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Abstract: (1) Background: Preeclampsia (PE) prediction in the first trimester of pregnancy is a chal-
lenge for clinicians. The aim of this study was to evaluate and compare the predictive performances
of machine learning-based models for the prediction of preeclampsia and its subtypes. (2) Methods:
This prospective case-control study evaluated pregnancies that occurred in women who attended a
tertiary maternity hospital in Romania between November 2019 and September 2022. The patients’
clinical and paraclinical characteristics were evaluated in the first trimester and were included in four
machine learning-based models: decision tree (DT), naïve Bayes (NB), support vector machine (SVM),
and random forest (RF), and their predictive performance was assessed. (3) Results: Early-onset PE
was best predicted by DT (accuracy: 94.1%) and SVM (accuracy: 91.2%) models, while NB (accuracy:
98.6%) and RF (accuracy: 92.8%) models had the highest performance when used to predict all types
of PE. The predictive performance of these models was modest for moderate and severe types of PE,
with accuracies ranging from 70.6% and 82.4%. (4) Conclusions: The machine learning-based models
could be useful tools for EO-PE prediction and could differentiate patients who will develop PE as
early as the first trimester of pregnancy.

Keywords: preeclampsia; prediction; machine leaning; pregnancy; first trimester

1. Introduction

Preeclampsia (PE) is a complex condition associated with pregnancy that could lead
to important feto-maternal morbidity and mortality. The subclassification of PE includes:
(a) early-onset PE (EO-PE), with delivery at <34 + 0 weeks of gestation; (b) late-onset PE
(LO-PE), with delivery at ≥34 + 0 weeks of gestation; (c) preterm PE, with delivery at <37
+ 0 weeks of gestation; (d) and term PE, with delivery at ≥37 + 0 weeks of gestation [1].
The incidence of preeclampsia varies among different regions of the world, and a recent
meta-analysis estimated a global incidence of 4.6 % (95 % confidence interval (CI): 2.7–8.2)
for this disorder [2]. PE is more widespread in developing nations, where the prevalence
ranges between 1.8 and 16.7% [3,4].

Among the most frequently cited adverse pregnancy outcomes for patients affected
by preeclampsia are stillbirth, preterm birth, intrauterine growth restriction, low Apgar
scores, and higher admission rates in the neonatal intensive care units of the newborns [5,6].
Moreover, these adverse pregnancy outcomes appear to be more severe for the early-
onset form of preeclampsia [1,7,8]. Therefore, it is important to identify women at risk
of developing PE as early as the first trimester, considering that the administration of
aspirin is necessary before 16 weeks of gestation in order to prevent this disorder and its
complications [9,10].
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Numerous screening strategies have been developed over time in order to obtain
the best results in terms of the predictive performance of the various approaches. Thus,
researchers have used maternal characteristics, the mean arterial pressure (MAP), serum
biomarkers, and the mean uterine artery pulsatility index (UTPI) measured in the first
trimester of pregnancy as key parameters included in the screening process [11]. The risk
stratification used in these strategies is based on individual risk factors, logistic regression
(LR), or the competing risk approach [12–16].

The risk factors for PE derived from the maternal characteristics include: advanced
maternal age, Afro-Caribbean or South Asian ethnicity, nulliparity, a previous history of
PE, short or long inter-pregnancy intervals, the use of assisted reproductive technologies
(ART), a family history of PE, obesity, hyperglycemia in pregnancy, pre-existing chronic hy-
pertension, renal disease, and autoimmune diseases such as systemic lupus erythematosus
(SLE), and anti-phospholipid syndrome (APS) [17–19].

On the other hand, the panel of biomarkers evaluated in different screening algorithms
varies considerably [20,21]. The most used biomarkers in the first trimester of pregnancy,
with good predictive performance, are placental growth factor (PLGF) and pregnancy-
associated plasma protein-A (PAPP-A). Three prospective non-intervention screening
studies of PE in the first trimester of pregnancy, which included a combination of maternal
risk factors (MAP, PLGF, and UtA-PI), using a risk cut-off of 1 in 100 for preterm PE,
demonstrated that the detection rates for early-onset, preterm, and term PE were 88%, 69%,
and 40%, respectively [22].

Placental protein-13 (PP-13) is another serum biomarker that can be incorporated in
the combined first trimester screening of PE. A recent meta-analysis indicated a higher
accuracy of PP-13 for the screening of late-onset preeclampsia when compared with early-
onset preeclampsia [23]. Moreover, biomarkers derived from proteomic, metabolomic, and
genomic studies have the potential to reveal a greater specificity for the disease, although
the costs of such technologies are high [24–26].

Artificial intelligence and machine learning techniques have the potential to outper-
form the conventional screening strategies of preeclampsia, and to evaluate big datasets in
order to provide a comprehensive picture over the heterogenous phenotypic manifestation
of the disorder. Machine learning is a new field that evaluates how computers learn from
data [27,28]. Computer learning can be conveniently divided into two categories: super-
vised learning and unsupervised learning [29]. Supervised learning starts with the goal
of predicting a known output or target, while in unsupervised learning, the algorithm at-
tempts to find naturally occurring patterns or groupings within the data [27]. The machine
learning-based methods for the prediction of PE fall under the supervised category and
include random forest (RF), decision trees (DT), gradient boosting (GB), naïve Bayes (NB),
and support vector machine (SVM) [30,31]. Various medical data are selected as features
for training and testing algorithms, and the results are interpreted in forms of predictive
performance [32].

A recent systematic review and meta-analysis evaluated machine learning models and
compared their predictive performances with logistic regression models for the predictions
of pregnancy events [33]. The authors found a superior performance of machine learning
models for the prediction of preeclampsia when using random forest or decision trees.
Moreover, a cross-sectional study that evaluated six data mining methods for the prediction
of PE in a cohort of 1452 pregnant women found that the SVM method had the highest
accuracy (0.791), followed by DT (0.788) and RF (0.758) [34].

The aim of this study was to evaluate and compare the predictive performances of
machine learning-based models for the prediction of preeclampsia and its subtypes.

2. Materials and Methods

We conducted a prospective case-control study of pregnancies that occurred in women
who attended a tertiary maternity hospital (‘Cuza-Voda’, Iasi, Romania) between November
2019 and September 2022. Ethical approval for this study was obtained from the Institu-
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tional Ethics Committee of the University of Medicine and Pharmacy ‘Grigore T. Popa’ (No.
151/13 February 2022). Informed consent was obtained from all participants included in
the study. All methods were carried out in accordance with the relevant guidelines and
regulations.

We recruited participants at the time of the routine first trimester screening. The
inclusion criteria taken into consideration were pregnant patients with singleton pregnan-
cies, maternal age ≥ 18, and certain first trimester pregnancy dating. Exclusion criteria
comprised patients who had multiple pregnancies, ectopic pregnancies, first and second
trimester abortions, fetal intrauterine demise, fetuses with chromosomal or structural
abnormalities, intrauterine infection, incomplete medical records, incorrect/lack of first
trimester sonographic pregnancy dating, or who were unable to offer informed consent.

Maternal characteristics and previous medical history were evaluated by a physician,
and maternal risk factors for preeclampsia were recorded in the database. The following
parameters were evaluated: demographic data, parity, obstetrical comorbidities, BMI
(body mass index), smoking status during pregnancy, inter-pregnancy intervals, the use of
ART, a personal or family history of PE, and comorbidities (hyperglycemia in pregnancy,
pre-existing chronic hypertension, renal disease, SLE, and APS).

Blood pressure was measured using the Fetal Medicine Foundation (FMF) guide-
lines [35] with a calibrated device (Omron M3 COMFORT; Omron Corp, Kyoto, Japan),
and the mean arterial pressure was recorded. The first trimester ultrasound screening and
UtA-PI evaluation was performed transabdominally according to FMF guidelines [36] by
certified physicians in maternal–fetal medicine.

Blood (serum and plasma) samples were collected before the first trimester scan
and stored at −80 ◦C degrees for further studies. For the current study, PAPP-A and
PLGF serum levels were measured using a BRAHMS Kryptor analyzer (Thermo Fisher
Scientific, Germany), while PP-13 serum levels were determined using the quantitative
sandwich ELISA (enzyme-linked immunosorbent assay) method. The serum levels of these
biomarkers were converted to multiples of median (MoM) by logarithm.

All pregnant women were evaluated by an experienced obstetrician with an early
ultrasound scan, using an E8/E10 (General Electric Healthcare, Zipf, Austria) scanner with
a 4.8 MHz transabdominal probe (GE Medical Systems, Milwaukee, WI, USA), between 10
+ 0 and 13 + 6 weeks, in order to determine gestational age by measuring the crown–rump
length (CRL), as well as UtA-PI.

A total of 233 patients were included in the analysis of this study and divided into
two equal groups: those who developed preeclampsia (116 patients, group 1), and those
who did not develop preeclampsia (116 patients, group 2). PE was defined as the de novo
development of hypertension (blood pressure ≥ 140/90 mm Hg, four hours apart) and
any sign(s) of organ deficiency, including proteinuria (daily urinary protein loss ≥ 0.3 g),
liver function deterioration (high transaminase levels), thrombocytopenia (platelet count
≤ 150.000/mL), or neurologic symptoms (visual sensations) appearing during the second
half of pregnancy [37]. The following pregnancy outcomes were recorded: type of birth,
presentation, gestational age at birth, newborn’s gender, birthweight, length, and Apgar
scores at 1 and 5 min.

In the first stage of the statistical analysis, each variable was evaluated with chi-squared
and Fisher’s exact tests for categorical variables, which were presented as frequencies with
corresponding percentages, and t-tests for continuous variables, which were presented as
means and standard deviations (SD).

The pregnant patients affected by preeclampsia were subsequently divided into the
following subgroups: subgroup 1 (EO-PE, n = 22), subgroup 2 (LO-PE, n = 94), subgroup 3
(moderate PE, n = 88), and subgroup 4 (severe PE, n = 28). EO-PE was defined considering
the onset of the disease at less than 34 weeks of gestation, while LO-PE had an onset at or
after 34 weeks of gestation [38]. Severe preeclampsia was considered in the presence of
the following criteria: systolic blood pressure of 160 mm Hg or more, or diastolic blood
pressure of 110 mm Hg or more on two occasions, at least 4 h apart; thrombocytopenia
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(<100 × 109/L); renal insufficiency (serum creatinine > 1.1 mg/dl or doubling of serum
creatinine in the absence of other renal disease); impaired liver function (elevated blood
concentrations of liver transaminases to twice normal concentration); pulmonary edema;
unexplained new-onset headache unresponsive to medication (without an alternative
diagnosis); or visual disturbances [39].

An ANOVA analysis with the Bonferroni post hoc test was used to determine whether
or not there was a statistically significant difference between the subgroups regarding their
paraclinical characteristics (serum biomarkers, MAP, and UtA-PI), and boxplots were used
for graphical representations of these differences. The statistical analyses were performed
using STATA SE (version 14, 2015, StataCorp LLC, College Station, TX, USA).

In the second stage of the analysis, we evaluated the predictive performance of 4
machine learning- based models: decision tree, naïve Bayes, support vector machine, and
random forest algorithm.

One of the first and most well-known machine learning techniques is the DT, which
represents the tests and outcomes for categorizing data elements into a tree-like struc-
ture [40]. A DT tree’s nodes typically have numerous layers, with the first node referred to
as the root node [41,42]. All internal nodes reflect input variable or attribute testing. The
classification algorithm branches towards the appropriate internal node based on the test
result, and the process of testing and branching is repeated until it reaches the leaf node.
The predicted outcomes are represented by the leaf or terminal nodes.

NB is a classification technique based on the Bayes’ theorem [43]. This theorem can
predict the likelihood of an occurrence depending on prior knowledge of the event’s
conditions. This classifier asserts that a given characteristic in a class is not directly related
to any other feature, even though the features in that class may be interdependent [41].

An SVM is a supervised learning algorithm used for classification and regression [44,45].
This algorithm is a relatively new method that has shown promising results in recent years
for disease prediction. SVM classifiers are based on linear classifiers and seek to select a
line that is slightly more confident.

Random forests are ensemble classifiers that randomly learn multiple decision trees [46].
The random forest approach consists of a training stage in which many decision trees are
built and a testing step in which an outcome variable is classified or predicted based on
an input vector [41]. The different decision trees of an RF are trained using the different
parts of the training dataset. To classify or predict a new sample, the input vector of that
sample needs to be passed down with each DT of the forest. Each DT then considers a
different part of that input vector and offers a prediction outcome. The forest then selects
the prediction with the greatest number of ‘votes’ (for discrete outcomes) or the average of
all trees in the forest (for numeric outcomes).

The data were segregated into data for testing (70%) and data for training (30%). In
order to protect from overfitting, all models underwent 5-fold cross validation. Their true
positive rates (TPR), false negative rates (FNR), positive predictive values (PPV), false
detection rates (FDR), accuracies, values for area under the curve (AUC), precision, recall,
and F1 scores were calculated, and compared for preeclampsia, EO-PE, LO-PE, moderate
PE, and severe PE subgroups, respectively. The comparison was made using between-
groups variance, measured by an ANOVA and a Bonferroni post hoc test. The models were
constructed and analyzed using Matlab (version R2021b, The MathWorks, Inc., Natick, MA,
USA).

3. Results

A total of 233 pregnant patients were evaluated in our prospective study. Their
clinical and paraclinical characteristics are presented in Table 1 and are segregated into the
following groups: preeclampsia (116 patients, group 1), without preeclampsia (group 2, 116
patients). The preeclampsia group contained significantly more patients with a personal
history of hypertension (p = 0.005) and preeclampsia in previous pregnancies (p < 0.001).
Moreover, obesity was more prevalent in the first group compared to the second group
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(p < 0.001). Regarding the paraclinical characteristics measured in the first trimester of
pregnancy, the MAP, UtA-PI, and PLGF were significantly higher for the PE group, while
PP-13 and PAPP-A were significantly lower for this group (p < 0.001).

Table 1. Clinical and paraclinical characteristics of the patients included in the main groups.

Patient’s Characteristics Group 1 (PE, n = 116) Group 2 (Without PE, n = 116) p Value

Age, years (mean ± SD) 29.22 ± 6.88 28.62 ± 6.39 0.49

BMI (kg/m2) 26.4 ± 1.07 ** 21.87 ± 2.47 <0.001

Medium (n/%) Urban = 54 (46.55%)
Rural = 62 (53.45%)

Urban = 53 (45.69%)
Rural = 63 (54.31%) 0.10

Parity (n/%) Nulliparity = 75 (64.66%)
Multiparity = 41 (35.34%)

Nulliparity = 65 (56.03%)
Multiparity = 51 (43.97%) 0.18

Personal history of PE (n/%) Yes = 10 (8.62%) ** Yes = 0 (0%) <0.001

Personal history of
hypertension (n/%) Yes = 10 (8.62%) ** Yes = 1 (0.86%) 0.005

Personal history of renal
disease (n/%) Yes = 2 (1.72%) Yes = 0 (0%) 0.15

Personal history of diabetes
(n/%) Yes = 2 (1.72%) Yes = 0 (0%) 0.15

Personal history of SLE/APS
(n/%) Yes = 9 (7.76%) Yes = 3 (2.59%) 0.07

Obesity (n/%) Yes = 31 (26.72%) ** Yes = 5 (4.31%) <0.001

Interpregnancy interval, years
(mean ± SD) 1.02 ± 1.93 1.13 ± 1.85 0.65

MAP, MoM (mean ± SD) 1.10 ± 0.10 ** 0.85 ± 0.15 <0.001

UtA-PI, MoM (mean ± SD) 1.54 ± 0.29 ** 0.82 ± 0.21 <0.001

PAPP-A, MoM (mean ± SD) 0.82 ± 0.52 ** 1.00 ± 0.16 <0.001

PLGF, MoM (mean ± SD) 2.17 ± 0.96 ** 1.35 ± 0.34 <0.001

PP-13, MoM (mean ± SD) 0.75 ± 0.12 ** 1.09 ± 0.13 <0.001

Table 1 legend: PE—preeclampsia; SD—standard deviation; APS—antiphospholipid syndrome; SLE—systemic
lupus erythematosus; MoM—multiples of median; MAP—mean arterial pressure; UtA-PI—uterine artery pulsatil-
ity index; PLGF—placental growth factor; PP-13—placental protein-13; PAPP-A—pregnancy-associated plasma
protein-A. Tests used: chi-squared for categorical variables, and t-tests for continuous variables; ** The data from
which statistical significance originates.

The pregnancy outcomes for the main groups are presented in Table 2. Pregnancies
affected by PE were significantly associated with complications such as preterm birth
(p< 0.001), intrauterine growth restriction (p < 0.001), and oligoamnios (p = 0.01). Eclampsia,
abruptio placentae, and HELLP syndrome (Hemolysis, Elevated Liver enzymes and Low
Platelets) had a low incidence in group 1 of patients, and none of them manifested in the
second group, mainly because they are specifically associated with this disorder.

The patients in the PE group had a significantly higher cesarean delivery rate (n = 112
patients, 96.55%; p < 0.001), and their newborns had a significantly lower birthweight,
Apgar scores at 1 and 5 min, and length (p < 0.001).

We further comparatively analyzed the paraclinical characteristics of the following
subgroups: EO-PE (22 patients, subgroup 1), LO-PE (n = 94, subgroup 2), moderate
preeclampsia (n = 88, subgroup 3), severe preeclampsia (n = 28, subgroup 4) (Table 3). The
serum values of PLGF determined in the first trimester of pregnancy were significantly
higher for the EO-PE and severe PE subgroups (p < 0.001), while the serum levels of PP-13
were significantly lower for the LO-PE subgroup (p = 0.003). A graphical representation of
the comparison is represented in Figures 1 and 2.
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Table 2. Pregnancy outcome of the patients included in the main groups.

Pregnancy Outcome Group 1 (PE, n = 116) Group 2 (Without PE, n = 116) p Value

Placenta praevia (n/%) Yes = 5 (4.31%) Yes = 7 (6.03%) 0.55

Preterm birth (n/%) Yes = 51 (43.97%) ** Yes = 5 (4.31%) <0.001

Intrauterine growth restriction
(n/%) Yes = 48 (41.38%) ** Yes = 5 (4.31%) <0.001

Oligoamnios (n/%) Yes = 8 (6.90%) ** Yes= 1 (0.86%) 0.01

Polyhydramnios (n/%) Yes = 0 (0%) Yes= 5 (4.31%) ** 0.02

PE related complications (n/%)
Eclampsia = 2 (1.72%)

bruptio placentae = 3 (2.58%)
HELLP syndrome = 3 (2.58%)

- -

Newborn’s gender (n/%) Male = 60 (51.72%)
Female = 56 (48.28%)

Male = 59 (26.72%)
Female = 57 (49.14%) 0.89

Gestational age at birth, weeks
(mean ± SD) 35.87± 3.41 ** 38.37 ± 1.40 <0.001

Mode of delivery (n/%) Cesarean = 112 (96.55%) **
Vaginal = 4 (3.45%) **

Cesarean = 72 (62.07%)
Vaginal = 44 (37.93%) <0.001

Presentation (n/%)
Cephalic = 105 (90.52%)

Breech = 10 (8.62%)
Transverse = 1(0.86%)

Cephalic = 108 (93.10%)
Breech = 8 (6.90%)

Transverse = 0 (0%)
0.53

Apgar score at 1 min (mean ± SD) 7.25 ± 1.86 ** 8.37 ± 0.88 <0.001

Apgar score at 5 min (mean ± SD) 7.98 ± 1.36 ** 8.84 ± 0.71 <0.001

Birthweight, g (mean ± SD) 2519.91 ± 946.60 ** 3240 ± 457.60 <0.001

Newborn’s length, cm (mean ± SD) 46.39 ± 6.00 ** 50.79 ± 2.27 <0.001

Table 2 legend: PE—preeclampsia; SD—standard deviation; g—grams. Tests used: chi-squared for categorical
variables, and t-tests for continuous variables; ** the data from which statistical significance originates.

Table 3. Comparison of paraclinical characteristics for the patients included in the analyzed sub-
groups.

Paraclinical
Parameter

Subgroup 1
(EO-PE,
n = 22)

Subgroup 2
(LO-PE,
n = 94)

Sum of
Squares p Value

Subgroup 3
(Moderate
PE, n = 88)

Subgroup 4
(Severe PE,

n = 28)

Sum of
Squares (SS) p Value

MAP, MoM
(mean ± SD) 1.13 ± 0.08 1.09 ± 0.11 0.02 0.15 1.11 ± 0.10 1.07 ± 0.11 0.02 0.13

UtA-PI, MoM
(mean ± SD) 1.52 ± 0.27 1.54 ± 0.29 0.01 0.61 1.56 ± 0.27 1.47 ± 0.34 0.17 0.16

PAPP-A, MoM
(mean ± SD) 0.82 ± 0.24 0.83 ± 0.58 0.001 0.94 0.77 ± 0.21 0.81 ± 0.21 0.02 0.43

PLGF, MoM
(mean ± SD) 1.18 ± 0.51 ** 0.85 ± 0.32 1.97 <0.001 0.86 ± 0.33 1.07 ± 0.47 ** 1.04 <0.001

PP-13, MoM
(mean ± SD) 0.94± 0.48 ** 0.72 ± 0.23 0.80 0.003 0.74 ± 0.30 0.83 ± 0.33 0.14 0.21

Table 3 legend: PE—preeclampsia; SD—standard deviation; MoM—multiples of median; MAP—mean arterial
pressure; UtA-PI—uterine artery pulsatility index; PLGF—placental growth factor; PP-13—placental protein-
13; PAPP-A—pregnancy-associated plasma protein-A; EO-PE—early-onset preeclampsia; LO-PE—late-onset
preeclampsia. Tests used: ANOVA analysis with the Bonferroni post hoc test; ** the data from which statistical
significance originates.
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In the second stage of the analysis, we incorporated the pregnant patient’s clinical and
paraclinical characteristics into four machine learning-based models, and we calculated
their predictive performance (Table 4). DT achieved the highest accuracy when predicting
the EO-PE group (94.1%), with an AUC value of 0.95, while its highest TPR was achieved
for all types of preeclampsia prediction. The NB model had the highest performance when
used to predict all types of PE, with an accuracy of 98.6%, and an AUC value of 0.98. A
similar situation described the predictive performance of the RF model, which achieved
an accuracy of 92.8%, with an AUC value of 0.94 for all types of preeclampsia. Finally, the
SVM model appeared to have the highest predictive performance when used to predict
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EO-PE patients, achieving an accuracy of 91.2%, and an AUC value of 0.91. DT and RF had
the highest TPR for all types of preeclampsia prediction (94.1%), while SVM and NB were
characterized by a high TPR (96.4%) when used to predict EO-PE.

Table 4. The predictive performance of machine learning-based models for the PE and its subtypes.

ML Model Type of PE TPR (%) FNR (%) PPV (%) FDR (%) Accuracy
(%)

AUC
Value Precision Recall F1 Score

DT

All PE 94.1 5.9 91.4 8.6 92.8 0.93 0.91 0.94 0.93

EO-PE 92.9 7.1 75 25 94.1 0.95 0.93 0.75 0.86

LO-PE 66.7 33.3 92.9 7.1 88.2 0.80 0.93 0.93 0.93

Moderate
PE 75 25 91.7 8.3 82.4 0.80 0.85 0.92 0.88

Severe PE 82.1 17.9 44.4 55.6 79.4 0.70 0.67 0.44 0.53

NB

All PE 96.3 3.7 96.4 3.6 98.6 0.98 0.96 0.96 0.98

EO-PE 96.4 3.6 80 20 91.2 0.88 0.67 0.80 0.73

LO-PE 33.3 66.7 87.1 12.9 85.3 0.72 0.96 0.87 0.92

Moderate
PE 25 75 79.3 20.7 73.5 0.68 0.88 0.79 0.84

Severe PE 89.3 10.7 50 50 82.4 0.67 0.50 0.50 0.50

SVM

All PE 70.6 29.4 77.8 22.2 85.5 0.98 0.71 0.78 0.88

EO-PE 96.4 3.6 80 20 91.2 0.91 0.67 0.80 0.73

LO-PE 33.3 66.7 86.7 13.3 82.4 0.76 0.93 0.87 0.90

Moderate
PE 37.5 62.5 80.8 19.2 70.6 0.49 0.81 0.81 0.81

Severe PE 85.7 14.3 20 80 73.5 0.64 0.17 0.20 0.18

RF

All PE 94.1 5.9 91.4 8.6 92.8 0.94 0.91 0.94 0.93

EO-PE 92.9 7.1 71.4 28.6 91.2 0.94 0.83 0.71 0.77

LO-PE 66.7 33.3 92.9 7.1 88.2 0.84 0.93 0.93 0.93

Moderate
PE 87.5 12.5 94.4 5.6 70.6 0.79 0.65 0.94 0.77

Severe PE 85.7 14.3 33.3 66.7 76.5 0.76 0.33 0.33 0.33

Table 4 legend: All PE—all types of preeclampsia; EO-PE—early- onset preeclampsia; LO-PE—late-onset
preeclampsia; ML—machine learning; DT—decision trees; NB—naïve Bayes; SVM—support vector machine; RF—
random forest; TPR—true positive rate; FNR—false negative rate; PPV—positive predictive value; FDR—false
detection rate; AUC—area under the curve.

We analyzed the variance between preeclampsia groups, taking into consideration
the predictive parameters from the machine learning-based models (Table 5). Our results
showed significant variance between groups for all the parameters (p < 0.001). The large F
value indicates that the means of the groups are greatly different from each other compared
to the variation of the individual observations in each group and support the hypothesis that
the differences between group means are larger than what would be expected by chance.

Table 5. Analysis of variance among preeclampsia subgroups considering the predictive parameters
from machine learning-based models.

Variance
between Groups Sum of Squares Mean SQUARE F p Value Eta Squared 95% CI Lower

Bound
95% CI Upper

Bound

TPR 4895.68 1631.89 12.25 <0.001 0.75 0.29 0.83
PPV 7455.69 2485.23 36.96 <0.001 0.90 0.67 0.93

Accuracy 546.05 182.01 13.68 <0.001 0.77 0.34 0.84
AUC 0.18 0.06 34.77 <0.001 0.89 0.65 0.93

Precision 0.64 0.21 11.41 <0.001 0.74 0.27 0.82
Recall 0.76 0.25 37.17 <0.001 0.90 0.67 0.93

F1 score 0.78 0.26 32.44 <0.001 0.89 0.63 0.92

Table 5 legend: TPR—true positive rate; PPV—positive predictive value; AUC—area under the curve; CI—
confidence interval. Tests used: ANOVA analysis with the Bonferroni post hoc test.
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4. Discussion

This is the first prospective study in the literature that trained four machine learning-
based models (DT, NB, SVM, and RF) for the prediction of preeclampsia in a cohort of
pregnant patients with singleton pregnancies, using clinical and paraclinical parameters
determined in the first trimester. Other particularities of this study are that we included the
serum levels of PP-13, expressed as MoM in the analysis, and we calculated the predictive
performance of these models for preeclampsia subtypes.

Our results showed that EO-PE was best predicted by DT and SVM models, while
NB and RF models had the highest performance when used to predict all types of PE. The
predictive performance of these models was modest for moderate and severe types of PE
subgroups, with accuracies ranging from 70.6% and 82.4%.

Regarding the prediction of LO-PE, the highest accuracy was achieved by DT and RF
models (88.2%), with AUC values of 0.80 and 0.84, respectively. A recent retrospective study
that evaluated the predictive performance of six ML-based models for LO-PE in a cohort
with singleton pregnancies, and used clinical and paraclinical parameters determined
as early as the second trimester of pregnancy, indicated similar performances for DT
(C- statistic: 0.857) and RF models (C- statistic: 0.894), and higher performances for the
stochastic gradient-boosting model (C- statistic: 0.924) [30]. However, the above-mentioned
study included repeated common laboratory measurements in the analysis, while we
included the biomarkers recognized in the literature as predictors of PE [11,47,48].

Additionally, our results showed that the serum values of PLGF determined in the
first trimester of pregnancy, expressed as MoM, were significantly higher for the EO-PE,
and severe PE subgroups (p < 0.001), while the serum levels of PP-13 were significantly
lower for the LO-PE subgroup (p = 0.003). These findings are in line with data published in
the literature that confirmed the superior predictive performance of PLGF for early onset
and severe types of PE [49–51], and of PP-13 for LO-PE [23].

Many of the existing models for predicting preeclampsia are risk score models that
are based on epidemiological data and/or clinical factors [14,18,21,52,53]. In a prospective
study by Di Lorenzo et al. evaluating the detection of preeclampsia by integrating maternal
history, serum biomarkers, and uterine artery Doppler in the first trimester, the authors
reported a sensitivity of 60% (TPR) for a 20% FPR for all types of PE when using a combina-
tion of UtA-PI, PlGF, and a maternal history of chronic hypertension [47]. Our combined
models achieved higher sensitivities for all types of preeclampsia (TPR ranges: 70.6–96.3%).

A recent unicentric study on 498 patients, which evaluated the results from the first
trimester screening of PE in a 5 years’ time frame, revealed that an algorithm based on risk
factors from the maternal history, the serum level of PlGF and PAPP-A, the calculated value
of MAP, and the measured values of the uterine arteries PI achieved a PPV for early PE
of 21.3% [54]. We obtained higher PPV (range: 71.4–80%) for EO-PE prediction using the
proposed machine learning-based methods, and these results could be due to the inclusion
of PP-13 as a biomarker that has high sensitivity for EO-PE [55].

Our study has several limitations, including a small cohort of patients and number
of predictors, but at the same time, the trained models have the advantage of easier
implementation by physicians. All chosen machine learning-based models have the ability
to handle small sample data. We hypothesize that the model’s accuracy could be improved
by adding repeated measurements during pregnancy of the paraclinical parameters, as
well as the sFlt-1 (soluble fms-like tyrosine kinase 1)/PLGF ratio, which has been proven as
a useful biomarker for PE prediction in the second trimester of pregnancy [56–58].

Further studies, on larger cohorts of patients, could evaluate the predictive perfor-
mance of these ML-based models in different settings and populations. The results could
aid clinicians in the risk stratification process of pregnant patients as early as the first
trimester and could help calculate the risk–benefit ratio in order to support the decision of
PE prophylaxis with aspirin, 150 mg/night, from 11–14 until 36 weeks of gestation [1].
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5. Conclusions

The machine learning-based models could be useful tools for EO-PE prediction and
could differentiate patients who will develop PE as early as the first trimester of pregnancy.

These finding are important for clinicians because very often the early-onset form
of preeclampsia needs an individualized management of delivery, which in most cases is
recommended prematurely, before 37 weeks of gestation, adding supplementary distress to
the newborn.

Moreover, the proposed methods showed good results for differentiating patients
who will develop preeclampsia later in pregnancy from patients who will not develop this
disease. This information could support clinicians’ decision of aspirin prophylaxis early in
pregnancy.
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