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Abstract: An accurate and efficient automatic brain tumor segmentation algorithm is important for
clinical practice. In recent years, there has been much interest in automatic segmentation algorithms
that use convolutional neural networks. In this paper, we propose a novel hierarchical multi-scale seg-
mentation network (HMNet), which contains a high-resolution branch and parallel multi-resolution
branches. The high-resolution branch can keep track of the brain tumor’s spatial details, and the
multi-resolution feature exchange and fusion allow the network’s receptive fields to adapt to brain
tumors of different shapes and sizes. In particular, to overcome the large computational overhead
caused by expensive 3D convolution, we propose a lightweight conditional channel weighting block
to reduce GPU memory and improve the efficiency of HMNet. We also propose a lightweight
multi-resolution feature fusion (LMRF) module to further reduce model complexity and reduce the
redundancy of the feature maps. We run tests on the BraTS 2020 dataset to determine how well the
proposed network would work. The dice similarity coefficients of HMNet for ET, WT, and TC are
0.781, 0.901, and 0.823, respectively. Many comparative experiments on the BraTS 2020 dataset and
other two datasets show that our proposed HMNet has achieved satisfactory performance compared
with the SOTA approaches.

Keywords: brain tumor segmentation; multi-scale; depthwise separable convolution; conditional
channel weight

1. Introduction

Glioma is the most common primary brain tumor, accounting for 70% of malignant
primary brain tumors in adults. The World Health Organization (WHO) classifies brain
tumors into grades I–IV [1], with different survival times for different grades; the higher
the grade of a brain tumor, the more aggressive it is, and the shorter the survival time of
patients [2], so the early diagnosis and treatment of brain tumors are crucial. Physicians
usually use magnetic resonance imaging (MRI) [3] as the main basis for the clinical diagnosis
of brain tumors. The four common MRI modalities of the brain include: T1-weighted (T1),
contrast-enhanced T1-weighted (T1c), T2-weighted (T2), and fluid-attenuated inversion
recovery (FLAIR) [4]. However, brain tumors are characterized by different morphologies
and variable locations [5], and manual segmentation requires doctors to rely on their
professional knowledge and work experience to analyze the condition, so human factors
such as fatigue, memory, and lack of work experience may make the diagnostic results
wrong during the segmentation process. Medical imaging and computer-aided diagnosis
(MICAD) technology has been made possible by the growing connection between computer
science and medicine. Combining MICAD technology with computer vision to allow
doctors to see the results of MRI image segmentation and use them as a reference can speed
up diagnostics and make them much more accurate.
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Traditional brain tumor segmentation algorithms include threshold-based, clustering-
based, atlas-based, and supervision-based algorithms [6–10]. Although the computational
complexity of brain tumor image segmentation algorithms based on traditional machine
learning is low, manually designed features cannot effectively utilize the rich informa-
tion of MRI brain images. Moreover, such algorithms usually need to compute many
features to ensure accuracy, which slows down the computation speed and increases the
memory overhead.

In recent years, convolutional neural networks (CNNs) have been successfully ap-
plied in the field of medical images [11]. Unlike traditional machine learning methods,
CNNs use massive amounts of data to learn representative features automatically. This
way, they do not have to go through the complex process of extracting features. CNNs
have been applied successfully in medical image classification [12], detection [13], seg-
mentation [14,15], and other image processing tasks [16]. Many studies on brain tumor
segmentation have used CNN-based methods, which have greatly improved the speed
and accuracy of diagnosing brain tumors. Havaei et al. [17] designed a cascaded dual-path
CNN structure. Convolution kernels of different sizes were used to learn local and global
features of images simultaneously; then local features and global features were fused to
obtain more context information. Salehi et al. [18] proposed an auto-context-based CNN
algorithm to obtain the local features and global features using an approach based on three
parallel two-dimensional convolutional paths in the axial, coronal, and sagittal directions.
However, these algorithms are subject to necessary post-processing as they are executed
based on image blocks. Ronneberger et al. [19] proposed the encoding-decoding network
U-net, which increases the number of upsampling layers compared with the traditional
FCN [20] and gradually restores the image details and image resolution, and the feature
map concatenation of the encoding path and the decoding path can maintain complete
contextual features. U-net has become the most popular basic network in medical image
processing tasks. Researchers have improved U-net and produced variants of higher ac-
curacy [21,22]. Marcinkiewicz et al. [23] proposed an improved structure of 2D U-Net,
where MR images of three modalities are input into three independent encoders. Then,
the feature channels are fused and fed into the encoders. Although 2D CNN-based brain
tumor segmentation methods are efficient, 3D MRI image continuity and complete 3D
spatial contextual information are difficult to capture. The 3D U-net [24] network extended
the U-net architecture by replacing all 2D operations with their 3D operations. Mehta et
al. [25] proposed a 3D U-net brain tumor segmentation network using 3D convolution.
Myronenko et al. [26,27] reconstructed the input image by adding variational auto-coding
branches to regularize the shared encoder and achieved first place in the BraTS 2018 and
BraTS 2019 competitions, respectively. Attention mechanisms are often introduced in brain
tumor segmentation networks to make the model more focused on tumor-related regions
and improve segmentation performance [28–31]. Cao et al. [15] used a novel multi-branch
3D shuffle attention module as the attention layer in the encoder, which grouped along the
channel dimension and divided the feature maps into small feature maps.

Although the segmentation networks based on encoding and decoding structures
can achieve satisfactory performance, continuous upsampling does not bring back image
detail information from multiple downsampling, cannot bring back spatial information
well, and does not pay much attention to edges. The extracted feature approach inevitably
produces a fuzzy feature mapping after multiple convolutions and loses some important
details, such as the boundaries of the brain tumor. Sun et al. [32] proposed a high-resolution
network (HRNet). HRNet has been successfully applied in many tasks, such as human pose
estimation [33] and semantic segmentation [34]. Compared with U-Net, it can maintain
accurate spatial feature information due to the high-resolution branch. However, a large
number of repetitive inter-fusion operations between multiple stages increase computa-
tional complexity, and intensive feature fusion computes a large amount of redundant
feature information.
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Although 3D convolution has good segmentation performance, it significantly in-
creases the number of model training parameters, which results in a larger computational
overhead. Nowadays, in edge computing systems, model efficiency is also an important
aspect to be considered. With the rapid development of CNN technology, many lightweight
networks [35–37] have been proposed to further reduce the model complexity and the mem-
ory occupied. Ma et al. [38] utilized three operations, channel split, depthwise separable
convolutions, and channel shuffle, to enable the model to greatly reduce the computational
effort of model while maintaining accuracy. Chen et al. [39] exploited the advantage of
separable 3D convolutions to reduce the network complexity but with much lower seg-
mentation accuracy. To balance network efficiency and accuracy in 3D MRI brain tumor
segmentation, Chen et al. [40] proposed a new 3D expanded multi-fiber network (DMFNet)
that uses efficient group convolution on top of multi-fiber units and obtains a multi-scale
image representation for segmentation by introducing weighted 3D expanded convolution
operations, which achieved precise segmentation while reducing the number of network
parameters. However, the problem of the lack of exchange of channel information was
not solved. Zhou et al. [6] proposed an efficient 3D residual neural network (ERV-Net)
by first utilizing the computationally efficient network 3D ShuffleNetV2 as an encoder to
reduce GPU memory and improve the segmentation efficiency of the network, and then
introducing a decoder with residual blocks to avoid degradation.

The challenge of this study is to design a 3D brain tumor segmentation network
with high accuracy and efficiency. The networks based on the U-net network ignore the
gap problem between low-level visual features and high-level semantic features, have
limited ability to reconstruct spatial information of brain tumors, and pay little attention to
boundaries. The purpose of this paper is to achieve fast and accurate segmentation of brain
tumors using a high-resolution-based network.

In this paper, we propose a hierarchical multi-scale brain tumor segmentation network
(HMNet) to segment brain tumors with high efficiency and accuracy. Firstly, the network
contains a high-resolution branch to maintain accurate spatial feature representation and
multi-resolution branches to acquire multi-scale receptive fields and multi-scale features,
which helps to segment brain tumors of different sizes and shapes. Secondly, to reduce the
network parameters and computation to improve the efficiency of brain tumor segmenta-
tion, we exploit a 3D shuffle block [38] for feature extraction, then propose a lightweight
conditional channel weighting (LCC) block to improve it. Thirdly, we propose a lightweight
multi-resolution feature fusion (LMRF) module to further reduce model complexity and
reduce feature redundancy. Finally, we assess our experimental results using the BraTS
2018, BraTS 2019 and BraTS 2020 datasets.

The contributions of this paper can be summarized as follows.

• We propose a hierarchical multi-scale brain tumor segmentation network (HMNet).
HMNet uses a parallel multi-resolution feature extraction network with a high-
resolution branch and parallel multi-resolution branches to figure out what brain
tumors look like.

• We propose a lightweight conditional channel weighting (LCC) block based on a 3D
shuffle block [38] to overcome the computational problem caused by traditional 3D
convolution and enhance useful features.

• We propose a lightweight multi-resolution fusion (LMRF) module to solve the problem
that the traditional method of downsampling and upsampling has a lot of computa-
tional complexity.

The remaining sections of this article are structured as follows. Section 2 describes our
methodology in depth. Section 3 contains the appropriate experimental data and analyses.
Section 4 discusses the effectiveness of our proposed network. Section 5 summarizes the
work of this paper.
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2. Method

According to the above motivation, a hierarchical multi-scale brain tumor segmenta-
tion network (HMNet) is proposed. The architecture of HMNet is shown in Figure 1 and
Table 1. HMNet includes three important components: (1) a backbone based on the parallel
multi-resolution feature extraction network (PMRNet). It can maintain high-resolution
feature extraction, and multi-resolution features are exchanged and fused to adapt the
receptive field to brain tumors of different sizes and shapes; (2) the lightweight conditional
channel weighting (LCC) block. It can overcome the large computational overhead by intro-
ducing depth-wise separable convolution. Then, we take advantage of multi-resolution and
spatial information with a cross-resolution weighting unit (CWU) and spatial weighting
unit (SWU) to improve network performance; and (3) the lightweight multi-resolution
fusion (LMRF) module. It can overcome the large computational overhead caused by the
fusion layers and reduce the redundancy of the feature maps.

Table 1. The network structure of HMNet, where Conv 3 × 3 × 3 Block stands for 3 × 3 × 3 convolution,
and Group Normalization, ReLU, and Concat stand for channel-wise concatenation.

Layer Output Size Operation Resolution Branch Output_Channels

Input 128 × 128 × 128 4

Stem 128 × 128 × 128 Conv 3 × 3 × 3 Block 1 32
64 × 64 × 64 Conv 3 × 3 × 3 Block 1 32

Stage1 64 × 64 × 64 LCC block 1, 1/2 32, 64LMRF

Stage2 64 × 64 × 64 LCC block 1, 1/2, 1/4 32, 64, 128LMRF

Stage3 64 × 64 × 64 LCC block 1, 1/2, 1/4, 1/8 32, 64, 128, 256LMRF

Stage4 64 × 64 × 64 LCC block 1, 1/2, 1/4, 1/8 32, 64, 128, 256LMRF

Skip 128 × 128 × 128 Element-wise sum 32

Last Stage

64 × 64 × 64 Upsample, Concat 480
64 × 64 × 64 Conv 3 × 3 × 3 Block 32

128 × 128 × 128 Upsample 32
128 × 128 × 128 Conv 3 × 3 × 3 Block 3

2.1. Parallel Multi-Resolution Feature Extraction Network (PMRNet)

Inspired by the high-resolution network (HRNet) [32], a parallel multi-resolution
feature extraction network (PMRNet) is proposed, as shown in Figure 1.

The PMRNet consists of four stages (Stage 1–Stage 4). Each new stage (except Stage 4)
adds a new branch to the previous one, which has half the resolution and twice the
number of channels of the previously added branch. Every stage consists of a lightweight
conditional channel weighting (LCC) block to fully exploit multi-resolution features and
a lightweight multi-resolution fusion (LMRF) module to aggregate rich multi-resolution
contextual information. The feature maps with different resolutions are generated in
parallel by PMRNet, which can maintain high-resolution feature extraction, and multi-
resolution features are exchanged and fused to adapt the receptive field to brain tumors
of different sizes and shapes. In this paper, we designed four subnetworks with different
resolutions, 64 × 64 × 64, 32 × 32 × 32, 16 × 16 × 16, and 8 × 8 × 8 from top to bottom.

The PMRNet has three advantages. Firstly, the PMRNet can preserve the details of
brain tumors due to the high-resolution branch. Next, the multi-resolution branches can pro-
vide different receptive fields for brain tumors with different sizes. Moreover, the exchange
and fusion of the multi-resolution features can extract more abundant tumor features.
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Figure 1. The architecture of our proposed HMNet. x denotes the input resolution, and C denotes
the channel number of feature maps. We design a backbone network (PMRNet), which contains
a high-resolution branch and parallel multi-resolution branches. The high-resolution branch can
maintain the spatial details of the brain tumor. Meanwhile, multi-resolution feature exchange and
fusion enables the receptive fields of the network to adapt to brain tumors with different sizes and
shapes. In PMRNet, we propose a lightweight conditional channel weighting (LCC) block and a
lightweight multi-resolution fusion (LMRF) module to overcome the large computational overhead
caused by expensive 3D convolution and the fusion layers.

2.2. Lightweight Conditional Channel Weighting (LCC) Block

The 3D brain tumor segmentation task is usually time-consuming and GPU memory-
consuming, so we propose an efficient unit, a lightweight conditional channel weighting
(LCC) block, as shown in Figure 2 and Table 2. We extended the shuffle block [38] to the
3D version and improved it to extract features in PMRNet. First, the input channels were
split into two branches by the operation called “Channel Split”. Then, the main branch ran
a channel weighting unit (CWU), 3 × 3 × 3 depthwise separable convolution (DWConv),
and spatial weighting unit (SWU). The CWU and SWU replace the costly traditional 1 × 1
× 1 convolution in the 3D shuffle block [38] to overcome the problem that the heavily-used
1 × 1 × 1 convolution becomes computational. The other branch was mapped as constant.
The output feature maps of the two branches were merged by channel-wise concatenation,
and a channel shuffle was performed on the merged feature maps. This operation takes
a channel-wise concatenation approach. The input feature map was first divided into
several subgroups by channel and handed over to different convolution kernels for group
convolutions. Then, different subgroups were randomly extracted for channel shuffle into
a new feature map so that the input feature information from different groups was fused
by the next group convolution. This can enhance the exchange of information between
channel groups and ensure that the input and output channels are fully correlated with
each other.
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Figure 2. The structure of LCC block. First, the input channels are split into two branches by a
channel-splitting operation. The main branch runs a channel weighting unit (CWU), 3 × 3 × 3
depthwise separable convolution (DWConv), and spatial weighting unit (SWU). The other branch is
mapped as constant.

Table 2. The structure of LCC block. Take the first LCC block in Stage 2 as an example.

Input Size Input Channels Details Output Size Output Channels

64 × 64 × 64 32 Channel Split 64 × 64 × 64 16, 16
64 × 64 × 64 16 Adaptive average pooling 32 × 32 × 32 16
32 × 32 × 32 64 Concat 32 × 32 × 32 8032 × 32 × 32 16
32 × 32 × 32 80 Conv 1 × 1 1 × 1 × 1 80

1 × 1 × 1 80 Dimension extension, Upsample 64 × 64 × 64 16
64 × 64 × 64 16 DWConv 3 × 3 × 3 64 × 64 × 64 16
64 × 64 × 64 16 Global Average Pooling 1 × 1 × 1 16

1 × 1 × 1 16 Conv 1 × 1 × 1, Conv 1 × 1 × 1 64 × 64 × 64 16
64 × 64 × 64 16 Sigmoid, Dot product 64 × 64 × 64 16
64 × 64 × 64 16 Concat 64 × 64 × 64 3264 × 64 × 64 16
64 × 64 × 64 32 Channel Shuffle 64 × 64 × 64 32

As shown in Figure 3, we used a cross-resolution weighting unit (CWU) instead of
the first 1 × 1 × 1 convolution block in the shuffle block [38]. Firstly, the input feature
map of the parallel multi-resolution branch was subjected to the adaptive average pooling
(AAP) operation to make its resolution equal to the minimum resolution of the branch and
concatenated in the channel direction. Global average pooling (GAP) was performed to
compress the spatial features of the input feature map, and the compressed feature maps
were subjected to a one-dimensional convolution operation with k kernel size to learn the
importance of different channels. The value of k varied with the number of channels (C).
The relationship between them can be written as [41]:

k = |
log2(C)

2
+

1
2
|. (1)

Then, the weight maps obtained by the sigmoid operation were upsampled in order to
make the resolution of the weight maps consistent with the resolution of the feature maps
of their corresponding branches, so the weight of a particular position in a branch fused
with the multi-resolution feature.

We also introduced a spatial weighting unit (SWU). For each resolution in PMRNet,
we computed the spatial weights, which are homogeneous to spatial positions. The process
is implemented as:

X→ GAP→ Conv1× 1× 1→ ReLU

→ Conv1× 1× 1→ sigmoid→W,
(2)
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where X denotes the input feature map, and W denotes the output weight map. The global
average pooling (GAP) operator gathers the spatial information of brain tumors from all
positions. By weighting the channels with the spatial weights, each element in the output
channels receives the contribution from all the positions of all the input channels.

AAP
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with different 
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1×1×C
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concatenation

CC

G
A

P
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Figure 3. The structure of CWU. The input feature map of the parallel multi-resolution branch
is subjected to the adaptive average pooling (AAP) operation to make its resolution equal to the
minimum resolution of the branch and concatenated in the channel direction. Then, global average
pooling (GAP) is performed to compress the spatial features of the input feature map, and the
compressed feature maps are subjected to a one-dimensional convolution operation to learn the
importance of different channels.

2.3. Lightweight Multi-Resolution Fusion (LMRF)

The fusion layer between stages in PMRNet is used for information interaction be-
tween multi-resolution branches. The traditional method is to use 3 × 3 × 3 convolutions
with stride = 2 to downsample to reduce the resolution and use the nearest neighbor upsam-
pling to increase the resolution, then use 1 × 1 × 1 convolution to implement dimensionality
reduction. In order to avoid the high computational complexity problem caused by the fu-
sion layer, we propose a lightweight multi-resolution fusion (LMRF) module. The structure
of the LRMF module is shown in Table 3. We use a depthwise separable convolution (DWC)
of 3 × 3 × 3 with stride = 2 to downsample. To solve the computationally intensive problem
of a 1 × 1 × 1 convolution when increasing the resolution, we proposed a method that is
similar to the Ghost module [42] to implement the same function as a 1 × 1 × 1 convolution.
The structure is shown in Figure 4, firstly using a 1 × 1 × 1 convolution to generate a feature
map with the number of channels as half of the number of output channels, and then the
feature map of the required number of channels is generated by DWC and channel-wise
concatenation. This method can achieve the same function as a 1 × 1 × 1 convolution and
reduce feature redundancy.

Conv

1×1×1

Cin×H×W×D Cout/2×H×W×D Cout×H×W×D

...

DWConv 3×3×3

Figure 4. The dimensionality reduction method in LMRF module. This method can achieve the same
function as 1 × 1 × 1 convolution and reduce feature redundancy.
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Table 3. The structure of LRMF module.

Method Input Size Input Channels Details Output Size Output Channels

Downsample 32 × 32 × 32 64 DWConv 3 × 3 × 3 16 × 16 × 16 128

Upsample

32 × 32 × 32 64 Upsample 64 × 64 × 64 64
64 × 64 × 64 64 Conv 1 × 1 × 1 64 × 64 × 64 16
64 × 64 × 64 16 DWConv 3 × 3 × 3 64 × 64 × 64 16
64 × 64 × 64 16 Concat 64 × 64 × 64 3264 × 64 × 64 16

3. Results
3.1. Dataset and Pre-Processing

We evaluate our HMNet on three datasets [43–45]: (1) the BraTS 2018 dataset. It
includes a training set of 285 samples and a validation set of 66 samples. (2) The BraTS
2019 dataset. It includes a training set of 335 samples and a validation set of 125 samples.
(3) The BraTS 2020 dataset. It includes a training set of 369 samples and a validation set
of 125 samples. Every sample in the training set includes four MRI modality images and
a ground truth label, as shown in Figure 5. The size of the MRI images is 240 × 240 ×
155 mm3, with the spacings among voxels are 1 × 1 × 1 mm3. The ground truth label
includes enhancing tumors (label 4), peritumor edema (label 2), and necrotic and non-
enhancing tumor cores (label 1). The validation results need to be uploaded to the online
platform (https://ipp.cbica.upenn.edu/, accessed on 1 December 2022) for validation. The
segmentation results can be divided into three classes: ET (label 1), WT (labels 1, 2 and 4),
and TC (labels 1 and 4).

Figure 5. Visualization of a sample from the BraTS 2020 dataset. From left to right, there are Flair,
T1, T1c and T2, respectively. The fifth image is the ground truth label. Label 1 is the necrotic and
non-enhancing area in red. Label 2 is the edema area in green. Label 4 is the enhancing tumor area
in yellow.

To facilitate model training, we preprocessed the brain MRI images to address the
noise and grayscale inhomogeneity. First, we standardized MRI brain regions to reduce
the influence of intensity inhomogeneity. The strategy of data augmentation was used to
expand the training set in order to prevent the overfitting problem: (1) random mirror flips
in the axial, coronal, and sagittal directions with a probability of 0.5; (2) random rotations
in the range of (−10°, 10°).

3.2. Evaluation Metrics

The performance of HMNet can be evaluated quantitatively using computational
complexity and segmentation accuracy. The Dice similarity coefficient (Dice) and the
95% quantile of Hausdorff distance (Hausdorff95) are used to evaluate the segmentation
accuracy. Dice is a measurement of the similarity between the brain tumor segmentation
result and the ground truth. Hausdorff distance (HD) is used to measure the distance
between the brain tumor segmentation regions and the ground truth. Dice and HD are
defined as [6]:

Dice =
2TP

FP + 2TP + FN
(3)

https://ipp.cbica.upenn.edu/
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HD = d(P, T) = max
{

supp∈Pinft∈Td(p, t), supt∈Tinfp∈Pd(p, t)
}

(4)

where FP, TP, and FN denote the number of false positive, true positive, and false negative
voxels, respectively. P denotes the pixel set of the predicted tumor region, and p denotes
the pixel in the set. T denotes the pixel set of the ground truth, and t denotes the pixel in
the set. d(p, t) is the distance between pixel points. sup denotes the supremum of tumor
region, and in f denotes the infimum of tumor region. The larger the Dice is, the better
the segmentation result of the network is. The smaller the Hausdorff95 is, the closer the
distance between the predicted brain tumor boundary and the ground truth boundary
is, and the higher the segmentation quality is. Parameters (Params) and floating point of
operations (Flops) were used to evaluate the computational complexity of the network.
Params represents the spatial complexity of the network, and Flops represents the time
complexity of the network. They are expressed as:

Params = kd × kh × kw × Cin × Cout (5)

Flops = 2× (kd × kh × kw × Cin)× Cout × d× h× w (6)

where kd, kh and kw denote the depth, height and width of the convolution kernel, respec-
tively. Cin and Cout denote the number of input and output channels, respectively. d, h and
w denote the depth, height and width of the image, respectively.

3.3. Implementation Details

In this paper, the experimental code was carried out in Python 3.6, the server environ-
ment was Ubuntu 16.04, the CPU was Intel Core i9-9900X (3.5HGz), the graphics card was
an Nvidia GTX2080Ti with 11 GB, and all the experimental networks were built using a
PyTorch framework. The experimental parameters were set as follows: the network input
image size was 128 × 128 × 128, the batch size was 2, and the maximum number of training
epochs was 500. The Adam optimizer was used for the automatic optimization of the
network, and the initial learning rate was 10−4. During training, we divided the training
set of every dataset into five parts, four of which were used as the local training set, and
the other one was used as the local validation set. The code of this paper is available at
https://github.com/jia-604/HMNet, accessed on 1 December 2022.

3.4. Comparison with Non-Lightweight Brain Tumor Segmentation Networks

To verify the performance of the proposed network, we conducted comparison ex-
periments between the proposed network and current non-lightweight brain tumor seg-
mentation networks on the BraTS 2020 dataset. The selected non-lightweight comparison
networks are the 3D U-net [24], the NoNew-Net [46], the cascaded 3D densely connected
U-network-based brain tumor segmentation network proposed by Ghaffari et al. [47], the
Transformer-based brain tumor segmentation network proposed by Wang et al. [48], and
the dResU-Net proposed by Raza et al. [49].

The results in Table 4 show that the proposed HMNet has the advantage of low model
complexity compared to the non-lightweight network. Compared with the traditional 3D
U-net, the number of parameters of our network was reduced to a fifth, and the amount
of computation was reduced by 1540.1 G. The Dice of HMNet were 7.5%, 3.9%, and 8.6%
higher than 3D U-net in ET, WT, and CT, respectively, which means that our network is
more accurate than 3D U-net for brain tumor segmentation. Figure 6 shows more obviously
that our network greatly improved segmentation accuracy compared to 3D U-net. It can be
observed in Figure 7 that our network can extract more detailed information than 3D U-net.
Table 4 shows that our network can achieve excellent segmentation results in WT and TC
compared with the other non-lightweight network. Therefore, the HMNet is competitive in
non-lightweight networks.

https://github.com/jia-604/HMNet
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Figure 6. Boxplots of the Dice and Hausdorff95 distances of our proposed HMNet and other networks
on the BraTS 2020 validation set. I, II, III, and IV stand for 3D U-net, DMF-Net, HDC-Net, and
HMNet, respectively.

(a) (b) (d) (e) (f) (c) 

Figure 7. Visualization of segmentation results. Each row represents a different sample. (a) is the
modality of Flair. (b–f) are the segmentation results of 3D Unet, DMF-Net, HDC-Net, HMNet, and
ground truth. The red area is necrosis and non-enhancing, the yellow area is enhancing tumor, and
the green area is edema.
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Table 4. Comparison with other non-lightweight brain tumor segmentation networks on the BraTS
2020 validation set. A (–) denotes that the results are not reported.

Network Params/M Flops/G
Dice Hausdorff95/mm

ET WT TC ET WT TC

3D U-net [24] 16.21 1669.5 0.706 0.862 0.737 39.774 12.720 19.106
Robin et al. [46] 12.42 296.82 0.768 0.891 0.819 38.351 6.320 7.345
Ghaffari et al. [47] – – 0.780 0.900 0.820 7.710 5.140 6.640
Wang et al. [48] – – 0.787 0.900 0.817 17.947 4.964 9.769
Raza et al. [49] – – 0.800 0.860 0.822 – – –
HMNet (ours) 0.80 129.4 0.781 0.901 0.823 21.340 5.954 7.055

3.5. Comparison with Lightweight Brain Tumor Segmentation Networks

To verify the efficiency of our proposed network, we compared the performance of
HMNet and other high-performing lightweight networks. Table 5 and Figure 7 display the
experimental results. We retrained the network in Table 5 on the BraTS 2020 dataset.

Table 5 shows that the HMNet uses only about a quarter of the parameters of 3D
ESP-Net, while the Dice of ET, WT, and TC are improved greatly, increasing by 9.1%, 3.0%,
and 3.7%, respectively. Compared with DMF-Net, HMNet has 79.4% fewer parameters,
while the Dice coefficients of WT and TC have improved by 0.2% and 0.6%, respectively.
HDC-Net is currently the lightest brain tumor segmentation network, but the network is
so light that it leads to poor segmentation metrics. Compared with HDC-Net, the Dice
coefficients of ET, WT, and TC of the segmentation results of HMNet improved by 1.4%,
0.50%, and 2.60%, respectively, and the Hausdorff distances of ET and TC were shortened
by 11.1 mm and 7.1 mm, respectively. As we can see in Figure 7, our network is more
accurate than other networks in segmenting brain tumor boundaries. The above analysis
shows that the proposed network is competitive in lightweight networks, and the proposed
improvement direction is feasible.

Table 5. Comparison with other lightweight brain tumor segmentation networks on the BraTS 2020
validation set.

Network Params/M Flops/G
Dice Hausdorff95/mm

ET WT TC ET WT TC

3D ESP-Net [50] 3.36 76.51 0.690 0.871 0.786 31.299 7.100 14.617
DMF-Net [40] 3.88 27.04 0.783 0.899 0.817 26.255 5.099 11.515
HDC-Net [51] 0.29 25.6 0.767 0.896 0.797 32.435 5.476 14.203
HMNet (ours) 0.80 129.4 0.781 0.901 0.823 21.340 5.954 7.055

3.6. Analysis about the Baseline

We designed a baseline network in which the PMRNet uses an ordinary bottleneck
block in HRNet [32] for feature extraction and used ordinary upsampling and downsam-
pling for multi-resolution fusion. In order to evaluate the effect of the number of Bottleneck
blocks on the network segmentation performance, we set the number of bottleneck blocks
as 1, 2, 3, and 4 in the same experimental environment, corresponding to network 1, net-
work 2, network 3, and network 4, respectively. It can be seen from Table 6 and Figure 8 that
as the number of blocks increased, the number of parameters and computation increased,
but the improvement in segmentation accuracy was not significant, and even the accuracy
of TC decreased. Considering both the network complexity and segmentation accuracy, we
finally set the number of feature extraction blocks for each branch of PMRNet to 1.
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Figure 8. The Dice coefficients of the baseline with different num_block on the BraTS 2020 valida-
tion set.

Table 6. The evaluation metrics of baseline using different num_block.

Network Num_Block Params/M Flops/G
Dice

ET WT TC

1 ×1 6.87 164.4 0.774 0.895 0.804
2 ×2 7.29 168.5 0.768 0.894 0.805
3 ×3 7.74 173.8 0.774 0.892 0.817
4 ×4 8.17 178.5 0.778 0.899 0.800

In order to evaluate the impact of the input size of PMRNet and the Skip operation
on the segmentation results, we designed a series of experiments, the results of which are
shown in Table 7. The experimental results show that the PMRNet input size of 64 × 64 × 64
obtained better segmentation results, and the Skip operation improved the segmentation
Dice of ET regions significantly. There was no decreasing trend in the average Dice of the
three tumor regions, which proves the effectiveness of the Skip operation.

Table 7. The evaluation metrics of baseline using different methods. Here, baseline_W32 and
baseline_W64 represent networks with PMRNet input size of 32 × 32 × 32 and 64 × 64 × 64, respectively,
and without Skip represents the removal of the Skip operation. Avg_Dice refers to the average Dice
of the three tumor regions.

Method Avg_Dice
Dice

ET WT TC

baseline_W32(without Skip) 0.810 0.720 0.896 0.815
baseline_W32 0.812 0.738 0.878 0.820
baseline_W64(without Skip) 0.821 0.748 0.896 0.821
baseline_W64 0.824 0.774 0.895 0.804

3.7. Ablation Experiments

We conducted ablation experiments to evaluate the effectiveness of each module in
HMNet on the BraTS 2020 dataset. The results of the ablation experiments are shown in
Table 8 and Figure 9. We first used the shuffle block to replace the ordinary bottleneck
block as Network 2 in Table 8, which reduced the network parameters by 86% and the
computation by 30.2 G. The Dice coefficient of the ET was reduced by 1.1%, but the Dice
coefficients of the WT and CT were 0.3% and 0.6% higher, respectively. Therefore, the
shuffle block can guarantee no decrease in accuracy based on greatly reducing the network
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complexity. To evaluate the effectiveness of the LCC block, we used the LCC block to
replace the shuffle block as Network 4 in Table 8, which further reduced the parameters and
computation while improving the segmentation accuracy of ET, WT, and CT by 0.9%, 0.2%,
and 0.2% due to the lightweight conditional channel weighting block we designed. From
the segmentation results of Network 3 and Network 6, we can obtain that our LMRF module
reduced the number of network parameters by about 1M, reduced the computational effort
by about 3G, and made improvements in all three brain tumor regions to some extent.
The Dice coefficients of our HMNet for the three brain tumor regions were 0.781, 0.901,
and 0.823, respectively. The visualization of our segmentation results obtained using the
network with different methods is given in Figure 9. The results of HMNet are closer to the
ground truth and have better segmentation results than the baseline, which further proves
the effectiveness of our improved method in our network.

Table 8. The evaluation metrics for networks using different modules.

Network Method Param/M Flops/G
Dice Hausdorff95/mm

ET WT TC ET WT TC

1 baseline 6.87 164.4 0.774 0.895 0.804 21.680 7.854 14.138
2 baseline+Shuffle 0.96 134.2 0.763 0.898 0.810 22.927 5.989 13.457
3 baseline+Shuffle+LMRF 0.85 130.3 0.780 0.897 0.820 27.071 6.536 7.539
4 baseline+LCC 0.92 133.3 0.772 0.900 0.812 27.061 6.024 10.329
5 HMNet(ours) 0.80 129.4 0.781 0.901 0.823 21.340 5.954 7.055

(a) (b) (d) (e) (f) (c) (g) 

Figure 9. Visualization of segmentation results. Each row represents a different sample. (a) is the
modality of Flair. (b–g) are the segmentation results of Network 1 to Network 5 in Table 8 and
the ground truth. The yellow area is the enhancing tumor area. The red area is the necrosis and
non-enhancing area. The green area is the edema area.

3.8. Comparative Experiments on the BraTS 2018 and BraTS 2019 Datasets

In order to evaluate the generalized performance of the HMNet, we compared the
segmentation performance of the HMNet and other advanced networks on the BraTS 2018
and BraTS 2019 datasets.

The results on the BraTS 2018 dataset are shown in Table 9. The experiment results
of 3D U-net, 3D ESP-Net, and DMF-Net are obtained by retraining the networks. The
HMNet was more lightweight than the 3D U-net. The Dice coefficients of the HMNet for
ET, WT, and TC were 0.786, 0.901, and 0.843, respectively. Compared to the 3D ESP-Net and
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DMF-Net, our proposed network had fewer parameters but higher segmentation accuracy.
The Dice coefficients were higher than other networks. The Dice coefficients of HMNet
were 0.9%, 0.6%, and 4.6% higher than the latest network proposed by Akbar et al. [28]
in ET, WT, and CT, respectively, and the Hausdorff95 distances for ET, WT, and TC were
shorter by 1.20 mm, 4.40 mm, and 1.02 mm. The HMNet is more competitive than other
lightweight networks and non-lightweight networks.

Table 9. Comparison with other brain tumor segmentation networks on the BraTS 2018 validation
set. Here, (–) denotes that the results are not reported.

Network Params/M Flops/G
Dice Hausdorff95/mm

ET WT TC ET WT TC

3D U-net 16.21 1669.5 0.759 0.885 0.717 6.040 17.100 11.620
3D ESP-Net [50] 3.36 76.51 0.737 0.883 0.814 5.302 5.463 7.853
DMF-Net [40] 3.88 27.04 0.781 0.899 0.835 3.385 4.861 7.743
Akbar et al. [28] – – 0.777 0.895 0.797 3.90 9.13 8.67
HMNet (ours) 0.80 129.4 0.786 0.901 0.843 2.699 4.727 7.731

Table 10 displays the experiment results on the BraTS 2019 dataset. The results of 3D
U-Net, 3D ESP-Net, DMF-Net, and HDC-Net are obtained by retraining the networks. As
we can see, the Dice coefficients of the HMNet for ET, WT and TC were 0.772, 0.899 and
0.830, respectively. Compared to 3D ESP-Net, the HMNet was lighter, and the Dice was
higher. Compared to DMF-Net and HDC-Net, the Dice coefficients of the HMNet for ET
and WT were about the same but higher for TC. Compared to the latest network proposed
by Wang et al. [48], the Dice for ET was lower by 1.7%, but the Dice for TC was higher by
1.1%. In general, the network we proposed is more competitive than other networks.

Table 10. Comparison with other brain tumor segmentation networks on the BraTS 2019 validation
set. Here, (–) denotes that the results are not reported.

Network Params/M Flops/G
Dice Hausdorff95/mm

ET WT TC ET WT TC

3D U-net 16.21 1669.5 0.737 0.894 0.807 6.41 12.32 10.44
3D ESP-Net [50] 3.36 76.51 0.663 0.871 0.786 6.84 7.42 9.74
DMF-Net [40] 3.88 27.04 0.776 0.900 0.815 2.99 4.64 6.22
HDC-Net [51] 0.29 25.6 0.773 0.893 0.818 4.19 6.74 7.98
Wang et al. [48] – – 0.789 0.900 0.819 3.73 5.64 6.04
HMNet (ours) 0.80 129.4 0.772 0.899 0.830 4.01 5.21 6.57

4. Discussion

In this paper, we proposed a lightweight brain tumor segmentation network HMNet.
Specifically, the shape, size and location of brain tumors vary greatly among patients, and
noise is introduced during MRI scanning, resulting in blurred boundaries between tumor
regions, making it difficult to segment brain tumors accurately. In addition, the networks
based on 3D convolutions are computationally intensive, so these networks are not efficient
enough for clinical practice. To balance segmentation accuracy and network complexity,
we designed a hierarchical multi-scale brain tumor segmentation network.

We ran tests on the BraTS 2020 dataset to verify the effectiveness of the HMNet.
The dice similarity coefficients of HMNet for ET, WT, and TC are 0.781, 0.901, and 0.823,
respectively. Extensive experiments on the BraTS 2018, BraTS 2019, and BraTS 2020 datasets
show that the proposed network has achieved satisfactory performance compared with the
SOTA approaches.

Compared with the baseline network in Table 8, the parameters and flops of HMNet
are significantly reduced while improving segmentation accuracy. The reason for this is that
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we introduce the depthwise separable convolution to replace the traditional 3 × 3 × 3 con-
volutions in the LCC block and LMRF module and replace the costly 1 × 1 × 1 convolution
in the 3D shuffle block with CWU and SWU to overcome the problem of the heavily-used
1 × 1 × 1 convolution. HMNet has higher segmentation accuracy than the baseline network
because the CWU and SWU make the network more focused on the areas associated with
the tumor. In addition, the LMRF module and LCC block adopt the idea of feature reuse,
where shallow feature information is directly used by deeper layers to prevent network
degradation or overfitting. This can reduce the computational effort while reducing feature
redundancy and improving the segmentation accuracy of the network.

Compared with other non-lightweight brain tumor segmentation networks, our pro-
posed HMNet has better segmentation performance and lower model complexity. This is
mainly because the PMRNet maintains the high-resolution features during feature propa-
gation and ensures that the features contain accurate detailed information. However, the
networks based on U-net lose some image detail information from multiple downsampling,
especially at the edges of brain tumors. Moreover, our proposed HMNet is competitive with
other lightweight brain tumor segmentation networks. Some lightweight networks such as
DMF-Net and HDC-Net are based on U-net, so they may lose some important information.
Furthermore, HDC-Net is too light to segment brain tumor boundaries accurately. Overall,
our network achieves a better balance of accuracy and complexity.

5. Conclusions

In this paper, we propose a hierarchical multi-scale brain tumor segmentation network
(HMNet), which consists of a high-resolution master branch with the highest resolution and
three branches from high to low resolution, in which we can maintain the high resolution
of the input image throughout the path based on parallel high-resolution feature extraction,
thus preserving spatial details and performing more accurate tumor region segmentation for
brain tumors, especially for fuzzy boundaries. Our network has the following advantages:
(1) the multi-scale branches can provide different sensory fields for brain tumors of different
sizes, which can effectively segment brain tumors of different shapes, sizes, and locations;
(2) the network exchanges and fuses multi-scale features during feature propagation, which
makes the extracted rich brain tumor feature; and (3) the introduction of a lightweight
conditional channel weighting (LCC) block instead of the original 3D convolution and
the use of the lightweight multi-resolution fusion (LMRF) module for feature fusion can
greatly reduce the number of parameters and computation and improve computational
efficiency. The effectiveness of the network is verified by a series of ablation experiments
conducted on the BraTS 2020 dataset. Finally, the comparison with current state-of-the-art
networks on the BraTS 2018 and BraTS 2019 datasets demonstrates the competitiveness of
the HMNet.
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