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Abstract: Background: Long-term coronavirus disease 2019 (long COVID) is associated with physio-
somatic (chronic fatigue syndrome and somatic symptoms) and affective (depression and anxiety)
symptoms. The severity of the long COVID physio-affective phenome is largely predicted by
increased peak body temperature (BT) and lowered oxygen saturation (SpO2) during the acute
infectious phase. This study aims to delineate whether the association of BT and SpO2 during the
acute phase and the long COVID physio-affective phenome is mediated by neurotoxicity (NT) result-
ing from activated immune-inflammatory and oxidative stress pathways. Methods: We recruited
86 patients with long COVID (3–4 months after the acute phase) and 39 healthy controls and assessed
serum C-reactive protein (CRP), caspase 1, interleukin (IL) 1β, IL-18, IL-10, myeloperoxidase (MPO),
advanced oxidation protein products (AOPPs), total antioxidant capacity (TAC), and calcium (Ca), as
well as peak BT and SpO2 during the acute phase. Results: Cluster analysis revealed that a significant
part (34.9%) of long COVID patients (n = 30) show a highly elevated NT index as computed based on
IL-1β, IL-18, caspase 1, CRP, MPO, and AOPPs. Partial least squares analysis showed that 61.6% of
the variance in the physio-affective phenome of long COVID could be explained by the NT index,
lowered Ca, and peak BT/SpO2 in the acute phase and prior vaccinations with AstraZeneca or Pfizer.
The most important predictors of the physio-affective phenome are Ca, CRP, IL-1β, AOPPs, and MPO.
Conclusion: The infection–immune–inflammatory core of acute COVID-19 strongly predicts the
development of physio-affective symptoms 3–4 months later, and these effects are partly mediated by
neuro-immune and neuro-oxidative pathways.

Keywords: long COVID; depression; chronic fatigue syndrome; neuro-immune; inflammation;
oxidative stress; antioxidants

1. Introduction

While the infection rate for severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has fallen globally [1,2], a new concern has arisen among many post-infection
individuals with long COVID symptoms [3]. Several studies have reported a cluster of per-
sistent symptoms extending beyond full recovery for coronavirus disease (COVID-19) [4–6].
These symptoms appear after up to two (infection-related), three (acute post-COVID),
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six (prolonged post-COVID), or more (chronic post-COVID) months following the acute
infectious phase [7]. Many individuals (74-87.4%) with long COVID suffer from a variety of
mental and physio-somatic symptoms after recovery from the acute phase [8,9], including
chronic fatigue, affective symptoms (low mood and anxiety), cognitive dysfunctions, and
sleep disturbances, along with somatic manifestations, such as autonomic symptoms, mus-
cle pain, muscle tension, headache, a flu-like malaise, gastro-intestinal symptoms (GISs),
shortening of breath, persistent cough, and chest pain [5,6,8,10–19]. Available treatments
are limited, as there is no clear understanding of the pathophysiological mechanism.

The immunopathogenesis of the acute infectious phase of COVID-19 comprises activa-
tion of the cytokine network with induction of interferons; interleukin (IL) 1, IL-6, IL-12,
IL-18, and tumor necrosis factor (TNF) α signaling; activation of the nucleotide-binding do-
main, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome;
and activation of key antiviral pathways, toll-like-receptor cascades, and NOD-like receptor
signaling [20–23]. The NLRP3 is a key component of the innate immune system and an
intracellular sensor that is induced by pathogen-associated and damage-associated molecu-
lar patterns [24,25]. NLRP3 activation causes increased levels of caspase 1, IL-1β, and IL-18
and cell death or pyroptosis [26,27]. Increased peak body temperature (BT) and lowered
oxygen saturation (SpO2) reflect the severity of the immune–inflammatory response during
acute COVID and predict critical COVID-19 and increased mortality [28–30].

Recently, we introduced a new concept—namely, the physio-affective phenome of
acute and long COVID—to describe the physio-somatic (fatigue and somatic symptoms)
and affective (depression and anxiety) symptoms in both illnesses (see [29,31,32] for re-
views). Thus, in acute and long COVID, a validated latent construct could be derived from
depressive, anxiety, chronic fatigue, and multiple physio-somatic symptoms; therefore, this
factor score reflects the severity of the intertwined increases in physio-somatic and affective
symptoms [29,31,32].

In acute COVID-19, this physio-affective phenome was largely explained by the cumu-
lative effects of increased pro-inflammatory cytokines, including IL-6 and soluble advanced
glycation products (sRAGEs); changes in acute-phase proteins, including C-reactive protein
(CRP) and albumin; lowered calcium (Ca); pneumonia as indicated by chest computerized
tomography scan abnormalities (CCTAs); and diminished SpO2 [31]. Moreover, elevated
peak BT and lowered SpO2 during the acute phase of infection predict the physio-affective
phenome of long COVID [29]. In long COVID, the severity of the physio-affective phe-
nome was also predicted by increased oxidative toxicity as indicated by increased levels
of malondialdehyde (MDA), protein carbonyls (PCs), myeloperoxidase (MPO), and nitric
oxide (NO), as well as lowered antioxidant defenses as indicated by lowered zinc and
glutathione peroxidase (Gpx) [32]. Moreover, the oxidative toxicity/antioxidant ratio was
significantly predicted by increased peak BT and lowered SpO2 [32]. These results indicate
that the immune–inflammatory response in acute COVID-19 predicts, at least in part, the
physio-affective symptoms of long COVID and that these effects are partly mediated by
increased neuro-oxidative toxicity [31,32].

It is important to note that neuro-immune and nitro-oxidative toxicity play key roles
in the pathophysiology of chronic fatigue syndrome (CFS), major depression (MDD), and
generalized anxiety disorder (GAD) [33–36]. There is now also evidence that upregulation
of the NLRP3 inflammasome plays a key role in MDD [37,38], fatigue [39,40], cognitive
impairments [41], and anxiety [42,43]. Nevertheless, there are no data showing whether
the NLRP3 inflammasome and lowered Ca are involved in the physio-affective phenome
of long COVID.

Hence, this study was performed to determine (a) the effects of the NLRP3 inflam-
masome (IL-1β, IL-18, and caspase 1), inflammatory response (CRP), oxidative stress
(advanced oxidation protein products (AOPPs) and MPO), total antioxidant capacity (TAC),
and lowered Ca on the physio-affective phenome of long COVID; and (b) whether neuro-
immune and neuro-oxidative toxicity is predicted by lowered SpO2 and increased peak BT
during the acute phase. The specific hypotheses were that the physio-affective phenome of
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long COVID is predicted by lowered SpO2 and increased peak BT and that these effects are,
at least in part, mediated by increased neurotoxicity (NT) due to increased caspase 1, IL-1β,
IL-18, CRP, MPO, and AOPP and lowered TAC and Ca levels. The data were analyzed using
the new precision nomothetic psychiatry approach [30,44], which involved the construction
of a new endophenotype class of long COVID.

2. Participants and Methods
2.1. Participants

We used the World Health Organization (WHO, Geneva, Switzerland) criteria to
diagnose long COVID patients [45]. These criteria were that: (a) daily life activities of the
patients should be influenced minimally by two symptoms (fatigue, impairment of memory
or concentration, achy muscles, absence of smell or taste senses, affective symptoms, and
cognitive impairment); (b) patients should have had a confirmed infection with COVID-19;
(c) the symptoms should persist beyond the acute phase or should become apparent
2–3 months later; and (d) the symptoms should last for at least two months [45] and be
present 3–4 months after recovery. Accordingly, 86 long COVID patients participated in
the current study, clustered into two groups: long COVID with low (n = 56) and high
(n = 30) NT (as defined below). All Long COVID patients sought professional assistance
for post-COVID symptoms and exhibited varying degrees of reduced functioning and
productivity, as well as an increased inability to perform daily tasks as effectively as they
did prior to COVID infection. Additionally, we recruited 39 apparently healthy controls
who did not show any clinical signs of infection and showed negative test results in reverse
transcription real-time polymerase chain reaction (rRT-PCR) tests when included in the
study. All participants were recruited between September and December 2021. The present
study involved a combined methodology; namely, investigation of the impact of acute-
phase COVID-19 on long COVID symptoms (retrospective study design) and comparison
of abnormalities in long COVID patients versus healthy controls (case–control design).

In the acute COVID-19 phase, specialized clinicians and virologists diagnosed patients
with a positive COVID-19 infection based on: (a) severe symptoms of infection, such
as fever, cough, shortness of breath, and the loss of smell and taste senses; (b) positive
rRT-PCR test results; and (c) positive immunoglobulin M (IgM) against SARS-CoV-2. All
patients were quarantined and treated at several hospitals and specialized centers within
Al-Najaf city, Iraq: Al-Sader Medical City of Najaf, Al-Hakeem General Hospital, Al-Zahraa
Teaching Hospital for Maternity and Pediatrics, Imam Sajjad Hospital, Hassan Halos Al-
Hatmy Hospital for Transmitted Diseases, the Middle Euphrates Center for Cancer, and
Al-Najaf teaching hospital.

All participants with long COVID were free of any signs of acute COVID-19—namely,
dry cough, sore throat, shortness of breath, fever, night sweats, and chills—and, before
participating in the current study, patients and controls showed negative rRT-PCR test
results. Around 33% of the participants in the control group had minor mental symptoms,
such as low mood, anxiety, and fatigue, resulting from the quarantine period and lack of
social activities, which may also affect patients with long COVID. We excluded subjects with
a previous major depressive episode, bipolar disorder, dysthymia, GAD, panic disorder,
schizo-affective disorder, schizophrenia, psycho-organic syndrome, substance use disorders
(except tobacco use disorder (TUD)), or neurodegenerative and inflammatory diseases,
such as CFS [46]. We also excluded subjects with liver and renal disease, Parkinson’s or
Alzheimer’s disease, multiple sclerosis, stroke, or systemic (auto)immune diseases, such
as diabetes mellitus, psoriasis, rheumatoid arthritis, inflammatory bowel disease, and
scleroderma, as well as pregnant and breastfeeding women.

The present study was designed and performed in line with Iraqi and international ethi-
cal and privacy laws, including the World Medical Association’s Declaration of Helsinki, the
Belmont Report, the Council for International Organizations of Medical Sciences (CIOMS)
Guideline, and the International Conference on Harmonization of Good Clinical Prac-
tice. Our institutional review board adheres to the International Guidelines for Human
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Research Safety (ICH-GCP). We obtained written consent from all participants, parents,
or any legally responsible person prior to involvement in our study. The institutional
ethics board and the Najaf Health Directorate—Training and Human Development Center
approved our research according to their documents with the numbers 8241/2021 and
18378/2021, respectively.

2.2. Clinical Measurements

Three to four months after recovery from acute COVID-19, a semi-structured inter-
view was conducted by a senior psychiatrist to obtain the socio-demographic and clinical
characteristics of all participants. The psychiatrist assessed several symptom domains,
including chronic fatigue and fibromyalgia symptoms utilizing the Fibro Fatigue (FF)
scale [47], severity of depression using the Hamilton Depression Rating Scale (HAMD) [48]
and the Beck Depression Inventory II (BDI-II) [49], and severity of anxiety symptoms
using the Hamilton Anxiety Rating Scale (HAMA) [50]. Moreover, we utilized those rating
scale items to derive subdomains for the major symptoms. We made two subdomains
with the HAMD; the first was pure depressive symptoms (pure HAMD), which was the
sum of sad mood, feelings of guilt, suicidal thoughts, and loss of interest; and the second
was physio-somatic HAMD (physiosom HAMD), which was the sum of somatic anxi-
ety, gastrointestinal (GIS) anxiety, genitourinary anxiety, and hypochondriasis. Likewise,
two subdomains of the HAMA were computed; namely, pure anxiety symptoms (pure
HAMA), the sum of anxious mood, tension, fears, anxiety, and anxious behavior during
the interview, and physio-somatic HAMA symptoms (physiosom HAMA), the sum of
somatic sensory, cardiovascular, genitourinary, and autonomic symptoms, as well as GIS.
Furthermore, after omitting items reflecting cognitive and affective symptoms in the FF
scale, a pure physio-somatic FF (pure FF) score was computed as the sum of muscular
pain, muscle tension, fatigue, autonomous symptoms, GIS, headache, and flu-like malaise.
We also computed the sum of all pure depressive BDI-II (pure BDI) symptoms—thus ex-
cluding physio-somatic symptoms—including sadness, discouragement about the future,
feeling like a failure, dissatisfaction, feeling guilty, feeling punished, self-disappointment,
self-criticism, suicidal ideation, crying, loss of interest, difficulties with decisions, and work
inhibition. In our previous studies, the physio-affective phenome was defined [29,31] as the
first factor extracted from the pure FF and BDI scores and the pure and physiosom HAMA
and HAMD scores. The DSM-5 criteria were used to diagnose TUD. Weight in kilograms
was divided by height in meters and squared to calculate the body mass index (BMI).

We used the patients’ records to determine the lowest SpO2 and peak BT values,
which were obtained during hospitalization for the acute infectious phase. The assessments
were undertaken by a well-trained paramedical professional who employed an electronic
oximeter manufactured by Shenzhen Jumper Medical Equipment Co. Ltd. and a sublingual
digital thermometer with a beep sound. By subtracting the z-transformed SpO2 values from
the z-transformed peak BT values, we generated a new index involving both lowered SpO2
and increased peak BT (dubbed the TO2 index). Additionally, we recorded the different
types of vaccines received by the patients; namely, AstraZeneca (Cambridge, UK), Pfizer
(New York, NY, USA), and Sinopharm (Beijing, China).

2.3. Assays

Five milliliters of venous blood were sampled using disposable syringes at 7:30–9:00 am
after an overnight fast. The blood was then transferred directly to serum tubes. We avoided
any hemolyzed, lipemic, and icteric blood samples. All tubes were centrifuged at 3000 rpm
after 10 min incubation at room temperature. Then, we produced three aliquots of serum,
which were stored at −70 ◦C in Eppendorf tubes until they were thawed for assaying. We
employed ELISA kits provided by Nanjing Pars Biochem Co., Ltd. (Nanjing, China) to
assess serum levels of IL-1β, IL-18, IL-10, caspase 1, MPO, TAC, and AOPPs (albumin ratio).
Total serum Ca was measured spectrophotometrically using ready-to-use kits obtained
from Agappe Diagnostics Ltd., Cham, Switzerland. We used a z unit-based composite
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score to determine a new NT index by computing the z transformation of IL-1β (z IL-1β) +
z IL-18 + z caspase 1 + z MPO + z AOPP + z CRP.

2.4. Statistical Analysis

In the present study, IBM SPSS software, version 28, was used to carry out the statistical
analyses. We conducted analysis of variance (ANOVA) to delineate the differences in
continuous variables among the study groups and analysis of contingency tables to examine
associations between nominal variables. Pearson product–moment correlation coefficients
were used to analyze the relationship between two scale variables. Multivariate and
univariate general linear models (GLM) were used to examine the association between
clinical and biomarker data and the diagnostic categories while allowing or controlling for
age, TUD, sex, BMI, and education. Estimated marginal mean (SE) values were computed
and multiple group mean differences were assessed using Fisher’s protected (the omnibus
test is significant) least significant difference (LSD). The ability of biomarkers and clinical
variables to predict the physio-affective symptoms was determined through multiple
regression analysis. We utilized an automated stepwise approach with a p-to-enter of
0.05 and p-to-remove of 0.06. For each of the explanatory variables, we computed the
standardized beta-coefficients, t-statistics, and exact p-value, along with F-statistics and
the total variance explained (R2). Furthermore, we used the variance inflation factor and
tolerance to examine multicollinearity. The heteroskedasticity was checked by employing
the White and modified Breusch–Pagan tests. We used cluster analysis (two-step) and
followed the precision nomothetic approach [30] to construct endophenotype classes of
patients with long COVID based on a combination of SpO2, peak BT, and the neurotoxic
biomarkers in a z unit-based composite score (z IL-1β + z IL-18 + z caspase 1 + z MPO +
z AOPP + z CRP) dubbed the NT index. The cluster solution was considered adequate
when the silhouette measure of cohesion and separation was > 0.5. Canonical correlation
analysis was employed to investigate the correlations between two sets of variables; namely,
physio-affective symptoms 3–4 months after acute COVID infection as the dependent
variables and biomarkers as explanatory variables. The variance explained by the canonical
variables of both sets was computed, as well as the variance in the canonical dependent
variable set explained by the independent canonical variable set. We accepted the canonical
components when the explained variance of both sets was > 0.50 and when all canonical
loadings were >0.5.

Partial least squares (PLS) analysis was used to study the causative relationships
between SARS-CoV-2 infection, peak BT, and lowest SpO2 during the acute phase of
disease and the physio-affective phenome of long COVID, whereby the effects of the input
variables were partly mediated by NT and other biomarkers. All input variables were
inputted as single indicators, and the output variable was a latent vector extracted from the
values for the pure and physiosom HAMA and HAMD and pure FF and BDI (the physio-
affective phenome). Complete PLS analysis was conducted only when the outer and inner
models met the following prespecified quality criteria: (a) all loadings on the extracted
latent vector were >0.6 at p < 0.001; (b) the output latent vector showed high construct
and convergence validity, as indicated by rho A > 0.8, Cronbach’s alpha > 0.7, composite
reliability > 0.7, and average variance extracted (AVE) > 0.5; (c) blindfolding demonstrated
that the construct’s cross-validated redundancy was sufficient; (d) confirmatory tetrad
analysis (CTA) demonstrated that the latent vector extracted from the rating scale scores
was not mis-specified as a reflective model; (e) the model’s prediction performance as
measured by PLS Predict was satisfactory; and (f) the model fit was <0.08 in terms of
standardized root squared residual (SRMR) values. If all model quality data conformed
with the prespecified criteria, we conducted a complete PLS-SEM pathway analysis with
5000 bootstrap samples and calculated the path coefficients (with p-values), as well as
specific and total indirect (mediated) effects and total effects. The primary statistical
analyses were the results of multiple regression analyses, particularly those conducted
with PLS-SEM.
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3. Results
3.1. Socio-Demographic Data

We employed a two-step cluster analysis to classify the patients with long COVID
into two groups using the peak BT, SpO2, and the NT index (IL-1β + IL-18 + caspase 1+
MPO + AOPP + CRP) with the aim of developing a new biomarker-derived endophenotype
class within the long COVID patient group. The diagnosis of long COVID and the peak
BT, lowered SpO2, and NT composite score were entered into the cluster analysis as the
nominal variable and the continuous variables, respectively. According to the silhouette
measure of cohesion and separation of 0.53, the quality of the clusters was adequate. Three
clusters were derived; namely, the healthy control sample (n = 39); patients with high peak
BT, lowered SpO2, and an increased NT index (dubbed high TO-NT—T for temperature, O
for SpO2, and NT for neurotoxicity) (n = 30); and patients (n = 56) with less pronounced
changes in these biomarkers (dubbed low TO-NT). Therefore, long COVID patients were
classified based on the combination of two acute COVID-19 phase markers and blood
biomarkers 3–4 months after clinical recovery.

Socio-demographic and clinical data for the three groups are presented in Table 1.
SpO2, peak BT, the TO2 index, and the NT index were significantly different between the
high and low TO-NT clusters. No significant changes were detected between these groups
in terms of age, sex, BMI, marital state, smoking status, residency status, vaccination state,
or education.

Table 1. Socio-demographic data, body temperature (BT), and oxygen saturation (SpO2) in healthy
controls (HC) and long COVID patients classified according to peak body temperature (BT), oxygen
saturation (SpO2), and neurotoxicity (NT) index as long COVID with high (high TO-NT) versus low
(low TO-NT) levels of these biomarkers.

Variables HC (n = 39) A Low TO-NT (n = 56) B High TO-NT (n = 30) C F/X2 df p

Age (years) 28.3 (7.6) 27.6 (5.4) 29.8 (7.3) 1.15 2/122 0.320

Sex (M/F) 42/15 40/16 22/8 1.42 2 0.512

Marital state (Ma/S) 22/17 31/25 18/12 0.18 2 0.946

Smoking (Y/N) 13/26 16/40 11/19 0.64 2 0.732

Residency (U/R) 31/8 46/10 25/5 0.19 2 0.914

Vaccination
(A/Pf/S) 9/21/9 14/31/11 6/17/7 0.42 4 0.979

BMI (Kg/m2) 25.60 (3.97) 25.71 (3.74) 26.96 (5.75) 0.99 2/122 0.372

Education (years) 15.0 (1.3) 15.7 (1.8) 15.5 (1.7) 2.73 2/122 0.069

Peak BT (°C) 36.86 (0.25) B,C 38.20 (0.64) A,C 39.31 (0.83) A,B 138.38 2/122 <0.001

Lowest SpO2 (%) 95.08 (1.52) B,C 92.41 (2.74) A,C 88.27 (4.62) A,B 42.81 2/122 <0.001

TO2 index (z scores) −1.01 (0.240) B,C 0.054 (0.52) A,C 1.21 (0.86) A,B 131.43 2/122 <0.001

Composite NT
(z score) −0.595 (0.85) B,C −0.143 (0.80) A,C 1.04 (0.66) A,B 37.91 2/122 <0.001

Results are shown as means (SD). F: results of analysis of variance; X2: analysis of contingency tables, df: degrees
of freedom. A,B,C: Results of pairwise comparisons among group means. TO-NT: (T) temperature, (O) oxygen
saturation, (NT) neurotoxic index. M: male, F: female, Ma: married, S: single, U: urban, R: rural, BMI: body mass
index, A: AstraZeneca, Pf: Pfizer, S: Sinopharm, Y: yes, N: no. TO2 index computed as z BT—z SpO2; neurotoxicity
(NT) computed as a z unit-based composite score.

3.2. Differences in Psychiatric Rating Scales between Study Groups

Table 2 shows the measurements of the rating scales; namely, the total and subdomain
scores. There were significant differences among the three study groups in total and pure
HAMD, HAMA, BDI, and FF and physiosom HAMD and HAMA scores. Table 2 shows
that the scores of all scales and subscales, except pure HAMA, increased from controls to the
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low TO-NT group to the high TO-NT group. The pure HAMA score was not significantly
different between the two patient groups but was higher in the latter than in controls.

Table 2. Clinical rating scale scores in healthy controls (HC) and long COVID patients classified
according to peak body temperature (BT), oxygen saturation (SpO2), and neurotoxicity (NT) index as
long COVID with high versus low levels of these biomarkers (dubbed TO-NT).

Variables HC (n = 39) A Low TO-NT
(n = 56) B

High TO-NT
(n = 30) C

F/X2

df = 2/119
p

Total HAMD 5.5 (0.67) B,C 15.7 (0.6) A,C 19.1 (0.8) A,B 105.21 <0.001

Total BDI 8.6 (1.0) B,C 23.5 (0.9) A,C 27.0 (1.2) A,B 85.35 <0.001

Total HAMA 7.8 (1.1) B,C 15.4 (0.9) A,C 19.5 (1.3) A,B 26.23 <0.001

Total FF 10.9 (1.8) B,C 24.7 (1.5) A,C 35.4 (2.0) A,B 43.05 <0.001

Pure FF (z score) −0.877 (0.122) B,C 0.146 (0.101) A,C 0.867 (0.138) A,B 46.06 <0.001

Pure HAMD (z score) −0.964 (0.118) B,C 0.296 (0.098) A,C 0.702 (0.133) A,B 51.04 <0.001

Pure BDI (z score) −1.030 (0.113) B,C 0.348 (0.094) A,C 0.700 (0.128) A,B 62.79 <0.001

Pure HAMA (z score) −0.606 (0.139) B,C 0.190 (0.115) A 0.432 (0.157) A 14.37 <0.001

Physiosom HAMA (z score) −0.495 (0.145) B,C 0.029 (0.120) A,C 0.588 (0.164) A,B 12.21 <0.001

Physiosom HAMD (z score) −1.031 (0.118) B,C 0.347 (0.098) A,C 0.702 (0.133) A,B 57.93 <0.001

All results of univariate GLM analysis; data are expressed as estimated marginal mean (SE) values obtained by
GLM analysis after covarying for age, sex, education, and smoking. A,B,C: Results of pairwise comparisons among
group means. FF: Fibro Fatigue scale, HAMA: Hamilton Anxiety Rating Scale, HAMD: Hamilton Depression
Rating Scale, BDI: Beck Depression Inventory II, Physiosom: physio-somatic.

3.3. Differences in Biomarkers between Study Groups

The measurements of the biomarkers in both classes of patients with long COVID
versus healthy controls are displayed in Table 3. CRP and AOPP were significantly different
between the three study groups. Caspase 1 was significantly higher in the high TO-NT
class than in the two other groups. There was a trend towards higher IL-1β levels in the
high TO-NT group than in controls and significantly higher IL-10 in both long COVID
groups than in controls. Total Ca was lower in patients than in controls.

Table 3. Biomarkers in healthy controls (HC) and long COVID patients classified according to peak
body temperature (BT), oxygen saturation (SpO2), and neurotoxicity (NT) index as long COVID with
high (high TO-NT) versus low (low TO-NT) levels of these biomarkers.

Biomarkers HC (n = 39) A Low TO-NT
(n = 56) B

High TO-NT
(n = 30) C

F/X2

df = 2/117
p

Caspase 1 (pg/mL) 73.90 (3.27) C 71.83(2.75) C 85.57(3.75) A,B 4.54 0.013

IL-1β (pg/mL) 4.58 (0.33) C 5.21(0.282) 5.81(0.385) A 2.95 0.056

IL-18 (pg/mL) 233.9 (11.91) 231.62(10.02) 261.32(13.67) 1.67 0.192

IL-10 (pg/mL) 9.09 (1.08) B,C 14.10(0.911) A 13.06(1.24) A 6.50 0.002

CRP (mg/L) 5.02 (0.53) B,C 6.32 (0.443) A,C 10.11 (0.604) A,B 27.08 <0.001

MPO (ng/mL) 43.1 (3.3) 49.9 (2.8) 51.3 (3.8) 1.72 0.184

TAC (U/mL) 6.74 (0.51) 6.78 (0.43) 7.02 (0.58) 0.08 0.925

AOPP (µmol/g) 0.92 (0.14) B,C 1.29 (0.12) A,C 1.76 (0.16) B,C 7.80 0.001

Total calcium (mM) 2.56 (0.03) B,C 2.26 (0.02) A 2.33 (0.03) A 40.45 <0.001

All results of univariate GLM analysis; data are expressed as estimated marginal mean (SE) values obtained by
GLM analysis after covarying for age, sex, education, and smoking. A,B,C: Results of pairwise comparisons among
group means. IL: interleukin, CRP: C-reactive protein, MPO: myeloperoxidase, TAC: total antioxidant capacity,
AOPP: advanced oxidation protein product.
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3.4. Prediction of the Physio-Affective Phenome Using TO2, NT, and Total Ca

Table 4 shows multiple regression analyses with the physio-affective phenome as the de-
pendent variable and TO2, NT, and total Ca as explanatory variables. In regressions #1 and #2,
we introduced the first PC extracted from the pure FF, HAMD, HAMA, and BDI and physio-
som HAMD and HAMA scores (dubbed the physio-affective phenome PC score, reflecting
overall severity) as the dependent variable. We found that 46.0% of the variance in this PC
(regression #1) was explained by the total Ca, the NT index, and BMI. Figures 1 and 2 show
the partial regression of the physio-affective PC score for the total Ca and the NT index,
respectively. After introducing peak BT and SpO2 in regression #2, we found that a large
part of the variance (52.4%) in the physio-affective phenome PC was explained by peak BT
and NT (both positively associated). Figure 3 shows the partial regression of the phenome
score for peak BT. In all regression analyses performed with the pure FF, HAMD, HAMA,
and BDI scores and the physiosom HAMD and HAMA scores, the NT index and total Ca
were always the most significant predictors.

Table 4. Results of multiple regression analyses with different physio-somatic and affective rating
scale scores as dependent variables and peak body temperature (BT), oxygen saturation (SpO2),
neurotoxicity (NT), and biomarkers as explanatory variables.

Dependent Variables Explanatory
Variables B t p Model R2 F df p

#1 Physio-somatic phenome

Model
Total calcium

NT
BMI

−0.414
0.420
0.164

−6.00
6.16
2.42

<0.001
<0.001
0.017

0.460 34.06 3/120 <0.001

#2 Physio-somatic phenome

Model
Peak BT
Calcium

NT

0.472
−0.253
0.229

6.29
−3.76
3.38

<0.001
<0.001
<0.001

0.574 53.88 3/120 <0.001

#3 Pure FF

Model
Total calcium

CRP
Education

AOPP
AstraZeneca
vaccination

BMI

−0.346
0.242
0.192
0.214
0.166
0.149

−4.56
3.09
2.59
2.74
2.23
1.99

<0.001
0.002
0.011
0.007
0.027
0.048

0.371 11.61 6/118 <0.001

#4 Pure HAMD

Model
Total calcium

CRP
Education

AstraZeneca
vaccination

AOPP
MPO

−0.381
0.224
0.244
0.186
0.201
0.155

−5.25
2.97
3.37
2.58
2.67
2.11

<0.001
0.004
0.001
0.011
0.009
0.037

0.413 13.86 6/118 <0.001

#5 Pure BDI

Model
Total calcium

AOPP
Education

CRP
Interleukin-1β

−0.368
0.247
0.197
0.218
0.174

−4.87
3.17
2.61
2.80
2.22

<0.001
0.002
0.010
0.006
0.028

0.372 14.12 5/119 <0.001

#6 Pure HAMA

Model
Total calcium

CRP
MPO

−0.296
0.204
0.170

−3.52
2.42
2.06

0.001
0.017
0.041

0.183 9.06 3/121 <0.001
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Table 4. Cont.

Dependent Variables Explanatory
Variables B t p Model R2 F df p

#7 Physiosom HAMD

Model
Total calcium

CRP
Interleukin 18

Vaccination
Sinopharm

−0.432
0.301
0.181
−0.159

−5.84
4.07
2.49
−2.19

<0.001
<0.001
0.014
0.030

0.374 17.88 4/120 <0.001

#8 Physiosom HAMA

Model
Total calcium

MPO
BMI

−0.301
0.231
0.207

−3.70
2.85
2.53

<0.001
0.005
0.013

0.217 11.17 3/121 <0.001

FF: Fibro Fatigue scale, HAMA: Hamilton Anxiety Rating Scale, HAMD: Hamilton Depression Rating Scale, BDI:
Beck Depression Inventory, Physiosom: physio-somatic, BMI: body mass index, CRP: C-reactive protein, AOPP:
advanced oxidation protein product, MPO: myeloperoxidase. Vaccinations: entered as dummy variables (yes = 1,
no = 0).

Figure 1. Partial regression for the physio-affective phenome score in long COVID patients and
healthy controls against the neurotoxicity index (IL-1β + IL-18 + caspase 1 + MPO + AOPP + CRP).

In order to detect whether a common factor extracted from the NT and TO2 indexes
and the total Ca was associated with a common factor extracted from the clinical scales, we
performed canonical correlation analyses. Table 5 shows the results of this analysis, with
the clinical scales as the set of dependent variables and NT, TO2, and calcium as the set of
explanatory variables. The canonical component extracted from the NT composite, TO2,
and total Ca strongly correlated with physio-affective symptoms and explained 35.5% of
the variance in the latter.
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Figure 2. Partial regression for the physio-affective phenome score in long COVID patients and
healthy controls against serum total calcium.

Figure 3. Partial regression for the physio-affective phenome score in long COVID patients and
healthy controls on peak body temperature.
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Table 5. Results of canonical correlation analyses examining the associations between two sets of
variables; namely, set 1: the physio-somatic and affective rating scale scores as dependent variables,
and set 2: neurotoxicity (NT), a composite based on peak body temperature and SpO2 (TO2 index),
and serum calcium as explanatory variables.

Sets Variables Canonical Loadings

Set 1
Dependent

Pure FF 0.845

Pure HAMD 0.815

Physiosom HAMD 0.784

Pure HAMA 0.585

Physiosom HAMA 0.629

Pure BDI 0.825

Set 2
Explanatory

NT composite 0.670

TO2 index 0.875

Total calcium 0.674

Statistics

F (df) 8.675 (18/325)

P <0.001

Correlation 0.799

Set 1/set 2 0.355

Set 2 by itself 0.556

Set 1 by itself 0.569
FF: Fibro Fatigue scale, HAMA: Hamilton Anxiety Rating Scale, HAMD: Hamilton Depression Rating Scale,
BDI: Beck Depression Inventory, Physiosom: physio-somatic, NT: a z unit-based composite score reflecting
neurotoxicity; TO2: computed as z peak BT—SpO2.

3.5. Prediction of the Physio-Somatic and Affective Domains Using Biomarkers

In Table 4, regressions #3 to #6 show the outcomes of regressions with the pure
FF, HAMD, HAMA, and BDI scores and the physiosom HAMD and HAMA scores as
dependent variables and the separate biomarkers as explanatory variables (without entering
the NT index) in order to elucidate which biomarkers were the most predictive. In these
regression analyses, we also entered vaccination status as a dummy variable; namely,
AstraZeneca (yes = 1, no = 0), Pfizer (yes = 1, no = 0), and Sinopharm (yes = 1, no = 0). We
found that 37.1% of the variance in pure FF scores (regression #3) could be explained by
total Ca (inversely), CRP, education, AOPP, BMI, and vaccination with AstraZeneca (all
positively associated). The results of regression #4 revealed that total Ca (inversely), CRP,
education, AOPP, MPO, and vaccination with AstraZeneca (all positively) predicted 41.3%
of the variance in pure HAMD scores. We found that, for regression #5, total Ca (inversely
associated), CRP, education, AOPP, and IL-1β (all positively associated) explained 37.2%
of the variance in the pure BDI score. Regression #6 showed that a significant part of
the variance (18.3%) in the pure HAMA score could be predicted by total Ca (inversed
associated), CRP, and MPO (both positively associated). The results of regression #7
indicated that, in long COVID patients, 37.4% of the variance in physiosom HAMD scores
was explained by total Ca and vaccination with Sinopharm (inversely) and CRP and IL-18
(both positively associated). Regression #8 showed that total Ca (inversely associated),
MPO, and BMI (both positively associated) explained 21.7% of the variance in physiosom
HAMA scores.

3.6. Results of PLS Analysis

Figure 4 depicts the first PLS model, which evaluated whether the effects of SpO2
and peak BT (introduced as a single indicator; namely, the TO2 index) on the physio-
affective phenome of long COVID (entered as a latent vector taken from the six rating-scale
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subdomains) were mediated via NT and Ca (IL-10 and TAC were not significant). Since
the multiple regression analysis also showed effects of vaccination, we entered vaccination
with Sinopharm (yes = 1, no = 0) as an additional explanatory variable. With an SRMR of
0.045, the model quality was satisfactory, and we observed appropriate construct reliability
validity values for the physio-affective phenome with AVE = 0.613, rho A = 0.920, composite
reliability = 0.904, and Cronbach’s alpha = 0.873. All loadings for the six indicators of
the physio-affective phenome were > 0.7. CTA showed that the latter vector was not
mis-specified as a reflective model, and blindfolding indicated an acceptable construct
cross-validated redundancy of 0.364. PLSPredict showed that the construct indicators had
positive Q2 predict values, indicating that the prediction error was lower than the most
naive benchmark. Complete PLS path analysis showed that 61.6% of the variance in the
physio-affective phenome was explained by the regression for NT, Ca, TO2 index, and
vaccination and that the TO2 index explained 16.2% and 17.1% of the variances in NT
and Ca, respectively. SARS-CoV-2 infection explained 47.0% of the variance in the TO2
index. While TO2 had significant direct effects on the phenome, it also had significant and
specific indirect effects mediated via either NT (t = 4.10, p < 0.001) or Ca (t = 4.13, p < 0.001).
Infection resulted in a highly significant total indirect effect on the long COVID phenome
(t = 8.92, p < 0.001).

Figure 4. Results of partial least squares (PLS)–SEM analysis with the physio-affective phenome
score as the output variable. The latter was entered as a latent vector (blue circle) extracted from
six symptom domains (yellow shapes). The phenome latent vector was predicted by calcium,
neurotoxicity index, the TO2 index, and vaccination (AstraZeneca and Pfizer were coded as 0,
Sinopharm as 1). SARS-CoV-2 infection was the primary input variable. As such, neurotoxicity
and calcium partially mediated the effects of TO2 and SARS-CoV-2 infection on the physio-affective
phenome. Neurotoxicity: z unit-based composite score computed based on six neurotoxic immune
and oxidative products. TO2: z unit-based composite score computed as z BT—z SpO2. Vaccination:
indicates that AstraZeneca and Pfizer vaccinations were positively associated with the phenome.
PhHAMA: physio-somatic symptoms of the Hamilton Anxiety Rating Scale; PhHAMD: physio-
somatic symptoms of the Hamilton Depression Rating Scale; PuFF: pure fatigue and physio-somatic
symptoms of the Fibro Fatigue scale; PuHAMA: pure anxiety symptoms of the Hamilton Anxiety
Rating Scale; PuHAMD: pure depression symptoms of the Hamilton Depression Rating Scale; PuBDI:
pure depression scores from the Beck Depression Inventory. Vaccination: Sinopharm was entered as
a dummy variable (yes = 1, no = 0).
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In order to examine the effects of SpO2 and peak BT on the separate biomarkers of
long COVID and determine which biomarkers are the most important in predicting the
phenome, we conducted a second PLS path analysis (see Figure 5). With an SRMR of 0.040,
the model quality was adequate, and the construct reliability validity of the latent construct
was also adequate (not shown, as it was similar to that explained in Figure 4). We found
that 46.8% of the variance was explained by the regression with Ca, CRP, IL-1β, AOPP,
MPO, and vaccination. SpO2 had significant effects on AOPP and MPO, whilst peak BT
affected MPO, CRP, and Ca.

Figure 5. Results of partial least squares (PLS)–SEM analysis with the physio-affective phenome
score as the output variable. The latter was entered as a latent vector (blue circle) extracted from
six symptom domains (yellow shapes). The phenome latent vector was predicted by calcium, all
neurotoxicity biomarkers (namely, interleukin (IL) 1β, C-reactive protein (CRP), myeloperoxidase
(MPO), and advanced oxidation protein products), peak body temperature (BT), oxygen saturation
(SpO2), and vaccination (AstraZeneca and Pfizer were coded as 0, Sinopharm as 1). SARS-CoV-2
infection was the primary input variable. As such, the neurotoxicity biomarkers and calcium mediated
the effects of BT, SpO2, and infection on the phenome. PhHAMA: physio-somatic symptoms of the
Hamilton Anxiety Rating Scale; PhHAMD: physio-somatic symptoms of the Hamilton Depression
Rating Scale; PuFF: pure fatigue and physio-somatic symptoms of the Fibro Fatigue scale; PuHAMA:
pure anxiety symptoms of the Hamilton Anxiety Rating Scale; PuHAMD: pure depression symptoms
of the Hamilton Depression Rating Scale; PuBDI: pure depression scores from the Beck Depression
Inventory. Vaccination: Sinopharm was entered as a dummy variable (yes = 1, no = 0).

4. Discussion
4.1. The Physio-Affective Phenome of Long COVID

The first major outcome of this study was that we were able to extract one replicable
latent vector from the physio-somatic and affective rating scale scores. This confirmed
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the results of another study conducted on an independent sample of Iraqi COVID-19
patients and controls [32]. Moreover, both the latter and the current study found that the
physio-affective core of long COVID was strongly predicted by the combined effects of
increased peak BT and lowered SpO2 during the acute phase of the disease. As explained
previously [31], increased peak BT and lowered SpO2 reflect the severity of the infection–
immune–inflammatory core of acute COVID-19. These results indicate that the physio-
affective core during acute and long COVID is largely the consequence of infection–immune–
inflammatory pathways. The results confirm that physio-somatic symptoms, including
chronic fatigue; physio-somatic symptoms, including pain, GIS, malaise, and autonomic
symptoms; and affective symptoms share common immune–inflammatory pathways, as
reviewed in the introduction.

4.2. Increased NT due to NLRP3 Activation Predicts the Physio-Affective Phenome

The second major outcome was that we were able to construct a new endophenotype
class based on increased NT during long COVID and lowered SpO2 and increased peak BT
during the acute phase of the illness (this cluster was dubbed TO-NT long COVID). The
latter cluster of patients was characterized by increased indicants of NLRP3 inflammasome
activation, with increased IL-1β and caspase 1, mild inflammation with increased CRP,
increased MPO and AOPPs, and lower total Ca levels. It should be underscored that
the non-TO-NT cluster of patients also showed increased NT, although significantly less
than the TO-NT cluster. Although IL-10, a negative immunoregulatory cytokine, was
significantly increased in long COVID, it did not predict the phenome after taking into
account the other biomarkers. Most importantly, patients belonging to the TO-NT cluster
showed highly significant increases in physio-affective scores, indicating strong associations
between biomarkers of acute and long COVID and physio-affective symptoms. Moreover,
the NT index and the key components of this index—namely, increased IL-1β, CRP, MPO,
and AOPP and lowered Ca—predicted a large part of the variance in the physio-affective
phenome. As such, this study has abstracted the physio-affective phenome of long COVID
into a more concrete NT-driven concept.

It is interesting to note that NLRP3 genetic variants (namely, NLPR3 rs10157379 T > C
and NLPR3 rs10754558 C > G variants) are associated with fatigue, myalgia, hyperalgesia,
and malaise in the acute infectious phase [20]. Abnormal NLRP3 activation during acute
infection may lead to pathological tissue injury [22] and may underpin the exaggerated
immune response, since it contributes to the cytokine storm in acute COVID-19 [51,52]. Sev-
eral studies have reported that caspase 1, IL-1β, and IL-18 are associated with depression,
anxiety, and fatigue, indicating the implication of the NLRP3 inflammasome in the patho-
physiology of these diseases [53–57]. NLRP3 can activate the caspase 1 enzyme, which in
turn triggers IL-1β and IL-18 pro-inflammatory cytokines to induce pyroptosis (cell death
in response to pro-inflammatory signals), and it plays a key role in neuroinflammation [58].

IL-1β is necessary to start and maintain the immune–inflammatory reactions in the
central nervous system (CNS) and may impact the integrity of the blood–brain barrier
(BBB), leading to leakage of peripheral immune cells into the CNS [59,60]. Moreover, IL-1β
mediates microglia and astrocyte activation, resulting in infiltration of T cells into the CNS,
thus augmenting the pro-inflammatory state by producing IL-6 and TNF-α along with
neurotoxic metabolites, enhancing excitotoxicity and neuronal damage [36,61]. IL-18 is
one of the mediators of cell-mediated immunity and triggers T helper (Th) 1 and B cells to
generate adhesion molecules, pro-inflammatory cytokines, and chemokines [62,63]. In ad-
dition, IL-18 may increase microglial expression of caspase 1 and matrix metalloproteinases
and the formation of pro-inflammatory cytokines [64], and it may cause neuronal damage
through elevations in Fas ligands in glial cells [57]. High IL-1β and IL-18 levels were
detected in patients with CNS infection, brain injuries, Alzheimer’s disease, and multiple
sclerosis [65–67]. All in all, activation of NLRP3 results in neurotoxic effects through either
promoting the synthesis of other detrimental metabolites or damaging neurons directly.
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4.3. Increased NT due to Increased CRP Predicts the Physio-Affective Core

In accordance with our previous study [32], we found that mild elevations in CRP
contributed to the physio-affective phenome of long COVID. Previous studies showed ele-
vated CRP in COVID-19 patients following 2–3 months of full recovery [68,69]. In the liver,
CRP production is triggered by IL-6 [70], and elevated CRP has toxic effects on endothelial
cells and raises the permeability of the BBB, thus enhancing the development of neurode-
generative and cerebrovascular diseases [71–75]. For example, elevated CRP is associated
with impaired functional outcomes and increased mortality due to stroke [76–79]. Fur-
thermore, studies have shown increased CRP levels related to depression [80,81], suicidal
behavior [82], GAD [83], CFS [84], and cognitive impairment [85].

4.4. Increased NT due to Oxidative Stress Predicts the Physio-Affective Phenome

The third major finding of the current study was that the physio-affective phenome
was associated with increased oxidative stress, as indicated by increased MPO and AOPP;
however, in contrast to our prior hypothesis, TAC was not decreased in long COVID. The
present findings extend our previous results, revealing high nitro-oxidative stress and
lowered antioxidant defenses (lowered zinc and Gpx levels) in long COVID patients [32].

Neutrophils produce MPO enzyme as part of the innate immune response, which
may induce the generation of reactive chlorine species (RCS), such as hydrochlorous
acid [86], and this can lead to chlorinative stress with the formation of AOPPs [87,88]. In
addition to neutrophils, microglia and pyramidal neurons of the hippocampus also express
a substantial amount of MPO enzyme, which is associated with disease conditions such as
Alzheimer’s disease and multiple sclerosis [89,90]. Increased MPO and AOPP have been
reported in relation to depression, anxiety, and cognitive impairment [91–94].

Moreover, we observed that lowered SpO2 in the acute phase predicted increased
AOPP and MPO in long COVID and that increased peak BT in the acute phase predicted
increased MPO and CRP and lowered Ca in long COVID. Likewise, our previous results [32]
revealed that lowered SpO2 in the acute phase predicted lowered Gpx and increased NO
production in long COVID patients and that elevated BT during acute COVID-19 predicted
increased CRP and lowered antioxidant defenses, including zinc, in long COVID. This
indicates that the effects of the infection–immune–inflammatory core of acute COVID-19
on the physio-affective phenome of long COVID are partly mediated by the cumulative
effects of neuro-immune, neuro-oxidative, and neuro-nitrosative pathways.

4.5. Lowered Total Ca Levels Predict the Physio-Affective Phenome

The fourth major finding of the current study was that total Ca levels were lower
in long COVID patients than in controls and that lowered Ca significantly predicted the
severity of the physio-affective phenome. In the acute COVID phase, there is a reduction
in Ca that is strongly associated with the physio-affective core [31]. Previous studies have
reported that MDD and depressive symptoms are accompanied by significant reductions in
ionized and total Ca levels [95–99]. Ca levels are necessary to maintain normal mood and
cognition, which occurs through effects on neuronal signaling pathways and protection of
neuroplasticity processes [100–102]. Moreover, the lowered Ca levels in acute COVID-19
are part of the infection–immune–inflammatory core [31], which also appears to result in
lower Ca levels during long COVID. Thus, it is safe to hypothesize that, in patients with
long COVID, abnormal Ca, which accompanies the immune–inflammatory response during
the acute phase of illness, contributes mechanistically to the physio-affective phenome of
both acute and long COVID.

4.6. Limitations

The findings of the current study should be interpreted in light of its limitations.
First, the results would be more interesting if we had assessed biomarkers of chlorinative
stress—namely, chlorotyrosine and dichlorotyrosine—and the activation of the tryptophan
catabolite (TRYCAT) pathway, which may increase TRYCATs and lower the availability
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of tryptophan, the precursor of 5-HT [103,104]. Moreover, our COVID-19 studies were
conducted on Iraqi patients and, therefore, require replication in other countries. It would
have been more interesting if we had included another study group of patients who were
previously infected but showed no symptoms of long COVID in order to compare this
cohort with healthy controls. Studies are needed to see whether any of the existing antide-
pressants or other medications with anti-inflammatory action may be used to treat long
COVID. Indeed, antidepressants of different classes suppress the production of interferon
γ and increase that of IL-10, thus showing negative immunoregulatory effects [105]. On the
other hand, our recent data show that antidepressants, similarly to paroxetine, destroy part
of the compensatory immune-regulatory system and, therefore, may worsen the phenome
of long COVID (Maes et al., to be submitted).

A more explorative finding is that prior vaccinations with AstraZeneca (viral-vector
and genetically modified virus vaccine) or Pfizer (mRNA vaccine) significantly increased the
physio-affective phenome scores compared to Sinopharm (inactivated virus vaccine), albeit
with a small effect size. As such, these results replicate our previous findings obtained with
another Iraqi study sample showing that these vaccinations have a significant effect on the
physio-somatic symptoms of the HAMA and HAMD [32]. Moreover, these vaccinations are
known to induce long COVID-like symptoms, including depression, fatigue, and anxiety,
in association with increased spike protein synthesis, type 1 interferon signaling, T cell
activation, and autoimmune responses [106,107]. The statistical association between these
vaccination types and long COVID physio-somatic symptoms was not a primary outcome
result but, in fact, an explorative finding; therefore, these results should be re-examined in
prospective cohort studies.

It is also possible that different variants are associated with different long COVID
symptoms, with the Alpha variant possibly exhibiting more mental health and cognitive
symptoms than the original variant [108]. A few months (3–4) prior to the September–
December 2021 recruitment of our long COVID patients, the Alpha variant (B.1.1.7) of SARS-
CoV-2 was predominant in Iraq (80.2%), while only one B.1.351 strain was detected [109].
Around 29 September 2021, the first Omicron variants appeared [110]. Therefore, in the
current study, we mainly evaluated the effects of acute infection with the B.1.1.7 Alpha
variant and, to a lesser extent, the B.1.351 variant on long COVID 3–4 months after the acute
infection. Examining the effects of other variants on the immune–inflammatory processes
during acute infection and the neurotoxicity and decreased total Ca during long COVID
would be extremely interesting.

5. Conclusions

High peak BT and lowered SpO2 during the acute phase of COVID-19 are associated
with the development of the physio-affective phenome of long COVID disease, and these
effects are partially explained by increased NT through activation of the NLRP3 inflamma-
some, a mild inflammatory response, increased chlorinative stress, and lowered total Ca
levels. The infection–immune–inflammatory core of acute COVID-19, the development of
NLRP3, a mild chronic inflammatory response, increased nitro-oxidative stress, lowered
antioxidant defenses, and total Ca levels can be considered new drug targets to treat the
physio-affective symptoms of long COVID.
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