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Abstract: Background: Epiretinal membranes (ERM) have been found to be common among individ-
uals >50 years old. However, the severity grading assessment for ERM based on optical coherence
tomography (OCT) images has remained a challenge due to lacking reliable and interpretable anal-
ysis methods. Thus, this study aimed to develop a two-stage deep learning (DL) system named
iERM to provide accurate automatic grading of ERM for clinical practice. Methods: The iERM was
trained based on human segmentation of key features to improve classification performance and
simultaneously provide interpretability to the classification results. We developed and tested iERM
using a total of 4547 OCT B-Scans of four different commercial OCT devices that were collected from
nine international medical centers. Results: As per the results, the integrated network effectively
improved the grading performance by 1–5.9% compared with the traditional classification DL model
and achieved high accuracy scores of 82.9%, 87.0%, and 79.4% in the internal test dataset and two
external test datasets, respectively. This is comparable to retinal specialists whose average accuracy
scores are 87.8% and 79.4% in two external test datasets. Conclusion: This study proved to be a
benchmark method to improve the performance and enhance the interpretability of the traditional
DL model with the implementation of segmentation based on prior human knowledge. It may have
the potential to provide precise guidance for ERM diagnosis and treatment.

Keywords: deep learning; epiretinal membrane; optical coherence tomography; multi-center

1. Introduction

The epiretinal membrane (ERM) is a pre-retinal proliferative disease, which can result
in blurred vision and central vision loss [1,2]. In the 20-year follow-up Beaver Dam Eye
Study, the prevalence of ERM was 34.1% [3]. Due to older age being the most common risk
factor for ERM, it is likely that the prevalence of ERM will further increase with an aging
population. This brings consequential social and economic burdens [4,5].

Optical coherence tomography (OCT), particularly spectral-domain OCT, has been
the gold standard for diagnosing ERM in clinical practice due to its higher sensitivity in
evaluating ERM compared to other retinal examinations [6–8]. OCT can reveal not only
the presence of ERM but also the specific severity stage that can assist in guiding disease
management [6,9,10]. However, the accurate fine-grading assessment of ERM based on
OCT images requires reliable and interpretable analysis methods [11]. The large-scale
interpretation of OCT images is deemed to be labor-intensive and time-consuming.
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Over the last few years, several studies have shown remarkable results by developing
deep learning (DL) systems for automatic retinal disease diagnosis based on OCT im-
ages [12–15]. In the field of ERM diagnosis, those studies prove the ability of DL algorithms
to accurately detect ERM from OCT images [16–18]. They have the potential to simplify or
accelerate OCT image interpretation in clinical practice.

However, several crucial challenges remain. First, no studies to date have tested these
algorithms on their classification of ERM into precise severity grading, which could be a
guide for referral and treatment. Second, the main drawback of the DL classification system
is that it might be difficult for clinicians to trust, thus hindering its practical application.
Further effort is required to enhance its interpretability. Third, the OCT data from most
research are only obtained from a single commercial device in a single medical center
without external datasets to test the generalizability of DL algorithms in a real-world
setting.

Thus, to address these gaps, this study developed an interpretable DL system based
on multi-center OCT data for ERM severity grading; this was named iERM. It was tested in
two independent external datasets. It may have the potential to provide precise guidance
in ERM diagnosis and treatment.

2. Materials and Methods

The workflow of the iERM system is demonstrated in Figure 1A, which included data
collection, image labeling, development of the segmentation model, and development of
the classification model.

2.1. Data Collection

This was a multi-center, retrospective, cross-sectional study. In total, 4547 OCT B-scans
(2606 with ERM and 1968 normal) from four different commercial OCT devices from nine
international medical centers were collected for this study.

The primary dataset was collected from 1593 eyes of 1046 ERM patients, who un-
derwent a spectral-domain OCT (Heidelberg, Germany) at the Eye Center at the Second
Affiliated Hospital of Zhejiang University, from April 2017 to August 2020 (ZJU dataset).
All OCT B-scans were central fovea cross sections. Subjects who had other retinopathies
other than ERM that can affect the macula or had overt media opacity were excluded. This
study was approved by the Medical Ethics Committee of the Second Affiliated Hospital,
Zhejiang University, and complied with the Declaration of Helsinki. The demographic
and statistical information of all subjects in the ZJU dataset is shown in Table 1. The other
ten datasets followed the same data collection as the ZJU dataset, and each OCT image
was collected from different subjects. The examples of OCT data collected from different
commercial devices are illustrated in Figure 1B.

Table 1. The demographics and statistics information of patients in the ZJU dataset.

Age (Year) Male Sex (%) OD/OS OCT Images

Normal 61.52 ± 7.90 44.6 0.96 1674
Stage 1 63.12 ± 9.13 49.4 0.98 288
Stage 2 64.35 ± 7.98 44.1 1.02 440
Stage 3 65.52 ± 8.71 47.6 0.96 741
Stage 4 65.14 ± 6.34 45.9 1.03 185
Stage 5 65.47 ± 7.83 52.0 1.03 229
Total 63.29 ± 8.29 46.0 0.98 3557

This retrospective study is a sub-analysis of data from a clinical study (A New Tech-
nique for Retinal Disease Treatment, ClinicalTrials.gov identifier: NCT04718532). Ethical
approval for this study was obtained from the Ethics Committee for ZJU-2 (No Y2020–1027).
The research adhered to the tenets of the Declaration of Helsinki and the Health Insurance
Portability and Accessibility Act.
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Figure 1. Overview of iERM for ERM severity grading through OCT images. (A) Workflow of the 
iERM system. (B) The examples of OCT data collected from different commercial devices. (C) A 
brief demonstration of the proposed two-stage system and the schematic diagram of deep learning 
networks. (D) The performance of ERM severity grading on the internal dataset and two external 
datasets was improved by the two-stage system, compared to the traditional classification model. 
(E) Comparison of the average total accuracy scores of four retinal ophthalmologists and four med-
ical students in two external datasets with those corresponding to the two-stage system and ResNet-
34. 
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This was a multi-center, retrospective, cross-sectional study. In total, 4,547 OCT B-
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nine international medical centers were collected for this study. 

Figure 1. Overview of iERM for ERM severity grading through OCT images. (A) Workflow of the
iERM system. (B) The examples of OCT data collected from different commercial devices. (C) A
brief demonstration of the proposed two-stage system and the schematic diagram of deep learning
networks. (D) The performance of ERM severity grading on the internal dataset and two external
datasets was improved by the two-stage system, compared to the traditional classification model.
(E) Comparison of the average total accuracy scores of four retinal ophthalmologists and four medical
students in two external datasets with those corresponding to the two-stage system and ResNet-34.

2.2. Image Labeling

In this study, an OCT-based six-stage ERM classification standard was utilized, and
the typical case of each stage is shown in Figure 2A [19]. The normal retina was classified in
a normal category. In stage 1 of the epiretinal membrane, the mild ERM brought negligible
anatomic disruption, while the central fovea had a normal morphology. The outer nuclear
layer thickness in the central fovea was markedly thickened, and the central fovea lost
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its normal morphology in stage 2 of the epiretinal membrane. In stage 3 of the epiretinal
membrane, the foveal depression was absent with a continuous ectopic inner foveal layer
crossing through the foveal area anomalously. All retinal layers were still identifiable. In
stage 4 of the epiretinal membrane, severe retinal thickening and extremely distorted retinal
layers were observed. A continuous ectopic inner foveal layer crossing through the foveal
area was also identified. Stage 5 of the epiretinal membrane was defined as epiretinal
membrane-induced tractional lamellar macular holes or macular pseudo-holes. The label
and distribution of all the datasets are shown in Table 1.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. The demonstration of classification standard and segmentation results. (A) The typical 
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For classification, four experienced retinal specialists were recruited to identify the 
ERM stages of the OCT images independently without communication. The images for 
the three or four specialists had the same label. The labels of questionable images were 
confirmed again until full consensus was reached. The label and distribution of all the 
datasets are shown in Table 2. 

Figure 2. The demonstration of classification standard and segmentation results. (A) The typical case
of each stage and their corresponding segmentation maps. (B) The Dice coefficient (Dice) scores and
mean intersection over union (IoU) of layers 1–5. Ori: the original OCT images. Seg: the segmentation
maps.
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For classification, four experienced retinal specialists were recruited to identify the
ERM stages of the OCT images independently without communication. The images for
the three or four specialists had the same label. The labels of questionable images were
confirmed again until full consensus was reached. The label and distribution of all the
datasets are shown in Table 2.

Table 2. The data distribution of all datasets.

Dataset OCT Device Image Number Normal Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

ZJU Heidelberg 3557 1674 288 440 741 185 229
Xian 1 Heidelberg 270 168 9 15 62 9 7

Ningbo Heidelberg 84 17 10 16 35 3 3
Jinhua Heidelberg 126 40 12 11 42 11 10

Dali Heidelberg 121 0 2 6 69 38 6
Anhui Heidelberg 19 0 1 0 13 3 2
Japan Heidelberg 117 61 5 3 37 4 7

Singapore 1 Heidelberg 71 8 5 17 19 5 17
Taizhou Nidek 22 0 5 4 12 1 0
Xian 2 Zeiss 109 0 16 10 49 26 8

Singapore 2 Cirrus 78 0 21 12 23 8 14

For the segmentation work, a five-level stratification of specific layers, namely Layers
1 to 5 was designed according to the key feature of disease progression. The first layer is
defined as the morphological curve of the upper boundary of the retina, which is the most
distinguishing feature. The second layer was the nerve fiber layer, the ganglion cell layer,
and the inner plexiform layer. The inner nuclear layer is the third layer, whose shape is
crucial for distinguishing stages 2–4. The fourth layer was the outer plexiform layer and
outer nuclear layer, while the last layer was from the external limiting membrane to the
pigment epithelium layer. Two experienced retinal specialists were recruited to label the
boundaries of these layers. In total, 300 OCT images (50 images for each stage) of the ZJU
dataset were labeled to develop the segmentation model.

2.3. Data Processing

There were 5 different image specifications of images generated by different OCT
devices, namely Heidelberg 1, Heidelberg 2, Crrius, Zeiss, and Nidek. The specifications
of images generated by each OCT device are shown in Table S1. In terms of image mode,
Zeiss was a Pseudo-color image, and other images were grayscale images. In the grayscale
images, Heidelberg1, Crrius, and Nidek had low grayscale values in the background region
and high grayscale values in the retinal region, while Heidelberg 2 is just the opposite. The
first step of data processing is to uniformly convert all image modes into grayscale images
with low grayscale values in the background region and high grayscale values in the retinal
region. The image mode conversion of the Zeiss image and Heidelberg 2 image is shown in
Figure S1.

After unifying the image mode, the images of these different devices retained the
problems of inconsistent gray value distribution intervals and inconsistent sizes. The gray
value distribution histograms are shown in Figure S2. Aiming at the inconsistency of the
gray value distribution interval, random changes in brightness, saturation, and contrast
were used to enrich the gray value distribution so that the network could be used on images
with different gray value distributions. For the problem of inconsistent size, the linear
interpolation of the image was unified to the size of 224 × 224, which not only unified the
size of the multi-machine images but also conformed to the input size of most classification
networks and reduced the computational consumption.

The background area in OCT images, including part of the vitreous chamber and the
region below the pigment epithelium layer, was removed to reduce noise. First, a U-Net
network was established to distinguish the retina from the background area; then, the
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maximum connected domain was used to remove the wrong segmentation fragments, and
finally, the maximum peripheral rectangle of the retina region was identified [20]. The
data augmentation was performed by randomly adjusting the brightness, contrast, and
saturation of OCT images and randomly flipping the images in the horizontal direction.
Flipping in the vertical direction and rotation were abnegated since they did not follow the
natural retinal structure.

2.4. Development of the DL System

(1) Segmentation model

A U-Net network was selected as the segmentation model for retinal layer segmen-
tation, which is the most classic and extensively used model in medical image segmenta-
tion [20]. U-Net was cascaded by a down-sampling pathway and an up-sampling pathway.
The encoder in the down-sampling pathway extracted features from the input image and
extracted high-dimensional features from low-dimensional features, while the decoder in
the up-sampling pathway restored the high-dimensional feature to the low-dimensional
feature, and finally generated the segmentation result consistent with the size of the input
image. To pursue more accurate segmentation, skipping the connection into the U-Net to
fuse low-dimensional detailed information with high-dimensional abstract information
was utilized.

The proposed first layer was to detect the upper boundary of the retina within a width
of three pixels to enhance the morphological information. The remaining four layers and
background were segmented via the U-Net network. The dataset contained 300 images
with the annotations described above and were divided for training, verification, and
testing according to the ratio of 7:1:2. The RMSProp optimization algorithm was used with
a weight decay of 10−8 and a momentum of 0.9 to update the network weights, and a
learning rate scheduler with decay of 0.5 per 10 steps was used. The batch size was set to 8,
and the maximum epoch was 50. At the end of each epoch, the current network weight
was verified, and the weights of the best results were saved.

(2) Classification Model

Three classification models were compared in this study, and the model with the best
results was selected as the backbone network of the proposed two-stage system [21–23].
The Xian 1 dataset, the Japanese dataset, and part of the ZJU dataset were divided into two
independent external test sets and the internal test set without training. The remaining
datasets were combined like the internal dataset to develop the DL model. The ratio for
training and verification was 7:1. The specific details in terms of the usage of image data
for the classification task is shown in Tables S2 and S3. The SGD optimization algorithm
was used with a momentum of 0.9. The initial learning rate was set to 0.001, and a learning
rate scheduler with a decay of 0.5 every 30 steps was used. The batch size was set to 32,
and the maximum epoch was 80. At the end of each epoch, the current network weight
was verified, and the weights of the best results were saved.

(3) Two-stage System

In the first step of this system, the OCT image was input into the segmentation model
and output as a segmentation map. In the second step, the original OCT image and
corresponding segmentation map were jointly input into the classification model. The
channel concatenation method for merging was utilized. First, the three channels of the
original OCT image were standardized, and the values of five channels of the corresponding
segmentation map were mapped 0–1 using softmax. The value range of the original image
and the segmentation results were consistent after that, which avoided bias with the
classification network. Then, the input channel was modified for the first convolutional
layer of the classification network to eight to receive three channels simultaneously for the
original OCT image and five channels of the corresponding segmentation map as input.
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2.5. Statistical Analysis

To achieve a comprehensive and objective assessment of our segmentation network,
the following metrics are calculated compared with the ground truth: Dice coefficient (Dice),
precision, recall, intersection over union (IoU), and average surface distance (ASD). To
evaluate the performance of our classification systems, we generated the receiver operating
characteristic (ROC) curve by plotting the true positive rate versus the false positive rate.
Compared to the ground truth label generated by clinical ophthalmologists, the precision,
recall, F1-score, the area under the curve (AUC) of the ROC curve, and total accuracy were
calculated.

2.6. Model Visualization

To further investigate the classification model, a class activation map for the last
convolutional layer of the classification model was generated [24]. For the class predicted
by the model for each image, the gradient of the last convolutional layer features for that
class was identified to find the region that the classification model focuses on. Based on
the regions of interest for each image, a more detailed picture of what information the
classification model was classifying was generated for the image.

3. Results
3.1. The Performance of the Segmentation Network

The segmentation network has exhibited great performance compared with the ground
truth labeled by retinal specialists, and the specific results of the segmentation task are
demonstrated in Figure 2B and Table S4. In layers 1–5, Dice scores were 0.997, 0.955, 0.896,
0.962, and 0.958, respectively. The ASD of the layers 1–5 were 0.014, 0.119, 0.308, 0.119,
and 0.915, respectively. The mean Dice and ASD were 0.953 and 0.130, respectively, which
demonstrated consistency with the ground truth in total and in the boundary.

3.2. The Comparison of Three Classification Networks

The performances of the three typical classification networks were compared in the
internal dataset. The ResNet-34 architecture was noted to have the best results with a
total accuracy of 81.9%, which was selected to be the backbone of the proposed two-stage
network. In stage-specific performance, the areas under the curves (AUCs) of each category
were 0.998, 0.924, 0.909, 0.904, 0.970, and 0.983. The detailed results are shown in Table S5.

3.3. The Performance of iERM

The proposed two-stage architecture had a better performance compared with the
traditional single-stage classification architecture. For the internal dataset, the AUCs of
each category were increased to 0.999, 0.904, 0.925, 0.928, 0.974, and 0.990 with a total
accuracy of 82.9% (Table S6). For two external datasets, the total accuracy scores were
improved from 84.0% to 87.0% in the Xian 1 dataset and from 73.5% to 79.4% to 79.4% in
the Japanese dataset, respectively, with the assistance of segmentation (Tables 3 and 4).
The final AUCs of each category were 0.998, 0.826, 0.906, 0.958, 0.943, and 0.985 for the
Xian 1 dataset and 0.999, 0.826, 0.906, 0.958, 0.943, and 0.985 for the Japanese dataset. The
performance of fine-grained classification can be advanced by segmentation according to
clinical prior knowledge. The receiver operating characteristic (ROC) curves and confusion
matrices (CM) of the proposed two-stage system from two external datasets are illustrated
in Table 3 and Table 4, respectively.
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Table 3. The results of iERM in the Xian 1 dataset compared to the traditional classification model.

Xian 1 Normal Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

without segmentation
Precision (%) 98.1 36.4 33.3 80.3 50.0 83.3

Recall (%) 93.5 88.9 33.3 79.0 33.3 71.4
F1-score (%) 95.7 51.6 33.3 79.7 40.0 76.9

AUC (%) 99.4 86.3 81.7 97.1 89.7 97.1
Accuracy (%) 84.0

with segmentation
Precision (%) 100.0 30.4 64.3 84.4 60.0 66.7

Recall (%) 94.0 77.8 60.0 87.1 33.3 57.1
F1-score (%) 96.9 43.7 62.1 85.7 42.9 61.5

AUC (%) 99.8 82.6 90.6 95.8 94.3 98.5
Accuracy (%) 87.0
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Table 4. The results of iERM in the Japanese dataset compared to the traditional classification model.

Japan Normal Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

without segmentation
Precision (%) 98.3 33.3 5.9 71.4 0.0 80.0

Recall (%) 96.7 40.0 33.3 54.1 0.0 57.1
F1-score (%) 97.5 36.4 10.0 61.5 0.0 66.7

AUC (%) 96.5 72.3 83.3 90.9 84.5 96.0
Accuracy (%) 73.5

with segmentation
Precision (%) 89.6 33.3 25.0 82.1 100.0 100.0

Recall (%) 98.4 60.0 66.7 62.2 25.0 57.1
F1-score (%) 93.7 42.9 36.6 70.8 40.0 72.7

AUC (%) 99.9 78.7 95.9 90.2 88.5 98.1
Accuracy (%) 79.4
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3.4. The Comparison of iERM and Human

Furthermore, four retinal ophthalmologists and four medical students were recruited
to identify the stage of ERM for two external test datasets. The average total accuracy
scores of four retinal ophthalmologists and four medical students were calculated and
compared to the two-stage system. For the Xian 1 dataset, the average total accuracy scores
of four ophthalmologists and four medical students were 87.8% and 79.4%, respectively
(Figure 1E). For the Japanese dataset, those data were 81.2% and 54.1%. More detailed
results are demonstrated in Figures S3 and S4. In conclusion, the DL system’s ability
to diagnose and classify ERM was comparable to that of retinal ophthalmologists and
performed better than medical students.
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4. Discussion

This study has shown potential for AI-assisted fine-grained clinical grading. This
study established an effective fine-grained grading system, that is, iERM, to directly guide
ERM management. The proposed two-stage architecture, which implemented clinical
prior knowledge segmentation as an auxiliary module, proved that it could improve the
performance of the traditional classification model. This fine-grading system was eval-
uated with OCT image data collected from four different commercial OCT devices in
multiple international medical centers, and its robustness and applicability were tested
in two dependent external datasets. Furthermore, an ERM grading AI interactive inter-
face was developed to show the progression of ERM and corresponding management
recommendations applicable in clinical situations for patients.

This study substantially extends existing research and other studies in four aspects.
First, ERM was classified into five severity grading subgroups by iERM. This subgroup cat-
egorization of ERM could clinically guide ERM management, including screening, referral,
re-examination frequency, and surgical decision. According to previous research, decreas-
ing best-corrected visual acuity of ERM patients had an association with the progression
to more serious stages graded in OCT images, particularly progression from stage 2 to
stage 3 [19]. The fine-grade ERM scheme could also provide a more objective and elaborate
reference for clinical practices, rather than just detecting the presence of ERM. For example,
patients with stage 5 ERM identified by iERM would be recommended for a referral to
specialized retinal clinics regarding vitreoretinal surgery as soon as possible. Furthermore,
this study established an iERM system with a user convenient interface (Figure S5). Patients
or doctors can upload OCT reports and receive the analyzed results, including automatic
diagnosis and management recommendations from iERM. Therefore, this AI system could
contribute to the promotion of ophthalmological telemedicine. Additionally, it could im-
prove access to medical services and reduce medical costs, particularly for distant regions.
It could also alleviate ophthalmologists’ workload and reduce false-negative diagnosis.

Second, this proposed method integrated the segmentation network, with the clas-
sification network substantially increasing the results of automatic fine-grained clinical
grading of ERM. Fine-grained clinical grading is a challenge for DL classification due
to small inter-class variation and large intra-class variations [25]. To detect normal OCT
images in the internal dataset, the Xian 1 dataset, and the Japanese dataset, the precisions
were 98%, 100%, and 89.6%, with AUCs of 0.999, 0.998, and 0.999, respectively. This result
showed the remarkable ability of iERM to distinguish normal OCT images from ERM im-
ages, which is effective and practical in terms of ERM screening. For fine-grained grading,
ERM severity was based on OCT images. The similarity of specific grades was quite high
compared to junior ophthalmologists or ophthalmologists, who might not be able to tell the
difference due to lack of experience. The single-stage classification network achieved total
accuracy scores of 81.9%, 84%, and 73.5% for the internal dataset, the Xian 1 dataset, the
Japanese dataset, respectively. In Figure 1D, with the assistance of a segmentation network
during two-stage architecture, total accuracy scores were noted to improve to 82.9%, 87.0%,
and 79.4%, respectively.

The final novelty of this study was the implementation of segmentation with prior clin-
ical knowledge that demonstrated the interpretability of this DL model. The transparency
of the DL is an underlying issue, which could impede the application of AI in clinical
practice (22, 23). Previous DL studies have integrated the segmentation network with the
classification network to tackle the “black box” problem [26–29]. Jeffrey et al. first trained a
DL network to create a segmentation map of 15 lesions or elements and then utilized it as
input for second stage classification [26]. The segmentation map provided an interpretable
representation for doctors, which was particularly practical in difficult and ambiguous
cases. Xu et al. established a hierarchical DL system with prior human knowledge to solve
this problem [27]. Extraction and use of anatomical characteristics of the fundus images
comprehensively simulated the diagnostic thinking of human experts. In this study, the
specific layer of segmentation was designed according to the clinical ERM severity grade
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standard. The key features of grading ERM progression were the morphological changes
of retinal tissues displayed in OCT images. From a retinal specialists’ perspective, clinical
diagnosis of ERM based on OCT images was also a two-stage process. First, it requires
discovery and analysis of the morphological changes of specific key features and then
synthesis of all information to make a diagnosis decision. This study’s proposed method
adopted this two-stage clinical diagnosis strategy and was proven to be effective. It is more
interpretable for ophthalmologists than the conventional DL classification systems.

The last main contribution of this work is the application of diverse datasets obtained
from multiple OCT devices of multiple international medical institutes. The generaliz-
ability of DL algorithms has been a concern in multi-center studies [30]. In Figure 1B, the
presentation of OCT images was diverse from various OCT devices or various capture
patterns of the same OCT device. Though those OCT images displayed similar lesions of
the same disease, the different grayscale information resulted in the heterogeneity of the
data, which could also create an impediment for the applicability of DL algorithms in a
real-world setting. In this study, the DL algorithm was correlated with OCT data from four
common commercial devices and tested it on two independent external datasets. This work
attempts to bridge the gap of data heterogeneity.

This current study had several limitations. First, the dataset size of OCT images from
the other OCT device was relatively small, compared to the Heidelberg device. Thus,
large-scale studies should be performed, and an external dataset collected from diverse
OCT devices should be created to further test the generalizability of this DL system in the
future. Second, the image number of each sub-category was imbalanced due to various
prevalence rates of specific stages. Even though this study attempted to adopt some
preprocessing methods, the data imbalance could also influence the performance. Finally,
the interpretability seemed still insufficient to be applied in clinical practice. It may hinder
trust from healthcare providers and result in an important challenge for the integration of
AI systems in clinical settings. Joint efforts should be made by healthcare providers and AI
developers in future work.

5. Conclusions

This study proved a benchmark method to improve the performance and enhance
the interpretability of the traditional DL model with the implementation of segmentation
based on prior human knowledge. This study successfully proposed a two-stage DL
framework for the fine-grading assessment of ERM progression and achieved advanced
results comparable to retinal specialists based on multi-source data, which contributed to
efficient clinical ERM management and automatic diagnosis of retinal diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12020400/s1, Figure S1. The image mode conversion of the
Zeiss image and Heidelberg 2 image. (A) Zeiss OCT image (before image mode conversion). (B)
Zeiss OCT image (after image mode conversion). (C) Heidelberg 2 OCT image (before image mode
conversion). (D) Heidelberg 2 OCT image (after image mode conversion). Figure S2. The gray
value distribution histograms of different devices. (A) Heidelberg 1. (B) Heidelberg 2. (C) Crrius.
(D) Zeiss. (E) Nidek. Figure S3. Comparison of iERM with retinal ophthalmologists and medical
students on the Xian 1 dataset. (A–D) The confusion matrices of four retinal ophthalmologists. (E)
the accuracy scores of iERM, four retinal ophthalmologists, and four medical students. Figure S4.
Comparison of iERM with retinal ophthalmologists and medical students on the Japan dataset. (A–D)
The confusion matrices of four retinal ophthalmologists. (E) the accuracy scores of iERM, four retinal
ophthalmologists, and four medical students. Figure S5. The workflow of our user interface. (A)
The heat map of each stage. (B) The corresponding recommendation of each stage. Table S1. The
results of the segmentation task. Dice: the Dice coefficient. IoU: mean intersection over union. Table
S2. The results of three traditional classification models in the internal dataset. Table S3. The results
of iERM in the internal dataset compared with those of the traditional classification model. Table
S4.The results of the segmentation task. Dice: the Dice coefficient. IoU: mean intersection over union.
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Table S5.The results of three traditional classification models in the internal dataset. Table S6. The
results of iERM in the internal dataset compared with those of the traditional classification model.
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