciate the impact of
their variability.

In addition, the executive part of our study appears to have certain limitations. First
of all, the data extraction was performed mainly by one researcher, due to limited time and
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resources. Also, we had to amend our protocol, especially regarding the choice of reference
standard test. Apart from the 12-lead ECG, we included other reference standard tests,
since more tests are now accepted as gold standards for the diagnosis of atrial fibrillation.
Furthermore, due to the complexity of diagnostic metanalysis, we could not proceed to
more advanced statistical analyses, such as further subgroup and network metanalysis.
Similarly, we did not calculate the reporting bias due to the complexity of metanalysis of
diagnostic accuracy studies.

6. Conclusions

In summary, our findings support that both PPG and single-lead ECG devices have
excellent sensitivity and specificity for the automated diagnosis of atrial fibrillation and
can be used as screening tools. A prolonged period of monitoring may result in more false
positive results, but less unclassified/unreadable outcomes. Further validation studies need
to be conducted for alternative technologies, such as modified sphygmomanometry and
combination of PPG and single-lead ECG. Further clinical trials are necessary to evaluate
the cost-effectiveness, and risks and benefits, especially in younger populations where
AI-based devices are widely available.
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