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Abstract: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation
technique also used as a non-pharmacological intervention against cognitive impairment. The
purpose of the present review was to summarize what is currently known about the effectiveness of
rTMS intervention on different cognitive domains in patients with mild cognitive impairment (MCI)
and to address potential neuromodulation approaches in combination with electroencephalography
(EEG) and neuroimaging, especially functional magnetic resonance imaging (fMRI). In this systematic
review, we consulted three main databases (PubMed, Science Direct, and Scopus), and Google Scholar
was selected for the gray literature search. The PRISMA flowchart drove the studies’ inclusion. The
selection process ensured that only high-quality studies were included; after removing duplicate
papers, explicit ratings were given based on the quality classification as high (A), moderate (B), or
low (C), considering factors such as risks of bias, inaccuracies, inconsistencies, lack of direction, and
publication bias. Seven full-text articles fulfilled the stated inclusion, reporting five double-blind,
randomized, sham-controlled studies, a case study, and a randomized crossover trial. The results of
the reviewed studies suggested that rTMS in MCI patients is safe and effective for enhancing cognitive
functions, thus making it a potential therapeutic approach for MCI patients. Changes in functional
connectivity within the default mode network (DMN) after targeted rTMS could represent a valuable
indicator of treatment response. Finally, high-frequency rTMS over the dorsolateral prefrontal cortex
(DLPFC) has been shown to significantly enhance cognitive functions, such as executive performance,
together with the increase of functional connectivity within frontoparietal networks. The main
limitations were the number of included studies and the exclusion of studies using intermittent
theta-burst stimulation, used in studies on Alzheimer’s disease. Therefore, neuroimaging techniques
in combination with rTMS have been shown to be useful for future network-based, fMRI-guided
therapeutic approaches.

Keywords: mild cognitive impairment; repetitive transcranial magnetic stimulation; EEG; functional
magnetic resonance imaging; neuroplasticity

1. Introduction

The size of the elderly population has been increasing worldwide. Moreover, mild
cognitive impairment (MCI) affects 10–15% of the population over the age of 65 [1]. It is an
intermediate state between normal cognition and dementia [2,3], with essentially preserved
functional abilities [4]. In the elderly, the spectrum of cognitive decline ranges from what
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can be classified as normal cognitive decline with aging to subjective cognitive impairment,
MCI, and dementia [5].

MCI is associated with an increased risk of developing dementia [6,7]. Particularly,
MCI is a prodromal stage of dementia, characterized by subjective cognitive deficits and
objective memory impairment without impairment in daily activity, since memory deficits
are the clinical hallmark and the central characteristic of MCI [8]. Thus, given the key crite-
rion that memory, among all cognitive domains, must be impaired, evidence of cognitive
decline in one or more cognitive domains is obtained from patients’ reports, although the
use of electroencephalography (EEG) and neuroimaging techniques has also contributed to
the documentation of individuals at increased risk for dementia and Alzheimer’s disease
(AD) [9–13]. Notably, patients with MCI with or without memory deficits might progress
to AD, and this progression might also be tracked by radiological biomarkers such as
functional imaging and structural MRI measures [14,15]. Among functional imaging ap-
proaches, resting-state functional MRI (rs-fMRI) and/or EEG have been used to investigate
the functional connectivity (FC) properties of large-scale brain networks in both healthy [16]
and MCI subjects [17]. During the last two decades, transcranial magnetic stimulation
(TMS) has assumed a prominent role in the functional evaluation and modulation of cortical
circuits in MCI [6], because of its capability of testing specific neurotransmitter systems
or cortical connections. Moreover, repetitive TMS (rTMS), one of the non-invasive brain
stimulation (NIBS) methods, can induce a prolonged modulation of cortical excitability by
inducing the plastic properties of cortical synapses [7,17,18].

By selectively interfering with regionally specific cortical processing, rTMS can be used
to draw causal links between brain regions and specific behaviors. If stimulating a cortical
area significantly affects task performance related to appropriate control conditions, this
means that the stimulated area is necessary to perform the task normally [19]. The present
tool is a non-invasive, safe, and painless procedure to activate or modulate cortical targets
in the central nervous system [20]. Therefore, the time has come to develop appropriate
recommendations to inform the use of rTMS in clinical practice, which has been shown
to be well tolerated [21]. The electromagnetic field of TMS permeates the scalp and the
skull, develops an electric field in the brain tissue, and enables non-invasive activation of
the cerebral cortex [22,23]. It is worth mentioning that high-frequency rTMS with a series
pulse causes post-stimulation and neurochemical changes which are associated with the
increase of synaptic connectivity [24]. There is considerable evidence that the mechanisms
of substantial rTMS after-effects resemble long-term potentiation (LTP) [25]. Moreover, this
method can affect brain circuit excitability or plastic changes, influencing the expression
levels of various receptors and other neuromodulators [26,27]. Particularly, repetitive trains
of stimulation may activate, inhibit, or otherwise interfere with the activity of neuronal
cortical networks, but this also depends on stimulus frequency and intensity [28] and
can modulate cortical excitability after the period of stimulation itself [29–31]. rTMS
can also modulate the functions of disorganized brain circuits, especially in cognitive
impairment [32], albeit it is usually applied over the left or bilateral dorsolateral prefrontal
cortex (DLPFC). The treatment response mechanism was therefore supposed to be based on
modulations in functional networks, particularly the meso-cortico-limbic reward circuit [33],
and the critical role of the left and right DLPFC in proactive and reactive cognitive control
has been widely recognized [34,35]. As we gain a better understanding of how rTMS
affects different layers of the brain, there will also be significant insights into the effects on
synaptic plasticity.

Among the techniques used to measure the effects of rTMS on brain FC, EEG is a
neurophysiologic technique used for evaluating and capturing brain activity with high
temporal resolution (in the range of units or tens of milliseconds) and no notable adverse
effects [36–38]. For instance, by means of EEG measurements and EEG-derived metrics,
MCI has been related to alterations in widespread interhemispheric and intrahemispheric
connectivity as compared to aging [39]. Regarding the concurrent use of EEG and TMS,
EEG has been recognized as an appropriate screening method for investigating neural
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connectivity properties within targeted functional networks [40]. Moreover, rTMS effects
on brain plasticity may be elucidated through EEG monitoring [41,42]. Particularly, the
rTMS stimulation was shown to affect the spectral power of EEG signals in the alpha band
and the phase synchrony between alpha and gamma rhythms [38,41]. Therefore, changes in
cognitive performance could be directly linked to the changes in endogenous task-related
oscillatory dynamics and not just to the widespread changes in neural activity at the flicker
frequency, oscillatory power, and inter-trial coherence at the driving frequency [43]. As
the EEG time course after rTMS could also be related to the time course of the ongoing
cognitive processes, EEG recordings could be considered an important tool to measure the
effects of rTMS on cognitive performance [44,45].

High-frequency and low-frequency rTMS effects have also been demonstrated with
fMRI. rTMS has been shown to affect intrinsic brain FC, as measured via rs-fMRI [45,46].
Combining rTMS with functional brain imaging may provide an indication of how localized
changes in neural excitability influence network-wide activity and, thereby, can be used
to reveal causal relationships between brain areas [47]. Using rs-fMRI to visualize brain
networks based on correlated fluctuations in blood oxygenation, the efficacy of different
DLPFC rTMS sites has been related to their effects on the subgenual cingulate cortex,
which can eventually be selected as an additional or alternative rTMS site besides the
DLPFC [48,49]. However, it is challenging to combine rTMS and fMRI to provide important
information for neurocognitive models of cognitive dysfunction. In fact, an rTMS-fMRI
study revealed that rTMS can affect blood oxygenation level-dependent (BOLD) signals,
not only at the stimulation site but also in remote brain structures, which are variably
interconnected between each other, also eliciting changes in regional cerebral blood flow
(rCBF) [50]. The BOLD signal changes have also been found to be associated with the
different conditions of a cognitive paradigm [51–54]. Therefore, the combination of rTMS
and fMRI provides a strategy for controlling neural activity and testing causal theories,
with clear downstream potential for clinical applications of rTMS in neurological diseases.
For example, network-based fMRI-guided TMS protocols have been proposed to design
personalized treatments for MCI [17,55].

As for the disruption of FC networks in MCI, the default mode network (DMN) is the
most affected network in MCI, showing topographical overlap with amyloid pathology,
especially in the posterior cingulate cortex and in the precuneus [45]. Moreover, several
neurophysiological studies have highlighted that, since the earliest stages of cognitive
impairment, cortical plasticity in the DLPFC may also be impaired, with a loss of physio-
logical beta-gamma oscillatory response [55]. The reduction of metabolism in the DLPFC
has also been considered a specific alteration during the progressive course of MCI [56].
The DLPFC, which anatomically corresponds to Brodmann areas 9 and 46, is a key part of
the executive control network (ECN) and of the frontoparietal network (FPN) [57], acting
as a modulator of cognitive functions such as attention, working memory, and executive
function [58].

In recent years, rTMS has been extensively studied to assess its potential to modulate
cognitive function in MCI, and we have sought to pay particular attention to several
methodological aspects of these studies. Indeed, there is considerable heterogeneity among
the various rTMS treatment protocols reported in the literature for cognitive enhancement
in MCI, including, e.g., various combinations of stimulation location, pulse rate, stimulation
intensity, number of stimulations delivered, and number of treatment sessions.

In this systematic review, we aimed to overview the effects of rTMS on cognitive
outcomes in cohorts of MCI patients targeting the DLPFC in the light of EEG and fMRI
findings used in some studies for targeting and monitoring the effects of rTMS on brain FC.
To the best of our knowledge, this is the first systematic review with the aim of overviewing
the impact of rTMS on cognitive and neuroimaging findings in MCI patients.
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2. Methods
2.1. Study Focus

Our systematic review was conducted on the preferred reporting investigations that
have been published from 2018 to 2023, since the topics of interest have been mostly
addressed in recent years. The literature search was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for
2020 [59].

2.2. Inclusion and Exclusion Criteria

We included studies that fulfilled all the following criteria: (1) clinical population of pa-
tients previously diagnosed with amnestic MCI (aMCI) and non-amnestic MCI (naMCI) [60];
(2) rTMS was the only intervention being investigated without any other behavioral treat-
ment associated; (3) cognitive functions and/or functional MRI or EEG were measured;
(4) parallel or cross-over design that utilized active rTMS and a sham-controlled group; and
(5) articles written in English. Studies identified through database searches were initially
screened based on their title and abstracts. They were subsequently excluded if it was
clear from the title or abstract that the study was not relevant or did not meet the inclusion
criteria. Finally, studies were excluded if they were conference abstracts/papers.

2.3. Search Strategy

We searched three main databases: PubMed, Science Direct, and Scopus English
language full-text citation index, through May 2023. In addition, Google Scholar was
selected for the gray literature search.

The keywords used for the database searches were “mild cognitive impairment”,
“repetitive transcranial magnetic stimulation”, and “rTMS”. Additionally, we searched
reference lists of previous reviews on rTMS in MCI (Chou YH et al., 2020; Chu CS et al.,
2021; Jiang et al., 2021) [61–63] to identify additional relevant articles. A new review article
needed to overview the effects of rTMS on cognitive outcomes in cohorts of MCI patients
targeting the DLPFC, also in light of EEG and fMRI findings.

2.4. Quality Assessment, Study Screening, and Risk of Bias

The selection process ensured that only high-quality and original studies were in-
cluded, providing a detailed overview of the effects of rTMS on cognitive outcomes in
cohorts of MCI patients. The article list’s titles and abstracts were reviewed indepen-
dently by two authors (MS and FT), and they read the entirety of all recognized full-text
articles. After removing duplicate papers and articles that met the exclusion criteria, all
remaining articles were examined by three independent writers (IG, LL, and FE), and any
disagreements were addressed by consensus. To assess the certainty of the evidence for
each outcome of interest, explicit ratings are given based on the quality classification as
high (A), moderate (B), or low (C), considering factors such as risks of bias, inaccuracies,
inconsistencies, lack of direction, and publication bias. In cases where there was no direct
evidence but plausibility or clinical experience with indirect evidence, the panel made a
consensus decision labeled “Expert Opinion”.

2.5. Data Items

Data extraction included publication details, patient characteristics, and study design.
The collected data were classified into three categories: (1) demographic data; (2) interven-
tion details (rTMS stimulation); and (3) cognitive and RS-fMRI/EEG findings.

3. Results
3.1. Study Selection

The results of the initial database search were 2800 manuscripts. Duplicate records
(n = 708) were eliminated, and records were arranged with titles, abstracts, and original
reports (n = 2092). Following a full-text screening, the main exclusion factors were ani-
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mal research and cohorts of patients with MCI or Alzheimer’s disease/other dementias
(n = 2084), not completely matched with aim and not a full article (n = 1). Seven full-text
papers that fulfilled the predefined inclusion and exclusion criteria were included in the
final synthesis. The study’s inclusion is described in the PRISMA flowchart (Figure 1).
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3.2. Studies’ Characteristics and Patient Demographics

Basic publication details and patient demographics are presented in Table 1. The
included studies [64–69] were published between 2018 and May 2023. The smallest study
included 3 patients, and the largest included 66 patients. Study designs consisted of
five double-blind, randomized, sham-controlled studies [58,64,66,67,69], a case study [65],
and a randomized crossover trial (i.e., 22 patients divided into two groups: 11 in group
A—sham-active, and 11 in group B—active-sham [68] (Table 1).
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Table 1. Investigations details and patient demographics.

Study, Year Country Disease
N M/F Age

Type of Study
Treatment Sham Treatment Sham Treatment Sham

Padala et al. [64], (2018) United States aMCI, naMCI 4 5 4/0 4/1 68.0 ± 10.0 64.0 ± 9.0 Double-blind, Randomized,
Sham-controlled trial

Durand et al. [65], (2018) France aMCI, naMCI 3 N/A 1/2 N/A 69 ± 6.65 N/A Three case studies

Cui et al. [66], (2019) China aMCI 21 N/A N/A N/A 50–85 50–85 Double-blind, Randomized,
Sham-controlled trial

Taylor et al. [67], (2019) United States aMCI 66 33 N/A N/A 55–90 55–90 Double-blind, Randomized,
Sham-controlled, three-arm trial

Roque Roque et al. [68], (2021) México aMCI, naMCI 11 11 5/7 3/9 66.1 ± 5.5 67.2 ± 4.8 Randomized crossover trial

Yuan et al. [58], (2021) China aMCI 12 12 6/6 5/7 65.08 ± 4.89 64.67 ± 4.77 Double-blind, randomized,
sham-controlled trial

Esposito et al. [69], (2022) Italy aMCI, naMCI 27 13 14/13 5/8 67.85 ± 9.28 66.77 ± 9.08 Double-blind, randomized,
sham-controlled trial

Abbreviations: aMCI, amnestic mild cognitive impairment; naMCI, non-amnestic mild cognitive impairment.

Table 2. Summary of seven investigations that revealed potential benefits in cognitive functions after using rTMS in MCI.

Study, Year Group Intervention Stimulation Cognitive/Neuroimaging
Findings ORs, 95%Cis Main Findings

Padala et al. [64], (2018) Active r-TMS,
sham-controlled

Non-navigated rTMS: 3000
pulses at 10 Hz, 4-s train
duration, and 26-s
inter-train interval, per
session five times a week; %
motor threshold: 120%

Left DLPFC

1- Apathy (AES-C) p < 0.001

Significantly greater improvement in 3MS,
MMSE, TMT-A, and CGI-I with rTMS
compared to the sham treatment.

2- Global cognition (3MS;
global screen for cognition
expanded from the MMSE)

p < 0.001

3- Executive function
(TMT-A & TMT-B) p < 0.05

4- Functional status (IADL) p > 0.05

5- Patient’s global
functioning (CGI-S, CGI I)

p > 0.05;
p < 0.001

6- Caregiver burden (ZBS) p > 0.05
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Table 2. Cont.

Study, Year Group Intervention Stimulation Cognitive/Neuroimaging
Findings ORs, 95%Cis Main Findings

Durand et al. [65], (2018) Active rTMS

The 3 patients received
non-navigated rTMS (i.e., 10
Hz, 1 Hz, and 50 Hz-burst)
sessions from 1 to 4 times a
week; % motor threshold:
110%, 80%

Left/right DLPFC
1- Global cognition (MoCA) N/A The cognitive and clinical benefits of

long-term rTMS treatment in MCI patients,
without side effects, have been highlighted.
This cognitive improvement is regardless of
any anti-depressive effects.

2- CGI-I N/A

3- Depression (HDRS) N/A

Cui et al. [66], (2019) Active rTMS,
sham-controlled

Non-navigated rTMS: 30
trains of 5 s stimuli
delivered at 10 Hz;
10-session daily treatment
for about 2 weeks; % motor
threshold: 90%

Right DLPFC

1- Global cognition (MMSE,
ACE-III) p < 0.001

rTMS-induced hypoconnectivity within
DMN is associated with clinical cognitive
improvements in patients with aMCI.

2- Memory (Auditory
Verbal Learning Test, AVLT,
TMT-A & TMT-B)

p < 0.001

3- Geriatric Depression
Scale (GDS) p > 0.05

4- Functional connectivity
(resting- state functional
MRI)

p < 0.001

Taylor et al. [67], (2019) Active rTMS,
sham-controlled

Navigated rTMS:10Hz
delivers, 4000 pulses per
session and up to 8000
pulses per day, with a total
of 80,000 pulses over 2- to
4-week period; % motor
threshold: 120%

Bilateral DLPFC
Bilateral Lateral
parietal cortex
(LPC)
Sham control

1- Memory (California
Verbal Learning Test-II,
CVLT-II)

p < 0.05

Positive effects of rTMS on cognitive and
neuroimaging outcomes (i.e., global
cognitive function, mood, and neuroimaging
biomarkers).

2- Global cognitive function
(MoCA) p < 0.05

3- Visuospatial episodic
memory (BVMT-R) p < 0.05

4- Language (BNT) p < 0.05

5- Visuoconstructional
function (ROCF) p < 0.05

6- Speed of processing and
executive control (TMT) p < 0.05

7- Geriatric Depression
Scale (GDS) p < 0.05

8- Functional connectivity
(resting state functional
MRI)

p < 0.05
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Table 2. Cont.

Study, Year Group Intervention Stimulation Cognitive/Neuroimaging
Findings ORs, 95%Cis Main Findings

Roque Roque et al. [68],
(2021)

Active rTMS,
sham-controlled

Non-navigated rTMS: 1500
pulses (30 trains of 50
pulses, each with a 10-s
intertrain interval), at 5 Hz,
for 30 sessions; % motor
threshold: 100%

Left DLPFC

1- Global cognition (MoCA,
MMSE) p < 0.05

Statistically significant in the intergroup
analysis with MoCA
and intragroup only for the
Active group.

2- Mental health assessment
(Mini-International
Neuropsychiatric Interview,
GDS)

p < 0.05

3- Neuropsychological
assessment (NEUROPSI,
ROCF, Stroop effect, and
digit detection)

p < 0.05

4- Electroencephalographic
(EEG) examination N/A

Yuan et al. [58], (2021) Active rTMS,
sham-controlled

Non-navigated rTMS:
frequency of 10 Hz, five
times per week over a
period of 4 consecutive
weeks; % motor
threshold: 80%

Left DLPFC

1- Neuropsychological
assessment (Clinical
Dementia Rating Scale,
Global Deterioration Scale,
and MoCA)

p < 0.05 High-frequency rTMS can effectively
improve cognitive function in aMCI patients
and alter spontaneous
brain activity.

2- RS-fMRI (pre-processing
and ALFF analysis) p < 0.05

Esposito et al. [69], (2022) Active rTMS,
sham-controlled

Non-navigated rTMS:
frequency of 10 Hz, five
times per week over a
period of 4 consecutive
weeks; % motor
threshold: 80%

Bilateral DLPFC

1- Global cognition
(RBANS) p < 0.001

Significant long-term increase in FC in MCI
patients in RS networks associated with
executive functions.

2- Beck Depression
Inventory II p > 0.05

3- Beck Anxiety Inventory p > 0.05

4- AES p ≤ 0.01

5- Functional connectivity
(resting state functional
MRI)

p < 0.001

Abbreviations: MT, motor threshold; ACE-III, Addenbrooke’s cognitive examination; AES-C, Apathy Evaluation Scale clinician version; aMCI, amnestic mild cognitive impairment; CGI-I,
clinical global impression—improvement; CGI-S—clinical global impression-severity; DLPFC, dorsolateral prefrontal cortex; FC, functional connectivity; GDS, Geriatric Depression Scale;
IADL, instrumental activities of daily living; MINI, Mini-International Neuropsychiatric Interview; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment;
NEUROPSI, brief neuropsychological test battery; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; ROCF, Rey–Osterrieth complex figure; rTMS, repetitive
transcranial magnetic stimulation; TMT-A and B, Trail Making Tests: A and B; ZBS, Zarit Burden Scale.
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3.3. Cognitive and Neuroimaging Findings after rTMS Stimulation

Study groups, intervention, stimulation protocols, cognitive/neuroimaging find-
ings, and ORs (95% CIs), with the main results from the 7 selected articles, are shown
in Table 2 [64–69]. As for rTMS effects on general cognitive outcome, Durand et al. [65]
found that all three treated MCI patients improved their cognition and overall clinical
state scores, but there was no discernible improvement in their depressive symptoms.
Also, Taylor et al. [67] and Roque Roque et al. [68] showed that the groups receiving rTMS
stimulation in the DLPFC had improved global cognitive function, in association with the
improvement of memory, language, visuoconstructional, processing/executive control, and
mood performances. As for rTMS effects on specific cognitive outcomes, Padala et al. [64]
revealed that the rTMS group showed more improvement in apathy, executive function,
and clinical overall impression, as well as Esposito et al. [69], who showed considerably im-
proved semantic fluency and visuospatial abilities in the treated group. Finally, as for rTMS
effects on neuroimaging outcomes, Cui et al. [66] demonstrated significant FC changes
within the DMN (between the posterior cingulate gyrus and the right fusiform gyrus), as
well as improvement in neuropsychological performance (auditory verbal learning and
recall recognition) in the rTMS group. Yuan et al. [58] described significantly increased
global cognition in association with changes in amplitude low-frequency fluctuation (ALFF)
in the stimulated group compared to the sham group: the ALFF values in the right superior
frontal gyrus were considerably lowered in the rTMS group, whereas the ALFF values
in the right inferior frontal gyrus, triangular section of the inferior frontal gyrus, right
precuneus, left angular gyrus, and right supramarginal gyrus significantly increased. More-
over, Esposito et al. [69] revealed higher FC in the salience network of the rTMS group at
the short-term timepoint (i.e., after 1 month from rTMS), while, at the long-term timepoint
(i.e., after six months from rTMS), a significant increase of FC in the left frontoparietal
network was revealed in the rTMS group.

Of the 7 selected studies, 6 studies [64,66–69] were assessed as having high quality
(A) and low risk of bias, while 1 study [65] was assessed as having moderate quality (B) and
potential risk of bias due to the open-label design (three case studies).

4. Discussion

This systematic review revealed that rTMS with low-/high-frequency stimulation in the
left/right or bilateral DLPFC might have a positive effect on cognition (i.e., executive, memory,
language, and visuospatial functions) and behavior abnormalities (i.e., apathy) [64–69] in
MCI patients. Inversely, conflicting results are reported regarding the effects of rTMS
on depression [65–69] in MCI patients, while no evidence has been reported regarding
the effects of rTMS on their functional status (i.e., IADL) and on the caregiver burden
(i.e., ZBS) [64]. On the other hand, data from fMRI have been shown to be informative
for understanding the consequences of rTMS after the stimulation protocol [66,67,69] and
at short- and long-term timepoints during follow-up [69]. Therefore, the combination of
functional neuroimaging techniques, besides neuropsychological assessment, for assessing
and monitoring rTMS effects would be preferred.

Reviewed studies suggest that rTMS in MCI patients is safe and effective for enhancing
cognitive function, thus making it a potential therapeutic approach for MCI patients. Our
findings resemble evidence from rTMS studies performed in patients with vascular disease;
in particular, rTMS has been reported to increase the impaired hemisphere’s excitability
and/or modulate the unaffected hemisphere’s activity [53,70]. A study performed in non-
demented vascular cognitive impairment (vascular cognitive impairment-no dementia,
VCI-ND) revealed that high-frequency rTMS on the ipsilesional DLPFC might exert an
immediate effect on cognition by inducing the anti-inflammatory response and changes of
the brain networks [71]. The next research performed on patients with VCI-ND hypothe-
sized that enhanced glutamate neurotransmission might contribute to the preservation of
cognitive functioning [72]. Also, Bella et al. [73] observed significant functional changes
in intracortical excitatory neuronal circuits and clinical features in VCI-ND patients after



J. Clin. Med. 2023, 12, 6190 10 of 15

rTMS treatment. Pan et al. [74] found that rTMS can improve cognitive function, especially
regarding executive function, attention, memory, visuo-spatial abilities, and self-care abil-
ity, in patients with VCI-ND. Thus, it has high clinical application value. These changes
indicated the role of rTMS in restoring the balance between the hemispheres’ activity and
recovering cognitive function [75]. Cognitive function may be improved through rTMS
by enhancing the metabolism of neuronal cells [70]. Above all, rTMS has been shown to
significantly reduce serum lipid levels (cholesterol and triglycerides) [76] and to impact
superoxide dismutase activity [77], which has been shown to be involved in influencing
cognitive performance.

According to Padala et al. [64], Taylor et al. [67], Roque Roque et al. [68], and Durand
et al. [58], the effects of rTMS on cognitive function in patients with MCI are related to
the intensity of the stimulus, the frequency of the stimulation train, the site of stimulation,
or even the course of treatment. These findings confirmed the evidence that rTMS might
improve global cognitive function and, most of all, memory and executive functions in
patients with MCI, having good acceptability and mild adverse effects [61,62]. Furthermore,
some novel interventional targets, such as the precuneus, may be more effective thera-
peutic sites to improve memory in people with cognitive impairment [63,78]. Combining
fMRI neuroimaging with rTMS could address causal relationships between task-related
neural activation and cognitive performance [51,52]. Moreover, Yuan et al. [58] found that
high-frequency rTMS can effectively enhance cognitive function in aMCI patients with
altered spontaneous brain activity. In fact, high-frequency rTMS of the left DLPFC can
be effective in alleviating cognitive symptoms in patients with MCI [56]. More recently,
Esposito et al. [69] targeted the DLPFC with rTMS application, leading to a significant
long-term increase in functional connectivity in MCI patients. Treatment by rTMS induced
increased regional connectivity on the left DLPFC (i.e., the targeted area), also increasing
the average distributed FC of the frontoparietal network [69]. It is worth highlighting that
high-frequency rTMS has been shown to improve cognitive function, such as verbal fluency
and memory [69,79,80]. High-frequency rTMS was applied to multiple coincident cortical
sites associated with cognitive training, which may increase the probability of cortical plas-
ticity [80,81]. Furthermore, high-frequency rTMS of the bilateral DLPFC has been shown
to significantly enhance cognitive function, such as, respectively, executive performance
and visuospatial function [82,83]. Particularly, rTMS at 10 Hz and 20 Hz has been shown
to be more accurate and effective for attention [83] and executive functions [69,84]. More-
over, some evidence revealed that the settings of rTMS parameters (i.e., frequency, session
number, stimulation site number) may significantly impact the effects on global cognitive
function and that protocols with 10 Hz repetition frequency and stimulation of DLPFC
for 20 sessions [69,84,85] can be able to produce long-term cognitive improvement in MCI.
Further, pre-rTMS baseline activity and changes in the DMN at rest may be predictors
of favorable rTMS treatment responses [17]. Whereas changes in functional connectivity
within the DMN after targeted rTMS could represent a valuable indicator of treatment
response [17].

5. Study Limitations

As in any systematic review, there is a possibility of missing additional articles because
they were not found in our data-based search or because they were not available in the
English language. Most of the publications that underwent full review were retrospective
and could potentially have omitted relevant information. We did not include studies
using intermittent theta-burst stimulation (iTBS), since this rTMS variant was applied to
cohorts of patients with Alzheimer’s disease. This led to a lower chance of selection as
our research focuses only on the MCI population. For this reason, we selected only seven
articles, and one article described three case series (moderate quality and potential risk of
bias). Another source of incomplete information was the calculation of the effect size by
Cohen’s d (e.g., only the studies by Taylor et al. [67] and Roque Roque et al. [68] evaluated
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Cohen’s d). Moreover, no statistical analysis was conducted due to the limited number of
included trials.

6. Conclusions

rTMS is a promising, non-invasive treatment for the improvement of cognitive function
in elderly patients with cognitive impairment. Moreover, neuroimaging techniques in
combination with rTMS have been shown to be useful for future network-based, fMRI-
guided therapeutic approaches. To be specific, the combined application of rTMS with
FC neuroimaging analyses and cognitive function assessments may help to clarify how
rTMS exerts its effects on the human brain and would be useful to achieve more effective
disease-modifying therapies for MCI patients.
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