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Abstract: Low back pain (LBP), a globally widespread and persistent musculoskeletal disorder,
benefits from exercise therapy. However, it remains unclear which type leads to greater changes in
paraspinal muscle health. This study aimed to (1) compare the effects of a combined motor control
and isolated lumbar extension exercise (MC+ILEX) versus a general exercise (GE) intervention on
paraspinal muscle morphology, composition, and function, and (2) examine whether alterations in
paraspinal muscle health were correlated with improvements in pain, function, and quality of life.
Fifty participants with chronic LBP were randomly assigned to each group and underwent a 12-week
supervised intervention program. Magnetic resonance imaging and ultrasound assessments were
acquired at baseline, 6 and 12 weeks to examine the impact of each intervention on erector spinae
(ES) and multifidus (MF) muscle size (cross-sectional area, CSA), composition, and function at L4-L5
and L5-S1. Self-reported questionnaires were also acquired to assess participant-oriented outcomes.
Our findings indicated that the MC+ILEX group demonstrated greater improvements in MF and ES
CSA, along with MF thickness at both levels (all p < 0.01). Both groups significantly improved in pain,
function, and quality of life. This study provided preliminary results suggesting that an MC+ILEX
intervention may improve paraspinal morphology while decreasing pain and disability.

Keywords: low back pain; motor control; paraspinal muscles; imaging; magnetic resonance imaging;
ultrasound; fatty infiltration; composition; function

1. Introduction

Low back pain (LBP) is the main contributor to disability globally [1]. Over 80% of the
population worldwide will experience LBP at some point in their lives, which has a signifi-
cant economic impact on individuals, healthcare systems, and local economies [2–5]. While
the multifactorial biopsychosocial–environmental etiology is widely recognized [6–8], there
remain limited options for effective conservative management programs despite nearly
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30 years of data from clinical trials [9]. Imaging studies demonstrate that people with LBP
are more likely to present with morphological and compositional asymmetries, including
muscle fatty infiltration and paraspinal muscular atrophy, especially in the multifidus
muscle as compared to healthy controls [10–12]. Evidence suggests that people with
chronic LBP have decreased multifidus muscle cross-sectional areas (CSA, morphology)
and increased fatty infiltration (composition) at a single or multiple levels of the lumbar
spine [13,14]. In tandem with these muscular changes, a decrease in muscle strength,
endurance, and activation patterns in the hip and back musculature has been observed.
However, causal inferences between the multifidus morphological and functional changes
are unclear [15–17].

A significant percentage of people with chronic LBP seek physical therapy care to
alleviate their pain and improve their functional capacity [17,18]. Physical therapy plays
a central and pivotal role within an integrated multidisciplinary treatment strategy for
chronic LBP, synergizing with instrumental therapies, medications, and injections, as high-
lighted in previous studies [19–21]. The cohesive approach of LBP management highlights
the significance of physical therapy interventions in addressing both the physical and
psychosocial dimensions of the condition. Exercise therapy is recommended as an initial
approach for individuals experiencing chronic LBP, with evidence for improved pain, qual-
ity of life, depression, and disability status [17,22–28]. Given the body of evidence linking
LBP to muscular changes (e.g., atrophy, fatty infiltration, asymmetry) in the trunk and
paraspinal muscles, many exercise therapies focus on improving activation and control of
these muscles [11,22,25,26,29,30]. In a recent study, the effects of a high-intensity interven-
tion centered on isolated lumbar extensor exercise examined muscle cross-sectional area
(CSA) and fatty infiltration of the multifidus and erector spinae muscles [31]. Variability
in both morphological and compositional changes was found, where some individuals
experienced increased CSA and reduced fatty infiltration, while others exhibited no al-
terations [31]. Another study found that a 16-week progressive, free-weight exercise
intervention significantly reduced lumbar paraspinal muscle fat infiltration [32]. On the
other hand, a systematic review examined the impacts of motor control exercise on the
structural characteristics of the lumbar multifidus muscle and LBP and found preliminary
evidence to support that motor control exercises may positively affect multifidus size, with
a positive dose–response relationship [33]. Currently, there is a scarcity of studies that have
comprehensively investigated the effects of exercise therapy interventions on the overall
paraspinal muscle health (morphology, composition, and function), and how these changes
may be linked with improvements in pain and disability [1].

Whilst there is moderate quality evidence indicating that exercise therapy leads to
greater reduction in pain and improvement in function compared to control or minimal
intervention [34,35], studies comparing the effects of exercise interventions on paraspinal
muscle morphological and compositional changes and its association with pain and disabil-
ity are scarce [1]. Indeed, while motor control exercise and resistance training are among
the most popular and promising forms of exercises to improve paraspinal muscle quality
and restore paraspinal muscle activation/motor control, most exercise trials only report on
changes in patient-oriented outcomes. To the best of our knowledge, Berry et al. is the only
study that examined the effects of a high-intensity resistance intervention on the lumbar
muscles in individuals with LBP and reported a correlation between MRI changes and
patient-related outcomes [31]. Individuals who presented with enhancements in muscle
health also showed the greatest improvements in function, muscle strength, depression, and
anxiety [31]. While there is a widely held belief that improving paraspinal muscle quality
leads to better patient-related outcomes, this theory has not been thoroughly assessed and
warrants further attention.

The objectives of this study were to (1) compare the effects of a combined motor control
and isolated lumbar extension strengthening group (MC+ILEX) versus a general exercise
group (GE) on (i) paraspinal (multifidus and erector spinae) muscle morphology and
composition (size, fatty infiltration) and (ii) overall multifidus muscle function (% thickness
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change from at rest to a contracted position) and (2) investigate the association between
the observed changes in muscle morphology with the changes in pain and disability
postintervention. We hypothesized that participants in the MC+ILEX group would show
significant improvements in the overall health of paraspinal muscle health (multifidus
muscle morphology, composition, and function). We also hypothesized that the positive
changes in paraspinal muscle health would be associated with concomitant improvements
in patient-related outcomes (pain and disability).

2. Materials and Methods
2.1. Study Design and Setting

This study was a two-arm randomized control trial (RCT) with a test–retest design (re-
fer to Figure A1 in the Appendix A). The study protocol has been previously published [1],
and the trial was prospectively registered (NTCT04257253). This monocentric study was
conducted at Concordia University’s School of Health and was approved by the Central
Ethics Research Committee under the jurisdiction of the Quebec Minister of Health and
Social Services (#CCER-19-20-09). Each participant provided their informed consent by
signing a consent form. The study was reported following the CONSORT statement [36].

2.2. Participants

Individuals were eligible for enrollment in this study if they satisfied all the following
criteria for inclusion: (1) nonspecific chronic low back pain (LBP) lasting at least 3 months
(accompanied with or without leg pain), (2) between the ages of 18 and 65 years old,
(3) communicated in either the English or French language, (4) were in the pursuit of
care for LBP, (5) achieved a ranking of “moderate” or “severe” on the modified Oswestry
Low Back Pain Disability Questionnaire, (6) had not participated in any sport or training
targeting the muscles of the lower back within the 3 months preceding the start of the trial.
Individuals were excluded if they fulfilled any of the following criteria: (1) any indications
of nerve root compression or observable deficits in motor reflexes; (2) prior spinal surgery,
lumbar steroid injections, or fractures of the vertebrae; (3) significant structural irregularities
in the lumbar spine (e.g., spondylosis, spondylolisthesis, scoliosis > 10◦); (4) pregnancy;
(5) medical conditions that hinder the safe participation in physical exercise as evaluated
by the Physical Activity Readiness Questionnaire.

2.3. Participant Recruitment

Participants were enlisted from the nearby university community through email ad-
vertising and from the Quebec LBP Consortium, a group of experts from diverse disciplines
aiming to establish a province-wide online database with longitudinal data of individu-
als with LBP [37]. Participants who expressed interest in the study were contacted by a
member of the research team to confirm eligibility and enroll the participants. Participant
recruitment started in October 2020 and the data collection was completed by October 2021.

2.4. Randomization and Blinding

Participants were assigned randomly to either treatment group in a balanced manner
(1:1). The random allocation was achieved through consecutively numbered opaque sealed
envelopes (generated by a computerized randomization sequence with permuted blocks)
prepared by an individual not involved in the study. Solely the assessor was blinded
to participants’ characteristics for imaging, as concealing this information from both the
therapists and participants is typically unfeasible in exercise intervention studies [38].

2.5. Procedure

Participants in both groups underwent a 12-week intervention program involving two
supervised exercise sessions weekly, each lasting approximately 45 min. The interventions
were delivered by a certified athletic therapist (MC+ILEX) and a graduate student in exer-
cise science (GE) with 1 year of experience. Participants in both groups were advised to
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follow a home exercise program during the intervention and after discharge. The home pro-
gram was different for each group and included exercises similar to the main intervention
but performed with elastic bands. Participants in both groups were instructed to perform
the home program 2–3×/week. Throughout the intervention period, participants were
asked to avoid seeking other forms of treatment (e.g., chiropractor, osteopath, massage)
and medication, although this did not hinder participation. Participants were asked to
report any cointerventions at the end of the trial.

2.6. Intervention Protocols
2.6.1. General Exercise Group (GE)

Participants in the GE group underwent a 12-week program that started with a 10 min
aerobic warmup (stationary bike or incline treadmill walking), followed by resistance
training exercises for the glutes, hip adductors/abductors, and upper back muscles (e.g.,
rhomboids, latissimus dorsi) and finally trunk-leg stretches. The machine-based resistance
training program was structured as a two-day split routine, concentrating on distinct
muscle groups for each session (refer to Table A1 in the Appendix A). The intensity of the
intervention systematically increased throughout its duration based on a study methodol-
ogy established by Iversen et al. [39]. The designated repetitions were as outlined: weeks
1–2, 15–20 repetitions; weeks 3–5, 12–15 repetitions; week 6–8, 10–12 repetitions; weeks
9–12, 8–10 repetitions. Each exercise was performed for three sets and the weights were
increased by 5% when participants managed to accomplish 2 or more repetitions than
the designated range. At the end of each session, stretches such as cat–cow, pigeon, deep
lunge, and piriformis were performed. In accordance with the American College of Sports
Medicine (ACSM) guidelines, all stretch positions were held for a duration of 10 s and
repeated 3 times per side [40]. The aim of this intervention was to facilitate participants in
resuming their regular activities of daily living, which encompass tasks like standing, lifting,
and walking. Evidence suggests that general exercise programs emphasizing lower-body
strength and flexibility are effective in producing these outcomes [24].

2.6.2. Combined Motor Control and Isolated Lumbar Extension Group (MC+ILEX)

The aim of the intervention was to restore proper control, coordination, and synergistic
contraction of the lumbar muscles, with the goal of enhancing spinal stability both while
at rest and during various movements [41,42]. The intervention was based on motor
control principles, starting with the cognitive phase (initiating activation of the deep spinal
muscles) and transitioning to the associative and autonomous phase ultimately progressing
towards functional rehabilitation [43,44]. In addition, the intervention also incorporated
coordination and optimal control of global trunk muscles [45,46].

2.6.3. Phase 1: Cognitive Phase

The initial phase of the intervention began by evaluating muscle engagement and
breathing patterns. Afterward, a motor control regimen was implemented to address
any deficits identified in the assessment. The main aim of the intervention was to correct
certain muscle patterns such as increasing the deep trunk muscle activation (multifidus and
transverse abdominus muscles) while reducing the engagement of global muscles (refer to
Table A2 in the Appendix A) [42,45,46]. Deep trunk muscle activation was accomplished
through a series of increasingly difficult positions. As a prerequisite to progress to stage two,
participants were required to fulfill the following conditions: perform 10 repetitions while
holding for 10 s, attain activation with minimal guidance or prompts, and maintain regular
breathing patterns during the exercises [47]. Both phases of the intervention included the
correction of breathing patterns with an emphasis on diaphragmatic breathing.

2.6.4. Phase 2: Autonomous Activation Phase

Once the participants effectively activated the deep trunk muscles with minimal
superficial muscle compensation, while maintaining proper breathing, they progressed
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to phase 2. This phase focused on gradually increasing the load placed on the muscles,
from static to dynamic positions, while maintaining a neutral alignment of the lumbar
region and ensuring coordination of the deep core muscles [46]. Progression in exercise was
accomplished by placing the participant in increasingly demanding positions (supine to
sitting), intensifying the resistance (limb movement), and introducing elements of dynamic
stability (unstable surface). The aim of this phase was to achieve automatic engagement of
deep trunk muscles while fostering synergistic coordination with the superficial muscles.

Participants within this group also completed isolated lumbar extensor strength exer-
cises (ILEX) in conjunction with the motor control exercises. The resisted training session
was completed on the MedX machine (refer to Figure A2 in the Appendix A) [48]. The base-
line testing involved measuring the participants’ one repetition maximum (1 RM). During
the intervention, participants completed two sets of lumbar extension with 15–20 repetitions
at 55% of their 1 repetition maximum (1 RM) at a 24◦ angle. When the participant suc-
cessfully completed 15–20 repetitions, the load was augmented by 5% [49,50]. The MedX
lumbar extensor machine was designed to enable testing and strengthening of the lumbar
extensor muscles in the flexion–extension plane of movement over the entire range. By pro-
viding pelvic and lower body stabilization, the need for the engagement of compensatory
and synergistic muscles (e.g., glutes and hamstrings) was eliminated, thereby allowing for
isolated lumbar extensor strengthening.

2.7. Outcome Measures

All outcome variables were collected at baseline, 6 weeks, and 12 weeks for participants
in both intervention groups. All self-reported questionnaires were completed on paper
in person. MRI and ultrasound assessments of the lumbar extensor muscle assessments
were obtained at each time point at Concordia University’s School of Health. Demographic
characteristics were collected at baseline.

2.8. Primary Outcome
Multifidus Muscle Morphology

Multifidus muscle morphology (size and fatty infiltration) was examined at L4-L5 and
L5-S1 using IDEAL (lava-flex, 2-echo) fat–water sequences acquired via a 3-Tesla General
Electric (Chicago, IL, USA) MRI machine (standard phase array body coil with 4 mm slice
thickness, 512 × 512 matrix and 180 mm2 field of view).

The multifidus cross-sectional area (CSA) was traced manually on corresponding fat
and water images to assess muscle size. The percent fat signal fraction was calculated
from the CSA segmentation using the following formula: %FSF = (Signalfat/[Signalwater
+ Signalfat] × 100). Measurements were obtained on 3 slices per level (upper endplate,
mid-disc, and lower endplate). The mean of the CSA and %FSF for each level (L4-L5 and
L5-S1) was used in the analyses. Intrarater correlation coefficients (ICC1,3) were calculated
using a sample of 10 images, a minimum of 5 days apart, with excellent reliability (ICC:
0.96–0.99) for both CSA and %FSF at both spinal levels.

2.9. Secondary Outcomes
2.9.1. Multifidus Muscle Function

Muscle thickness was assessed using an Aixplorer Supersonic ultrasound machine
with a curvilinear 1–6 MHz transducer. The thickness of the multifidus muscle was ana-
lyzed in both its resting state and during submaximal contraction, involving measurements
taken during contralateral arm lifts at the L4-L5 and L5-S1 levels. To evaluate submaximal
contraction, the participant was guided to lift their arm while grasping a handheld weight
(adjusted according to the participant’s body weight) in a prone position whilst the evalua-
tor used ultrasound to examine the contralateral multifidus [51,52]. The following equation
was used to measure the change in multifidus muscle thickness from submaximal (rest) to
maximal (contracted) states = (thicknesscontracted − thicknessrest)/thicknessrest) × 100. This
method for evaluating the multifidus using ultrasound is reliable and valid [51,53,54]. Mea-
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surements were repeated three times on each side and the mean was used for the analysis.
Intrarater correlation coefficients (ICC1,3) were calculated using a sample of 10 images, a
minimum of 5 days apart, with excellent reliability (ICCs: 0.90–0.99) for both thickness and
%thickness changes at both spinal levels.

2.9.2. Erector Spinae Muscle Morphology

The erector spinae muscle CSA at L4-L5 and L5-S1 was traced manually on corre-
sponding fat and water images to assess muscle size, as described above for the multifidus
muscle, and the reliability was comparable to the multifidus muscle.

2.9.3. Disability

The Oswestry Disability Index (ODI) was used to evaluate participants’ self-reported
levels of disability associated with LBP and disability. Each item on this 10-item scale
required a rating from 0 to 5. A score of 0 indicated that the pain had no impact the
situation, while a score of 5 indicated severe disability. The questionnaire covers categories
such as pain intensity, personal care, lifting, walking, sitting, standing, sleeping, sex life,
social life and traveling. Scores were classified into different groups, including minimal,
moderate, severe, disabled, or bedridden. The ODI is a core set outcome for measuring low
back pain-related disability due to its reliability and validity [55,56].

2.9.4. Health-Related Quality of Life

The participants’ health-related quality of life was assessed using the 12-item Short
Form Health Survey (SF-12). The 12-item survey uses eight domains to asses various
dimensions of health, encompassing both physical and mental aspects: (1) restrictions in
physical activities due to health concerns, (2) restrictions in social engagements due to
physical or emotional concerns, (3) restrictions in usual role-related activities due to physical
health concerns, (4) bodily pain, (5) overall mental health (encompassing psychological
stress and well-being), (6) restrictions in usual role-related activities due emotional concerns,
(7) vitality (comprising energy levels and fatigue), and (8) general perceptions of health.
The scores from each question were summed to obtain an overall score ranging from
0 to 100, with 100 being the best mark of health. The SF-12 is both a reliable and valid
tool [57,58].

2.9.5. Pain

The Numerical Pain Rating Scale (NPR) was used to evaluate the degree of pain
experienced by participants on a scale from 0 to 10. The scale is a reliable and valid method
of detecting changes in perceived pain [59,60].

2.9.6. Adherence

The therapists assessed the adherence to each intervention by recording in the treat-
ment files the number of attended sessions (out of a maximum of 24 sessions) for each
participant. Adherence to the home exercise program was assessed and noted by the
therapists at the end of the intervention by asking the following question “How often
did you perform your home exercises” and using an ordinal scale: (1) none of the time,
(2) some of the time, (3) most of the time, (4) almost all of the time, (5) all of the time.

2.10. Statistical Analysis

An a priori sample size calculation was established based on the effect size (significant
pre–post-difference in CSA measurements of the multifidus muscle following a motor
control intervention) obtained from a prior study [61]. G*power software (version 3.1) was
utilized to calculate the sample size based on a mean effect size of d = 0.90, a power of
80%, a significance level of alpha 0.05, and incorporating a 10% buffer for potential loss to
follow-up and 10% treatment nonadherence. Baseline characteristics were evaluated using
descriptive statistics. Changes multifidus and erector spinae size, composition, and function
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from pre- to postintervention were analyzed using a between-subjects repeated measures
ANOVA, while adjusting for baseline values. Repeated measures ANOVA was also used to
assess the changes in participant-oriented outcomes. Pearson’s correlations were used to
analyze the correlation between changes in multifidus muscle and erector spine CSA and
%FSF with changes in related disability and pain postintervention. Interpretation of the
correlation strength was based on Cohen’s conventions, categorizing correlations as small,
moderate, and strong when they were approximately 0.10, 0.30, and 0.50, respectively [62].
All statistical analyses were completed using IBM SPSS (version 28.0.0.0 (190), New York,
NY, USA); a p-value of <0.05 was considered statistically significant.

3. Results
3.1. Demographics and Adherence

One hundred ninety-five individuals expressed their interest to take part in the trial.
Thirty-eight declined to participate in the study due to personal reasons or failed to maintain
contact to be further screened. One hundred and three individuals were ineligible due to
not meeting the specified inclusion criteria. A flowchart diagram is presented in Figure A1
(Refer to Appendix A). The most frequent reason for exclusion was a low-to-moderate score
on the ODI, followed by having a preexisting spinal abnormality. Initially, four participants
were enrolled but later, excluded due to the identification of spinal abnormalities on the
baseline MRI. All participants that were randomly allocated were included in the primary
(intention to treat) analysis independent of compliance and loss to follow-up.

In total, 50 participants were recruited and randomly assigned to each group (n = 25 in
MC-ILEX, n = 25 in GE). Each of the 25 participants allocated to the MC+ILEX intervention
successfully completed the 12 weeks intervention (no dropout). Among the initial group of
25 participants allocated to the GE intervention, a total of 22 participants completed the
12-week intervention. One participant was excluded from the study after randomization
and two dropped out due to conflicting time commitments, all within 2 weeks of starting
the trial. The MC+ILEX group reported a mean attendance of 22.1 ± 1.6 and the GE
group reported a mean attendance of 22.3 ± 1.3 out of a possible 24 sessions, indicating
a high level of participation in this study. With regards to the home exercise program,
most participants in the MC+ILEX group reported doing the home exercise program either
“some of the time” (44%), “most of the time” (16%), or “almost all the time” (16%). Similarly,
most participants in the GE group reported performing the home exercise program either
“some of the time” (29%) or “most of the time” (33%). Baseline demographic characteristics
between groups appeared similar (Table 1). Both groups displayed large variability in the
self-reported LBP duration, with the mean duration of LBP reported as 73.5 ± 82.8 months
in the MC+ILEX group and 101.7 ± 105.6 months in the GE group.

Table 1. Baseline characteristics of the participants within each group.

Group MC+ILEX
n = 25

GE
n = 25 p-Value

Age (year) (mean ± SD) 45.16 ± 10.66 37.60 ± 11.60 0.020 #

Sex (male) 5 (33.3%) 10 (66.7%)
0.123 *Sex (female) 20 (57.1%) 15 (42.9%)

Height (cm) 169.68 ± 10.93 169.29 ± 7.86 0.887 #

Weight (kg) 75.08 ± 16.39 76.39 ± 19.58 0.805 #

BMI 26.09 ± 5.01 26.40 ± 5.22 0.834 #

LBP Length (months) 73.52 ± 82.81 101.69 ± 105.62 0.299 #

NPR Scores
Baseline 5.26 ± 1.75 5.19 ± 1.72 0.887 #
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Table 1. Cont.

Group MC+ILEX
n = 25

GE
n = 25 p-Value

6 weeks 3.58 ± 1.78 3.63 ± 1.07 0.890 #

12 weeks 2.80 ± 1.81 3.41 ± 1.62 0.225 #

ODI Scores
Baseline 29.40 ± 9.85 26.04 ± 10.03 0.238 #

6 weeks 22.96 ± 11.47 21.45 ± 10.05 0.637 #

12 weeks 19.70 ± 10.66 18.27 ± 7.05 0.756 #

SF-12 Scores
Baseline 87.10 ± 12.88 79.62 ± 27.09 0.218 #

6 weeks 89.39 ± 12.92 85.60 ± 29.43 0.558 #

12 weeks 90.77 ± 24.33 83.53 ± 33.75 0.389 #

Categorical variables are shown as number (%) and numerical data are shown as mean ± SD. * Based on chi
square test. # Based on independent samples t-test.

3.2. Effect of MC+ILEX and GE on Muscle Cross-Sectional Area (CSA)

The mixed model ANOVA with repeated measures indicated significant time*group
interactions for the multifidus and erector spinae CSA at the L4-L5 (p < 0.01) and L5-S1
levels (p < 0.001) (refer to Figures 1–4). Postintervention, participants in the MC+ ILEX
group had a greater increase in the CSA of the multifidus (mean difference [95% CI]) at
L4/L5 (0.69 [0.38–1.00] cm2), erector spinae at L4-L5 (1.17 [0.63–1.71] cm2), multifidus at
L5/S1 (0.69 [0.39–1.00] cm2), and erector spinae at L5/S1 (1.90 [1.06–2.73] cm2) compared
to the GE group (Table 2).

J. Clin. Med. 2023, 12, x FOR PEER REVIEW  9  of  23 
 

 

df = 2  df = 2 

L4/L5 ES CSA (cm2) 

Baseline  16.31  16.31 

p-value = 0.001 

F = 12.49 

df = 1 

p-value = 0.002 

F = 6.53 

df = 2 

6 weeks (std. error)  16.91 (0.21) *  16.11 (0.22) 

12 weeks  17.48 (0.27) *  16.20 (0.29) 

MD (95% CI)  1.17 (0.63 to 1.71) *  −0.16 (−0.70 to −0.47) 

Main effect of time 

p-value = <0.001 

F = 9.94 

df = 2 

p-value = 0.68 

F = 0.39 

df = 2 

L5/S1 MF CSA (cm2) 

Baseline  11.88  11.88 

p-value = <0.001 

F = 7.27 

df = 1 

p-value = <0.001 

F = 14.47 

df = 2 

6 weeks (std. error)  12.10 (0.15)  11.74 (0.17) 

12 weeks  12.57 (0.15) *  11.43 (0.17) * 

MD (95% CI)  0.69 (0.39 to 1.00) *  −0.45 (−0.80 to −0.10) * 

Main effect of time 

p-value = <0.001 

F = 13.08 

df = 2 

p-value = 0.013 

F = 4.99 

df = 2 

L5/S1 ES CSA (cm2) 

Baseline  11.28  11.28 

p-value = <0.001 

F = 23.88 

df = 1 

p-value = <0.001 

F = 14.54 

df = 2 

6 weeks (std. error)  12.29 (0.31) *  10.78 (0.35) 

12 weeks  13.18 (0.42) *  10.11 (0.47) 

MD (95% CI)  1.90 (1.06 to 2.73) *  −1.174 (−2.12 to −0.23) * 

Main effect of time 

p-value = <0.001 

F = 11.04 

df = 2 

p-value = 0.054 

F = 3.14 

df = 2 

* The mean difference is significant at the 0.05 level. 

 

Figure 1. Bar graph of the mean changes in multifidus CSA at the L4/L5 level in both groups, with 

standard error, adjusted for baseline values. 

 

Figure 2. Bar graph of the mean changes in erector spinae CSA at the L4/L5 in both groups, with 

standard error, adjusted for baseline values. 

Figure 1. Bar graph of the mean changes in multifidus CSA at the L4/L5 level in both groups, with
standard error, adjusted for baseline values.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW  9  of  23 
 

 

df = 2  df = 2 

L4/L5 ES CSA (cm2) 

Baseline  16.31  16.31 

p-value = 0.001 

F = 12.49 

df = 1 

p-value = 0.002 

F = 6.53 

df = 2 

6 weeks (std. error)  16.91 (0.21) *  16.11 (0.22) 

12 weeks  17.48 (0.27) *  16.20 (0.29) 

MD (95% CI)  1.17 (0.63 to 1.71) *  −0.16 (−0.70 to −0.47) 

Main effect of time 

p-value = <0.001 

F = 9.94 

df = 2 

p-value = 0.68 

F = 0.39 

df = 2 

L5/S1 MF CSA (cm2) 

Baseline  11.88  11.88 

p-value = <0.001 

F = 7.27 

df = 1 

p-value = <0.001 

F = 14.47 

df = 2 

6 weeks (std. error)  12.10 (0.15)  11.74 (0.17) 

12 weeks  12.57 (0.15) *  11.43 (0.17) * 

MD (95% CI)  0.69 (0.39 to 1.00) *  −0.45 (−0.80 to −0.10) * 

Main effect of time 

p-value = <0.001 

F = 13.08 

df = 2 

p-value = 0.013 

F = 4.99 

df = 2 

L5/S1 ES CSA (cm2) 

Baseline  11.28  11.28 

p-value = <0.001 

F = 23.88 

df = 1 

p-value = <0.001 

F = 14.54 

df = 2 

6 weeks (std. error)  12.29 (0.31) *  10.78 (0.35) 

12 weeks  13.18 (0.42) *  10.11 (0.47) 

MD (95% CI)  1.90 (1.06 to 2.73) *  −1.174 (−2.12 to −0.23) * 

Main effect of time 

p-value = <0.001 

F = 11.04 

df = 2 

p-value = 0.054 

F = 3.14 

df = 2 

* The mean difference is significant at the 0.05 level. 

 

Figure 1. Bar graph of the mean changes in multifidus CSA at the L4/L5 level in both groups, with 

standard error, adjusted for baseline values. 

 

Figure 2. Bar graph of the mean changes in erector spinae CSA at the L4/L5 in both groups, with 

standard error, adjusted for baseline values. 

Figure 2. Bar graph of the mean changes in erector spinae CSA at the L4/L5 in both groups, with
standard error, adjusted for baseline values.



J. Clin. Med. 2023, 12, 5920 9 of 22J. Clin. Med. 2023, 12, x FOR PEER REVIEW  10  of  23 
 

 

 

Figure 3. Bar graph of the mean changes in multifidus CSA at the L5/S1 levels in both groups, with 

standard error, adjusted for baseline values. 

 

Figure  4. Bar  graph  of  the mean  changes  in  erector  spinae CSA  at L5/S1  in  both  groups, with 

standard error, adjusted for baseline values. 

3.3. Effect of MC+ILEX and GE on Fatty Infiltration (% Fat Fraction) 

The repeated measures ANOVA indicated no significant time*group interactions for 

the erector spinae and multifidus %FF at both the L4-L5 and L5-S1 levels (all p > 0.05). No 

significant  change  in %FF  of  the multifidus muscle  at L4/L5  and L5/S1  (Table  3) was 

observed  throughout  the  intervention  for  either  group.  Technical  imaging  issues 

prevented the reconstruction of five sets of IDEAL images, leading to the impossibility of 

calculating fat fraction, and limiting the sample size to 45 for this measure. 

Table 3. Adjusted multifidus and erector spinae muscle % fat fraction means in the MC+ILEX and 

GE groups. 

Variables  Measurement Period 
MC+ILEX 

n = 25 

GE 

n = 25 

Main Effect of 

Group 

Interaction   

Effect between 

Time and 

Group 

L4/L5 MF FF 

(cm2) 

Baseline  25.91  25.91 

p-value = 0.891 

F = 0.02 

df = 1 

p-value = 0.388 

F = 0.96 

df = 2 

6 weeks (std. error)  25.89 (0.53)  25.15 (0.52) 

12 weeks  24.95 (0.67)  25.52 (0.65) 

MD (95% CI)  −0.96 (−2.31 to 0.39)  −0.39 (−1.71 to 0.92) 

Main effect of time 

p-value = 0.37 

F = 1.11 

df = 2 

p-value = 0.34 

F = 1.11 

df= 2 

Baseline  33.48  33.48  p-value = 0.96  p-value = 0.97 

Figure 3. Bar graph of the mean changes in multifidus CSA at the L5/S1 levels in both groups, with
standard error, adjusted for baseline values.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW  10  of  23 
 

 

 

Figure 3. Bar graph of the mean changes in multifidus CSA at the L5/S1 levels in both groups, with 

standard error, adjusted for baseline values. 

 

Figure  4. Bar  graph  of  the mean  changes  in  erector  spinae CSA  at L5/S1  in  both  groups, with 

standard error, adjusted for baseline values. 

3.3. Effect of MC+ILEX and GE on Fatty Infiltration (% Fat Fraction) 

The repeated measures ANOVA indicated no significant time*group interactions for 

the erector spinae and multifidus %FF at both the L4-L5 and L5-S1 levels (all p > 0.05). No 

significant  change  in %FF  of  the multifidus muscle  at L4/L5  and L5/S1  (Table  3) was 

observed  throughout  the  intervention  for  either  group.  Technical  imaging  issues 

prevented the reconstruction of five sets of IDEAL images, leading to the impossibility of 

calculating fat fraction, and limiting the sample size to 45 for this measure. 

Table 3. Adjusted multifidus and erector spinae muscle % fat fraction means in the MC+ILEX and 

GE groups. 

Variables  Measurement Period 
MC+ILEX 

n = 25 

GE 

n = 25 

Main Effect of 

Group 

Interaction   

Effect between 

Time and 

Group 

L4/L5 MF FF 

(cm2) 

Baseline  25.91  25.91 

p-value = 0.891 

F = 0.02 

df = 1 

p-value = 0.388 

F = 0.96 

df = 2 

6 weeks (std. error)  25.89 (0.53)  25.15 (0.52) 

12 weeks  24.95 (0.67)  25.52 (0.65) 

MD (95% CI)  −0.96 (−2.31 to 0.39)  −0.39 (−1.71 to 0.92) 

Main effect of time 

p-value = 0.37 

F = 1.11 

df = 2 

p-value = 0.34 

F = 1.11 

df= 2 

Baseline  33.48  33.48  p-value = 0.96  p-value = 0.97 

Figure 4. Bar graph of the mean changes in erector spinae CSA at L5/S1 in both groups, with standard
error, adjusted for baseline values.

Table 2. Adjusted multifidus and erector spinae muscle CSA means in the MC+ILEX and GE groups.

Variables Measurement
Period

MC+ILEX
n = 25

GE
n = 25

Main Effect of
Group

Interaction
Effect between Time

and Group

L4/L5 MF CSA
(cm2)

Baseline 10.00 10.00
p-value = 0.009

F = 7.55
df = 1

p-value = 0.001
F = 8.33
df = 1.72

6 weeks (std. error) 10.31 (0.13) * 9.98 (0.14)
12 weeks 10.69 (0.15) * 9.90 (0.17)

MD (95% CI) 0.69 (0.38 to 1.00) * −0.10 (−0.43 to 0.24)

Main effect of time
p-value = <0.001

F = 11.60
df = 2

p-value = 0.71
F = 0.35
df = 2

L4/L5 ES CSA
(cm2)

Baseline 16.31 16.31
p-value = 0.001

F = 12.49
df = 1

p-value = 0.002
F = 6.53
df = 2

6 weeks (std. error) 16.91 (0.21) * 16.11 (0.22)
12 weeks 17.48 (0.27) * 16.20 (0.29)

MD (95% CI) 1.17 (0.63 to 1.71) * −0.16 (−0.70 to −0.47)

Main effect of time
p-value = <0.001

F = 9.94
df = 2

p-value = 0.68
F = 0.39
df = 2

L5/S1 MF CSA
(cm2)

Baseline 11.88 11.88
p-value = <0.001

F = 7.27
df = 1

p-value = <0.001
F = 14.47

df = 2

6 weeks (std. error) 12.10 (0.15) 11.74 (0.17)
12 weeks 12.57 (0.15) * 11.43 (0.17) *

MD (95% CI) 0.69 (0.39 to 1.00) * −0.45 (−0.80 to −0.10) *

Main effect of time
p-value = <0.001

F = 13.08
df = 2

p-value = 0.013
F = 4.99
df = 2

L5/S1 ES CSA
(cm2)

Baseline 11.28 11.28
p-value = <0.001

F = 23.88
df = 1

p-value = <0.001
F = 14.54

df = 2

6 weeks (std. error) 12.29 (0.31) * 10.78 (0.35)
12 weeks 13.18 (0.42) * 10.11 (0.47)

MD (95% CI) 1.90 (1.06 to 2.73) * −1.174 (−2.12 to −0.23) *

Main effect of time
p-value = <0.001

F = 11.04
df = 2

p-value = 0.054
F = 3.14
df = 2

* The mean difference is significant at the 0.05 level.
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3.3. Effect of MC+ILEX and GE on Fatty Infiltration (% Fat Fraction)

The repeated measures ANOVA indicated no significant time*group interactions for
the erector spinae and multifidus %FF at both the L4-L5 and L5-S1 levels (all p > 0.05).
No significant change in %FF of the multifidus muscle at L4/L5 and L5/S1 (Table 3) was
observed throughout the intervention for either group. Technical imaging issues prevented
the reconstruction of five sets of IDEAL images, leading to the impossibility of calculating
fat fraction, and limiting the sample size to 45 for this measure.

Table 3. Adjusted multifidus and erector spinae muscle % fat fraction means in the MC+ILEX and
GE groups.

Variables Measurement
Period

MC+ILEX
n = 25

GE
n = 25

Main Effect of
Group

Interaction
Effect between

Time and Group

L4/L5
MF FF
(cm2)

Baseline 25.91 25.91
p-value = 0.891

F = 0.02
df = 1

p-value = 0.388
F = 0.96
df = 2

6 weeks (std. error) 25.89 (0.53) 25.15 (0.52)
12 weeks 24.95 (0.67) 25.52 (0.65)

MD (95% CI) −0.96 (−2.31 to 0.39) −0.39 (−1.71 to 0.92)

Main effect of time
p-value = 0.37

F = 1.11
df = 2

p-value = 0.34
F = 1.11

df= 2

L4/L5 ES
FF (cm2)

Baseline 33.48 33.48
p-value = 0.96

F = 0.002
df = 1

p-value = 0.97
F = 0.03
df = 2

6 weeks (std. error) 33.21 (0.81) 33.11 (0.79)
12 weeks 32.96 (0.59) 33.14 (0.57)

MD (95% CI) −0.52 (−1.70 to 0.67) −0.34 (−1.50 to 0.82)

Main effect of time
p-value = 0.68

F = 0.389
df = 2

p-value = 0.79
F = 0.235

df = 2

L5/S1
MF FF
(cm2)

Baseline 27.92 27.92
p-value = 0.37

F = 0.82
df = 1

p-value = 0.46
F = 0.80
df = 2

6 weeks (std. error) 27.80 (0.38) 27.56 (0.39)
12 weeks 28.23 (0.53) 27.43 (0.54)

MD (95% CI) 0.32 (−0.76 to 1.40) −0.49 (−1.59 to 0.62)

Main effect of time
p-value = 0.008

F = 5.62
df = 2

p-value = 0.69
F = 0.39
df = 2

L5/S1 ES
FF (cm2)

Baseline 41.38 41.38
p-value = 0.12

F = 2.56
df = 1

p-value = 0.24
F = 1.47
df = 2

6 weeks (std. error) 39.34 (0.62) * 40.94 (0.63)
12 weeks 39.28 (0.79) 40.68 (0.81)

MD (95% CI) −2.09 (−3.70 to −0.49) * −0.70 (−2.35 to 0.95)

Main effect of time
p-value = 0.01

F = 5.62
df = 2

p-value = 0.69
F = 0.38
df = 2

* The mean difference is significant at the 0.05 level.

3.4. Effect of MC+ILEX and GE on Multifidus Thickness and Function

The repeated measures ANOVA revealed significant time*group interactions for the
multifidus thickness at L4 (p < 0.001) and L5 levels (p < 0.001). Postintervention, participants
in the MC+ ILEX group had greater multifidus thickness (mean difference [95% CI]) at the
L4 (0.22 [0.15–0.29] cm2) and L5 (0.25 [0.18–0.32] cm2) levels compared to the GE group
(Table 4). In the MC+ILEX group, multifidus thickness showed a significant increase at
both L4 and L5 across all time points. However, the GE group displayed no changes at
either L4 or L5 levels. No significant differences were observed in the multifidus muscle
thickness % changes between resting and contracted states in either group (Table 5).
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Table 4. Adjusted multifidus thickness means at L4 and L5 in the MC+ILEX and GE groups.

Variables Measurement
Period

MC+ILEX
n = 25

GE
n = 25

Main Effect of
Group

Interaction
Effect between

Time and Group

L4

Baseline 2.95 2.95
p-value = 0.03

F = 4.81
df = 1

p-value = <0.001
F = 8.72
df = 2

6 weeks (std. error) 3.09 (0.03) * 3.00 (0.03)
12 weeks 3.17 (0.04) * 2.95 (0.04)

MD (95% CI) 0.22 (0.15 to 0.29) * −0.002 (−0.08 to 0.73)

Main effect of time
p-value = <0.001

F = 20.91
df = 2

p-value = 0.28
F = 1.32
df = 2

L5

Baseline 2.83 2.83
p-value = <0.001

F = 19.04
df = 1

p-value = <0.001
F = 11.04

df = 2

6 weeks (std. error) 2.99 (0.03) * 2.85 (0.03)
12 weeks 3.08 (0.04) * 2.87 (0.04)

MD (95% CI) 0.25 (0.18 to 0.32) * 0.35 (−0.04 to 0.11)

Main effect of time
p-value = <0.001

F = 27.06
df = 2

p-value = 0.65
F = 0.43
df = 2

* The mean difference is significant at the 0.05 level; muscle thickness units are expressed in millimeters (mm).

Table 5. Adjusted L4 and L5 multifidus for % thickness change (rest to contracted) in the MC+ILEX
and GE groups.

Variables Measurement
Period

MC+ILEX
n = 25

GE
n = 25

Main Effect of
Group

Interaction
Effect between Time

and Group

L4

Baseline 15.76 15.76
p-value = 0.96

F = 0.002
df = 1

p-value = 0.79
F = 0.24
df = 2

6 weeks (std. error) 15.36 (1.31) 14.83 (1.39)
12 weeks 15.99 (0.91) 16.65 (0.97)

MD (95% CI) 0.22 (−1.60 to 2.05) 0.88 (−1.06 to 2.83)

Main effect of time
p-value = 0.88

F = 0.13
df = 2

p-value = 0.37
F = 1.03
df = 2

L5

Baseline 11.10 11.10
p-value = 0.93

F = 0.007
df = 2

p-value = 0.98
F = 0.03
df = 2

6 weeks (std. error) 10.71 (0.95) 10.43 (1.01)
12 weeks 11.06 (1.14) 11.12 (1.21)

MD (95% CI) −0.04 (−2.33 to 2.25) 0.02 (−2.43 to 2.46)

Main effect of time
p-value = 0.91

F = 0.10
df = 2

p-value = 0.77
F= 0.26
df = 2

3.5. Effect of MC+ILEX and GE on Self-Reported Outcomes

The repeated measures ANOVA revealed no significant time*group interactions for
the NPR scores (p = 0.34), ODI scores (p = 0.84), SF-12 physical health scores (p = 0.32),
and SF-12 mental health scores (p = 0.37) (Table 6). There were, however, significant
improvements in self-reported pain levels (NPR, p < 0.001) and function (ODI, p < 0.001)
across all timepoints in the MC+ILEX group. Significant improvements between baseline
and 6 weeks and baseline and 12 weeks in self-reported pain levels (NPR, p < 0.001) and
across all time points for function (ODI, p < 0.001) were also observed in the GE group.
Notably, the MC+ILEX group demonstrated significant improvements in physical health
(SF-12 PCS, p = 0.004) from baseline to both the 12-week mark and from 6 weeks to 12 weeks.
Significant improvements in physical health (SF-12 PCS, p = 0.025) were noted in the GE
group, specifically between baseline to 6 weeks and baseline to 12 weeks. Likewise, the GE
group experienced significant improvements in mental health (SF-12 MCS, p = 0.074) from
baseline to 12 weeks.
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Table 6. Comparison of pain and disability scores in the MC+ILEX and GE groups.

Variables Measurement
Period

MC + ILEX
n = 25

GE
n = 25

Main Effect of
Group

Interaction Effect
between Time and

Group

Pain score
(NPR)

Baseline 5.23 ± 0.34 5.20 ± 0.42
p-value = 0.52

F = 0.43
df = 1

p-value = 0.34
F = 1.10
df = 2

6 weeks (std. error) 3.58 ± 0.33 * 3.73 ± 0.41 *
12 weeks 2.80 ± 0.38 * 3.56 ± 0.46

MD (95% CI) −2.43 (−3.26 to 1.61)
* −1.64 (−2.64 to 0.63)

Main effect of time
p-value = <0.001

F = 20.69
df = 2

p-value = <0.001
F = 8.46
df = 2

Disability score
(ODI)

Baseline 29.54 ± 2.05 27.52 ± 2.19
p-value = 0.62

F = 0.25
df = 1

p-value = 0.84
F = 0.11
df = 1.49

6 weeks (std. error) 23.08 ± 2.23 * 22.00 ± 2.38 *
12 weeks 19.08 ± 1.95 * 18.19 ± 2.08 *

MD (95% CI) −10.46 (−14.55 to
−6.37) * −9.33 (−13.71 to −4.96) *

Main effect of time
p-value = <0.001

F = 14.46
df = 2

p-value = <0.001
F = 10.40

df = 2

SF-12 physical
(PCS)

Baseline 38.78 ± 1.76 40.75 ± 1.88
p-value = 0.29

F = 1.17
df = 1

p-value = 0.32
F = 1.14
df = 2

6 weeks (std. error) 42.26 ± 1.53 46.16 ± 1.64 *
12 weeks 45.20 ± 1.51 * 45.44 ± 1.61

MD (95% CI) 6.42 (2.67 to 10.18) * 4.70 (0.68 to 8.71) *

Main effect of time
p-value = 0.004

F = 6.23
df = 2

p-value = 0.03
F = 4.04
df = 2

SF-12 mental
(MCS)

Baseline 48.83 ± 2.12 45.67 ± 2.27
p-value = 0.71

F = 0.14
df = 1

p-value = 0.37
F = 1.02
df = 2

6 weeks (std. error) 47.03 ± 1.97 46.43 ± 2.11
12 weeks 49.34 ± 2.49 49.85 ± 2.67

MD (95% CI) 0.52 (−3.07 to 4.10) 4.17 (0.35 to 8.01) *

Main effect of time
p-value = 0.41

F = 0.90
df = 2

p-value = 0.07
F = 2.78
df = 2

* The mean difference is significant at the 0.05 level.

3.6. Correlation between Muscle Morphology and Clinical Outcomes

Significant moderate correlations were present between L4 multifidus thickness and
SF-12 mental health scores (r = −0.31, p = 0.04) as well as L5 multifidus thickness and SF-12
mental health scores (r = −0.37, p = 0.01). Table 7 displays the Pearson correlations between
changes in muscle morphology and changes in self-reported measures from baseline to
12 weeks.

Table 7. Correlations between changes in the muscle morphology and changes in secondary outcomes.

Group ∆NPR [95% CI] ∆ODI [95% CI] ∆SF12-M
[95% CI]

∆SF12-P
[95% CI]

∆SF12
[95% CI]

∆MF CSA L4/L5 0.08 [−0.22 to 0.36] 0.21 [−0.09 to 0.47] −0.10 [−0.38 to 0.20] −0.15 [−0.43 to 0.15] −0.16 [−0.44 to 0.14]
∆MF CSA L5/S1 −0.13 [−0.42 to 0.18] −0.09 [−0.38 to 0.22] 0.01 [−0.29 to 0.31] −0.07 [−0.37 to 0.23] −0.04 [−0.34 to 0.26]
∆ES CSA L4/L5 0.02 [−0.29 to 0.31] −0.07 [−0.36 to 0.22] −0.14 [−0.42 to 0.16] 0.12 [−0.18 to 0.40] −0.01 [−0.30 to 0.29]
∆ES CSA L5/S1 −0.15 [−0.43 to 0.16] 0.16 [−0.19 to 0.40] −0.29 [−0.55 to 0.01] −0.05 [−0.35 to 0.25] −0.22 [−0.49 to 0.09]

∆MF FF L4/5 −0.00 [−0.31 to 0.30] 0.22 [−0.10 to 0.49] 0.03 [−0.28 to 0.33] −0.10 [−0.39 to 0.22] −0.05 [−0.35 to 0.27]
∆MF FF L5/S1 −0.16 [−0.45 to 0.17] −0.32 [−0.57 to 0.00] 0.06 [−0.26 to 0.37] 0.18 [−0.15 to 0.47] 0.15 [−0.17 to 0.45]
∆ES FF L4/L5 −0.02 [−0.32 to 0.29] 0.21 [−0.11 to 0.49] −0.08 [−0.38 to 0.24] −0.13 [−0.42 to 0.18] −0.14 [−0.43 to 0.18]
∆ES FF L5/S1 0.12 [−0.20 to 0.42] 0.14 [−0.18 to 0.44] 0.03 [−0.29 to 0.34] −0.07 [−0.38 to 0.25] −0.03 [−0.34 to 0.29]

∆MF Thickness L4 −0.05 [−0.34 to 0.25] −0.12 [−0.40 to 0.18] −0.31 * [−0.55 to −0.01] 0.06 [−0.24 to 0.34] −0.16 [−0.43 to 0.14]
∆MF Thickness L5 0.02 [−0.27 to 0.31] −0.08 [−0.37 to 0.22] −0.37 * [−0.60 to −0.09] 0.16 [−0.14 to 0.43] −0.13 [−0.41 to 0.17]

* Indicates p < 0.05.

4. Discussion

Our findings revealed a significant between-group difference for multifidus and
erector spinae CSA, with a significant increase in CSA only observed in the MC+ILEX
group from baseline to postintervention at the L4/L5 and L5/S1 levels. Contrary to
the inconsistent results observed in previous studies regarding the effects of exercise
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interventions on the size of the paraspinal muscles among individuals with LBP, we
observed a consistent increase in the multifidus and erector spinae muscle CSA in the
MC+ILEX group. The consistent effect could potentially be attributed to the unique
characteristics of the intervention. The mean change for multifidus and erector spinae CSA
did reach the minimum detectable change for both levels (e.g., MDC multifidus = 0.49–0.60;
MDC erector spinae = 0.39–1.9) [63] suggesting that the observed changes for both muscles
were beyond measurement error.

In accordance with our findings, Shahtahmassebi et al. evaluated the effects of trunk
strengthening and motor control exercises in a multimodal exercise program and found
an increase in lumbar multifidus muscle size following the 12-week program [64]. How-
ever, the participants included in the latter study were overall healthy and moderately
active older adults, which makes it harder to generalize to other populations. Conversely,
Berry et al. examined the effect of a 10-week ILEX intervention with the MedX machine
(20 sessions, one set of 15–20 repetitions at 60–80% of maximum effort) and reported no
change in the multifidus or erector spinae CSA postintervention, despite improvements in
strength and reduced pain [31]. The varying results could be attributable to the inclusion
of motor control training for the trunk muscles of our intervention. Indeed, motor con-
trol was established within a mechanical framework of LBP and is based on substantial
evidence indicating that individuals experiencing LBP often have impaired deep trunk
muscle coordination and control. Motor control employs principles from motor learning
including simplification, segmentation, and task-specific training to reestablish control
over the activation, alignment, and movement of the trunk muscles [65]. Accordingly, the
first phase of our intervention was to teach/retrain proper activation of deep trunk muscle
that were not activating properly. As such, the combination of motor control with ILEX to
ensure that trunk muscles are properly activating may be key to lead to observable trunk
muscle morphological changes.

While our findings suggested that a 12-week MC+ILEX intervention (ILEX = two sets
of 15–20 repetitions, at a load of 55% of 1 RM, 2 times/week) was effective to improve
multifidus and erector spinae muscle size, both interventions had negligeable effect on
fatty infiltration. However, there was considerable variation in baseline multifidus and
erector spinae values among the participants, ranging from 14% to 58%, making it hard
to detect a change. Higher levels of intramuscular fatty infiltration may be more resilient
to changes [32] and require higher mechanical stimulus (intensity and frequency) to elicit
an exercise-induced reversal of fatty infiltration. Our findings align with prior studies
and a recent systematic review that suggested exercise may not reverse paraspinal muscle
infiltration, which concluded paraspinal muscle infiltration that is not reversible by means
of exercise in chronic LBP. More RCTs with standardized methodologies, larger sample sizes
and extended treatment durations are needed to establish a more definitive conclusion [66].
Welch et al. (2015) is the only recent study that reported a significant decrease in lumbar
paraspinal muscle fatty infiltration following a 16-week (three sets of 5–8 reps, load at
6–10 RM, 3 times/week), progressive, high-load free-weight resistance training, without an
ILEX component [32]. However, that study had important methodological bias, including
partial and suboptimal measurements of paraspinal muscle composition and size (both
the multifidus and erector spinae were measured together in the same region of interest).
While the ideal exercise duration and intensity for reducing intramuscular fatty infiltra-
tion remains uncertain [66,67], noticeable chronic changes in the homeostatic myocellular
environment are observable after 8 weeks of exercise [68], and could take even longer in
untrained individuals [69]. As such, reversing fatty infiltration by means of exercise may
require longer interventions with more frequent training sessions that involve greater levels
of muscle loading. The need for longer intervention and high-intensity exercise to improve
muscle quality and outcomes in LBP has been emphasized in the literature [43,66].

Another factor that may contribute to the discrepancy of literature results is the differ-
ence in segmentation and imaging sequence used. To our knowledge, the current study
uniquely measured fatty infiltration using IDEAL fat/water images, which is reported to
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be simpler and more accurate than current methods [70]. Moreover, we took the mean of
three slices per spinal level instead of one slice, which allows for a more precise assessment
of overall muscle quality [71]. Furthermore, to adequately compare our results to those of
other studies, we must consider the region of interest and related segmentation protocol
used to acquire paraspinal muscle measurements. Our study included the “epimuscular
fat band” when present, which could explain why the fat percentages were higher than in
previous studies. Providing more detailed explanations of the imaging and measurement
techniques used will help facilitate the comparison of results since various techniques are
often used without a detailed description. Our study was primarily composed of females
with a percentage that was higher than in previous studies [72]. Larger sample sizes with a
more even distribution between sexes are needed to determine if the results can be gener-
alized to both sexes and across various age groups. Further research should continue to
evaluate the effect of exercise on muscle quality, considering that increased intramuscular
fatty infiltration in the lumbar muscles has been associated with the presence and severity
of spinal pain and dysfunction [73,74], the development of recurrent/persistent pain [75],
lower physical function [74,76,77], inflammatory dysregulation [78], decreased muscle func-
tion [79,80], and poorer surgical outcomes [81,82]. Improving paraspinal muscle quality
by means of exercise therapy therefore has the potential to provide a necessary biomarker
towards informing and measuring therapeutic success [71,83].

In accordance with the increase in CSA, we also observed a significant increase in
multifidus thickness at both L4 and L5 levels from baseline and postintervention in the
MC+ILEX group, with no change in the GE group. The observed changes surpassed
the minimal detectable change of 3.6 mm for resting thickness, implying it was likely
a true change rather than one caused by measurement error [33]. These results align
with previous studies investigating the impact of motor control exercise on multifidus
thickness [33,84]. On the other hand, no significant difference was found in the percent
thickness change between rest and contracted states. These findings are consistent with a
study conducted by Lariviere et al., which also reported no increase in multifidus activation
after an 8-week lumbar stabilization intervention [53]. Limited research has explored the
effects of motor control exercise on the percentage change in multifidus thickness within
the LBP population [33]. While ultrasound measures of the lumbar multifidus %thickness
change is reliable and valid method and commonly used as a proxy to assess muscle
function [53], it does not provide any information about the timing of activation.

With regard to patient-oriented outcomes, we found no between-group difference
for any of the outcomes. However, within-group reductions were observed in both the
MC+ILEX and GE group. A significant reduction in pain, disability, and psychological
health were observed in the MC+ILEX, with a statistically significant decrease in pain across
all time points (baseline, 6 weeks, postintervention). There was a 2.4-point improvement in
pain scores from baseline to postintervention, which was higher than the minimal clinically
important difference (MCID) of 2.0 [85]. The GE group also experienced a statistically
significant reduction in pain scores from baseline to postintervention, but these scores
did not meet clinical significance. Both groups also experienced a statistically significant
decrease in ODI scores across all time points, which was lower than the MDC of 13.5–16.7,
although the exact clinical significance is still largely unknown [86,87]. Comparably, Smith
et al. 2011 found that lumbar extension training with pelvic stabilization had a positive
effect on NPR and ODI scores in the pelvic stabilization group, which was consistent
with previous studies [88–90]. Furthermore, the SF-12 physical health scores significantly
improved by 6.42 points in the MC+ILEX group and 4.69 in the GE group from baseline to
postintervention. These results are higher than the MDC of 3.77 and the MCID of 3.29 [91],
suggesting that the MC+ILEX intervention led to important physical health benefits in
individuals with chronic LBP. Similarly, Steele et al. found that isolated lumbar extension
resistance training is effective in reducing pain intensity, improving physical function, and
improving quality of life in individuals with chronic LBP [22]. Exercise generally improves
mental health by reducing anxiety and depression and improving self-esteem and cognitive
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function [92]. Interestingly, the SF-12 mental health scores significantly improved from
baseline to postintervention in the GE group whereas the MC+ILEX did not. General
resistance training includes a variety of exercises that induce repeated muscle contractions
against resistance levels beyond those encountered in daily activities [93]. The GE group
may have gained strength and endurance through resistance exercises, enabling them to
complete everyday tasks that were previously too challenging, resulting in a significant
improvement in mental health. Research also suggests that general resistance training
offers benefits that extend beyond muscle and tissue growth and include neurobiological
alterations relevant to mental health and anxiety-related outcomes [93]. Future research
should also evaluate the effect of a combined ILEX and GE intervention on paraspinal
muscle health and patient-related outcomes.

Contrary to our hypothesis, we found no correlation between improvements in muscle
health and functional improvements. However, our results revealed correlations between
multifidus thickness at L4 (r = −0.31, p < 0.05) and L5 (r = −0.37, p < 0.05) with changes in
SF-12 mental health scores. This suggests that SF-12 mental health scores improve even
when multifidus thickness did not. Mental health and physical health are linked. People
living with chronic physical conditions are at a higher risk of experiencing a wide range
of psychological conditions and vice versa [94,95]. This emphasizes the importance of
physical activity and exercise because as physical activity increases, function increases,
which positively impacts cognitive function and mental health [96]. We are aware of only
one study (n = 14) that has reported a significant correlations between functional and
MRI-measured outcomes [31]. Specifically, participants who demonstrated improvements
in erector spinae muscle health also demonstrated the largest functional improvement in
LBP-related disability, depression, and anxiety. Our results, however, did not corroborate
these findings.

While correlation does not imply causation, accumulating evidence suggests that
multifidus and erector spinae muscle changes may play a role in driving symptoms in
individuals with LBP, rather than solely attributed to immobilization and motion restriction
due to pain. Studies by Noonan and Brown and Shi et al. demonstrated that individuals
with LBP exhibit a distinct pattern of atrophy and fatty infiltration in these muscles [97,98].
Experimental research, such as that conducted by Shahidi et al. using muscle biopsies from
the multifidus muscle in individuals with lumbar spine pathology revealed significant
muscle atrophy due to imbalanced degeneration and regeneration processes, increased
inflammation, and reduced vascularity [99]. These findings collectively suggest a more
complex relationship, where muscle changes likely exacerbate LBP symptoms while also
being influenced by pain-induced adaptations. Thus, while immobilization and motion
restriction may contribute, multifidus and erector spinae muscle modifications appear to
have a distinct impact on LBP symptomatology.

Limitations

The study presented had multiple strengths, including adopting a randomized con-
trolled design, a high level of adherence to both exercise interventions, and the adoption of
reliable and valid outcome measures. Nevertheless, there are also some limitations, includ-
ing the restricted recruitment of participants caused by COVID-19, which led to limited
hours and capacity restrictions at the facility. The participant selection was restricted to
those who found out about the opportunity via word of mouth or through connections to
Concordia University, rather than from multiple sources. Additionally, due to the nature
of the treatments given, the participants were aware of which group they were placed in,
making it impossible to blind the parties involved. Additionally, one potential limitation of
this study is the difference in professional background and experience of the individuals
delivering both interventions. Furthermore, it has been established that males and females
have different muscular characteristics. Given that our sample was primarily female, it is
more difficult to generalize findings. Due to technical issues with the MR images, it was
not possible to assess % fat fraction in five participants. Furthermore, while we originally
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planned to assess clinical outcomes at 24 weeks postintervention, most participants did
not respond to our email request or answered a few weeks afterwards, and thus these data
were not included in the analysis. Lastly, the measurements were only taken at the lower
lumbar levels (L4/L5 and L5/S1). Our group is currently working on assessing the effect
of each intervention at the remaining spinal levels, and their associations with lumbar
strength and psychological factors. Pain-related fear and other psychological outcomes
were collected and will be reported as part of another related manuscript.

5. Conclusions

The findings from this study offer preliminary evidence to support that a MC+ILEX
intervention may be effective in improving paraspinal morphology while decreasing pain
and disability. However, further research is warranted to confirm these findings and better
understand the effects of exercise on overall paraspinal muscle health and its relation
to outcomes associated with LBP. The long-term effect of similar exercise interventions
should also be investigated in a larger sample size, different spine pathologies, and in the
perioperative period.
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Appendix A

Table A1. Two-day exercise program performed by the GE group [1].

Day 1 Day 2

Hip extension (multi-hip machine) * Goblet squat
Prone leg curl * Step up
Lat pull-down * Leg extension *

Seated row * Peck deck *
Hip abduction * Lying side hip raises
Hip adduction Abdominal curl

* Exercise executed on a resistance machine.
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Table A2. Sample cues and positions for early transverse abdominis and multifidus activation [1].

Multifidus Activation

Positions Prone or on hands and knees (depending on individuals preference)
Place fingers on either side of spinous process; assess various spinal levels from T1/T2 to L5/S1

Cues Attempt to swell muscle up towards fingers
Mentally visualize tilting pelvis without physically executing the movement
Visualize contracting a cable that runs from your pelvis through your spine

Ideal Symmetrical contraction
response Absence of activation of the global muscles

Normal breathing
Able to hold 10 × 10 s

Transverse Abdominis Activation

Positions Initial position or crook-lying
Find neutral pelvis
Position fingers slightly towards the midline and below the anterior superior iliac spine (ASIS)

Cues Attempt to draw your navel downwards to the table
Attempt to move your fingers together (medially)

Ideal Gradually increase tension; exerting a 10–15% level of effort
response Symmetrical contraction

Absence of activation of the global muscles
Normal breathing
Able to hold 10 × 10 s
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