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1. Introduction

Breast cancer is the most common cancer in women around the world and the fifth
leading cause of cancer-related death [1]. A current challenge is performing early and per-
sonalized management based on diagnostic tools and associated biomarkers. Among these,
[18F]Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography
([18F]FDG PET/CT) imaging currently plays a crucial role in determining the extent of
the disease [2,3] and in ensuring that the treatment is effective [4]. However, the arrival of
new treatments, the discovery of new therapeutically actionable pathways, and the advent
of new specific radiotracers in nuclear medicine is opening up many opportunities for
precision medicine approaches guided by PET/CT imaging.

2. Predictive/Prognostic [18F]FDG PET Biomarkers for Novel Therapies

New therapeutic molecules, as well as antibody–drug conjugates (trastuzumab–deruxtecan
and sacituzumab govitecan for example) [5,6] or molecule combinations (chemo-immunotherapy
for example) [7–9], have revolutionized the management of metastatic breast cancer patients,
whose prognosis is among the poorest. Given that there is no identified effective predictive
or prognostic biomarker yet for such novel therapies, it is of paramount importance to
determine whether [18F]FDG PET/CT imaging could contribute to the optimization of
patient management.

2.1. Antibody–Drug Conjugates

Antibody–drug conjugates have been shown to be an effective treatment for breast
cancer. The role of [18F]FDG PET/CT imaging for the assessment of response to treatment
remains an area of active investigation.

2.2. Immune Checkpoint Inhibitors (Plus Chemotherapy)

In the Impassion 130 trial, metastatic triple-negative breast cancers that were Pro-
grammed Death-Ligand 1 (PD-L1)-positive and were treated with atezolizumab and nab-
paclitaxel had a longer overall survival with treatment. [18F]FDG PET/CT is a promising
theranostic tool for first-line immunotherapy [10] in patients with metastatic triple-negative
breast cancer because increased tumor metabolism is associated with poorer prognosis and
response to treatment. Additionally, several studies have demonstrated an association be-
tween the glucose metabolism within the tumor and hematopoietic tissues and the systemic
immunosuppressive environment for predicting dismal response to immunotherapy.
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2.3. CDK 4/6 Inhibitors (Plus Endocrine Therapy)

Cyclin-dependent 4/6 kinase inhibitors plus endocrine therapy is considered the gold
standard treatment for individuals with hormone receptor-positive Human epidermal
growth factor receptor 2 (HER2-positive) breast cancer [11]. According to previous studies,
low levels of whole-body metabolic tumor volume (MTV), total lesion glycolysis (TLG), and
maximum standardized uptake value (SUVmax) on [18F]FDG PET/CT are significantly
associated with prolonged progression-free survival and overall survival in patients treated
with endocrine therapy alone or in combination with Cyclin-dependent Kinase 4/6 (CDK
4/6) inhibitors [12].

3. Deciphering Pro-Tumoral Phenotypes Using [18F]FDG PET/CT Imaging

Recent works suggest that measuring metabolic activity in non-tumor tissues could
provide valuable biomarkers, such as measuring metabolism in lymphoid tissues (bone
marrow and spleen) that are in close communication with the tumor microenvironment, to
predict a patient’s response to certain therapies [13–15]. Although there are some avenues
for elucidating the underlying pathophysiological mechanism [16–18], the joint study of
mouse models with breast cancer using [18F]FDG PET/CT using a “micro-PET” device
dedicated to rodent studies would provide a better basis for deciphering pro-tumoral
phenotypes and for better understanding therapeutic resistance in humans.

4. Innovative PET Tracers for Personalized/Precision Medicine

The advent of innovative PET radiotracers such as FluoroEStradiol labeled with
18-Fluor ([18F]FES) [19–21] or Fibroblast-Associated Protein Inhibitor labeled with 68-Gallium
([68Ga]FAPI) [22–24] is expected to improve the personalization of patient management,
optimize therapeutic choices, and improve outcomes in the field of breast cancer.

4.1. Limitations of [18F]FDG PET

[18F]FDG is not a cancer-specific tracer. Benign diseases that are related to infection
or inflammation can show false-positive [18F]FDG uptake causing unnecessary or excess
treatment [25,26].

4.2. FluoroEStradiol Labeled with 18-Fluor ([18F]FES) PET/CT Imaging

[18F]FES has been shown to be an effective molecular imaging technique in the detec-
tion of in vivo estrogen receptor (ER) expression due to its high specificity and sensitivity
for ER-positive lesions and can be used as a predictor of patient response to hormonal
therapy [27], making the advent of [18F]-FES pivotal in making these distinctions to guide
treatment [27]. In order to optimize personalized treatment, the ER expression and an
estimate of the heterogeneity in the ER expression in metastatic lesions must be deter-
mined [20,28]. However, this cannot accurately be performed using metastasis biopsy
or standard imaging with [18F]FDG. [18F]FES PET has been shown to determine ER
heterogeneity and guide personalized treatment options [20]. The U.S. Food and Drug
Administration (FDA) has recently approved [18F]FES as a PET tracer for the evaluation of
ER heterogeneity, indicating the potential impact [18F]FES PET has on major healthcare
decisions [29].

Invasive lobular carcinoma is considered to be the fifth most common cancer overall
in females and the second most common subtype of breast cancer malignancy, only behind
invasive breast carcinoma of no special type (NST) [29]. In invasive lobular carcinoma,
bone metastases are common and can be more easily and readily visualized in [18F]FES.
[18F]-FES PET was found to be much more sensitive to the detection of osseous lesions
than [18F]FDG PET [29]. [18F]FES PET is integral in helping diagnose the progression of
ILC and can help navigate treatment modalities as well as treatment efficacy [29]. [18F]FES
is extracted and metabolized by the liver, which complicates its applicability for breast
cancer staging in liver metastases because of the high [18F]FES uptake [27,30]. In this case,
different imaging modalities such as CT or MRI with contrast would be preferred [29].
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4.3. Fibroblast-Associated Protein Inhibitor Labeled with 68-Gallium ([68Ga]FAPI)
PET/CT Imaging

Fibroblast activation protein (FAP) is a serine protease from the dipeptidyl peptidase-
4 (DPP-4), which functions in tumor stroma and is highly specific and sensitive for the
detection of many carcinomas [31]. FAP is expressed in various tumors and contributes to
migration and tumor angiogenesis [32].

[68Ga]FAPI PET/CT is a new radiotracer targeting FAP in order to visualize tumor
stroma and detect metastases in various organ systems of the body [33]. [68Ga]FAPI
PET/CT is considered to be superior to [18F]FDG in detecting more lesions and show-
ing tumor activity. [68Ga]FAPI has higher SUVs than [18F]FDG in lesions located in
primary breast, local/distant lymph node metastasis, liver metastasis, lung metastasis,
and bone metastasis. [68Ga]FAPI was able to detect lesions within one month of the post-
chemotherapy period, which is not the case for [18F]FDG [31]. In comparison to [18F]FDG
PET/CT, [68Ga]FAPI was able to more accurately depict primary and metastatic lesions,
specifically in the liver, abdomen, and brain, because of its high target-to-background ratios
(TBRs) and good tumor delineation. Detecting distant metastasis through detecting more
lesions can lead to changes in treatment approach [31].

In tumors smaller than 1 cm, [68Ga]FAPI PET/CT demonstrates a higher uptake and
therefore has the ability to reveal more lesions in comparison with [18F]FDG PET/CT [34].
This allows for a greater overall detection of lesions. [68Ga]FAPI PET demonstrates a
superior uptake in mediastinal and abdominal lymph nodes [33]. The SUV values of
lymph nodes on [68Ga]FAPI PET/CT were higher than [18F]-FDG PET/CT when com-
paring lymph node uptake. Histopathological confirmation of lymph nodes reveals that
[68Ga]FAPI has a higher sensitivity and accuracy but a lower specificity when compared
to [18F]FDG in detecting axillary lymph nodes. This is because FDG fails to demonstrate
uptake in micrometastases [33]. A major limiting factor to [68Ga]FAPI is its relative inac-
cessibility when compared to [18F]-FDG. [18F]FDG has been widely used in the detection
of cancer in multiple body systems and is therefore posed as a cost-effective imaging
alternative in comparison to [68Ga]FAPI PET/CT [35].

4.4. HER2 PET Imaging

Between 15% and 20% of breast tumors are Human epidermal growth factor 2 (HER2)-
positive cancers (with amplification or overexpression). These cancers are more aggressive
than HER2-negative breast cancers and are treated with specific drugs that target HER2.
Therefore, accurate characterization of HER2 expression can prevent overtreatment [36].
PET targeting HER2 may help visualize the heterogeneity of HER2 expression and al-
low a whole-body assessment of lesions that are not captured by single-site biopsy or
standard imaging.

To date, most published studies mainly focused on HER2-positive breast cancer. HER2
PET using [89Zr]Trastuzumab has been used to help guide clinical decision making [37].
Other studies suggest a role for [64Cu]DOTA-trastuzumab PET/CT in optimizing and
identifying patients with metastatic breast cancer who will benefit from HER2-targeted
therapies [36,38]. The main disadvantage of these radiolabeled antibodies is that images
need to be performed a few days after tracer injection. Specific radiotracers, including HER2-
targeting affibody molecules [39] or nanobodies [40], are currently under development to
allow imaging within hours of tracer administration and reduce radiation dose to patients.

5. Conclusions

While [18F]FDG PET is the current cornerstone of molecular imaging to personalize
the care of patients with a diagnosis of breast cancer, PET with FluoroEStradiol labeled
with 18-Fluor ([18F]FES), Fibroblast-Associated Protein Inhibitor labeled with 68-Gallium
([68Ga]FAPI), or targeting Human epidermal growth factor 2 (HER2)-positive tumors will
be prospectively evaluated in multicenter clinical trials. The hypothesis is that these three
novel radiotracers could assist oncologists in giving the right patient the right treatment
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at the right time, consequently avoiding the administration of unnecessary or potentially
toxic treatments. In particular, the goal is to identify patients that would benefit from
immunotherapies (using [68Ga]FAPI PET), chemotherapy versus endocrine therapy (using
[18F]FES PET), or HER2-targeted therapies (using PET targeting HER2).
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