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Abstract: Background: Sepsis, a life-threatening infection-induced inflammatory condition, has
significant global health impacts. Timely detection is crucial for improving patient outcomes as
sepsis can rapidly progress to severe forms. The application of machine learning (ML) and deep
learning (DL) to predict sepsis using electronic health records (EHRs) has gained considerable
attention for timely intervention. Methods: PubMed, IEEE Xplore, Google Scholar, and Scopus
were searched for relevant studies. All studies that used ML/DL to detect or early-predict the
onset of sepsis in the adult population using EHRs were considered. Data were extracted and
analyzed from all studies that met the criteria and were also evaluated for their quality. Results:
This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria.
The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic
settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence
rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse
model distribution, and varying quality assessments were observed. Longitudinal data enabled early
sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding–article quality
correlation. Conclusions: This systematic review underscores the significance of ML/DL methods for
sepsis detection and early prediction through EHR data.

Keywords: sepsis; machine learning; deep learning; early prediction; electronic health record;
intensive care unit (ICU); emergency department (ED)

1. Introduction

Sepsis is a potentially fatal illness that occurs when the body’s response to an infec-
tion causes tissue and organ damage [1]. It is a complex syndrome characterized by a
dysregulated host immune response, organ dysfunction, and a high risk of mortality [2].
Sepsis can affect people of all ages, from infants to the elderly, and can arise from various
types of infections, including bacterial, viral, and fungal infections [3]. When an infection
occurs, the body’s immune system releases chemicals to combat the invading pathogens. In
sepsis, the immune response becomes dysregulated, leading to widespread inflammation
throughout the body. This inflammatory response can damage tissues and impair organ
function [4]. Sepsis can develop into severe sepsis or septic shock, which are life-threatening
illnesses with high fatality rates if ignored [5]. Fever, a faster heartbeat, rapid breathing,

J. Clin. Med. 2023, 12, 5658. https://doi.org/10.3390/jcm12175658 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12175658
https://doi.org/10.3390/jcm12175658
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-6771-0141
https://orcid.org/0000-0002-0459-0365
https://orcid.org/0000-0001-5839-2826
https://orcid.org/0000-0003-0744-8206
https://doi.org/10.3390/jcm12175658
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12175658?type=check_update&version=3


J. Clin. Med. 2023, 12, 5658 2 of 29

changed mental status, decreased urine output, low blood pressure, and general malaise
are some of the symptoms of sepsis that might vary [6]. An intensive care unit (ICU)
must provide urgent medical care and treatment for sepsis [7]. The standard treatment
involves administering both intravenous antibiotics to combat the underlying infection as
well as intravenous fluids to maintain adequate blood pressure and organ perfusion [8].
In severe cases, additional interventions such as vasopressor medications to raise blood
pressure, mechanical ventilation to support breathing, and renal replacement therapy may
be necessary [9].

Sepsis imposes a substantial burden on healthcare systems worldwide. Globally, it
stands as a leading cause of illness and mortality, incurring substantial treatment expenses
and leaving survivors with lasting repercussions [10–12]. Sepsis significantly elevates
mortality rates. Fleischmann et al. (2016) conducted a systematic review and meta-analysis
and found that there are about 48.9 million cases of sepsis every year, with a 19.4% death
rate [13]. The recorded death rate was about 15.7% in high-income countries, but it was
much higher in low- and middle-income countries, where it stood at 34.7%. Angus et al.
found in 2001 that the death rate for serious sepsis and septic shock is between 40 and
60% [10]. Long-term physical, cognitive, and psychological impairments are common
among survivors of sepsis, resulting in a significant burden of morbidity. The Surviving
Sepsis Campaign (SSC) conducted a study involving over 1000 sepsis survivors and discov-
ered that one year after discharge, 33% of patients had cognitive dysfunction, 43% had new
functional limitations, and 27% had symptoms of post-traumatic stress disorder (PTSD) [14].
These long-term complications can have significant impacts on survivors’ quality of life and
result in substantial healthcare requirements. Sepsis places a significant burden on health-
care resources, increasing hospitalizations, ICU stays, and healthcare costs. According to a
study by Rudd et al. (2013) [10], the total annual cost of sepsis hospitalizations in the United
States was approximately $24 billion, or 13.3% of all hospital expenditures. Patients with
sepsis require intensive monitoring, invasive procedures, and broad-spectrum antibiotics,
all of which increase the utilization of healthcare resources. In addition, sepsis has been
linked to an increased risk of readmissions and hospital-acquired infections, which further
strains healthcare systems. Rhee et al. (2017) [15] found in a retrospective cohort study that
sepsis survivors had a 38% higher risk of hospital readmission within 90 days compared to
non-sepsis patients. Not only do these readmissions increase healthcare costs, but they also
add to the overall burden on hospitals and healthcare facilities. For healthcare providers,
sepsis presents significant challenges, including the need for prompt diagnosis, interven-
tion, and the management of complications. The complexity and unpredictability of sepsis
necessitate a multidisciplinary approach and place a significant burden on healthcare teams.
The emotional toll of caring for critically ill septic patients, high mortality rates, and the risk
of healthcare provider burnout are emerging concerns [12]. Providing healthcare providers
with the necessary resources, support systems, and education is essential to addressing
these challenges and improving patient outcomes.

Early identification and rapid treatment are, therefore, essential for enhancing patient
outcomes. Prevention of sepsis involves measures such as proper hygiene practices, vacci-
nation against infectious diseases, the prompt treatment of infections, and the appropriate
use of antibiotics [16]. Additionally, the early identification of individuals at risk, such
as those with compromised immune systems or chronic medical conditions, can help in
implementing preventive strategies and prompt treatment [17].

In recent decades, data-driven biomarker discovery has garnered traction as an alter-
native to conventional methods with the potential to overcome existing obstacles. This
strategy seeks to harvest and exploit health data using quantitative computer methods like
machine learning. High-resolution digital data are becoming more available to persons
at risk and patients with sepsis [18]. These include laboratory, vital, genetic, genomic,
clinical, and health history data. Improved patient outcomes can be achieved with the early
detection and prediction of sepsis [19]. In recent years, machine learning (ML) and deep
learning (DL) algorithms have shown promise in sepsis diagnosis and early prediction [20]
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by analyzing large-scale patient data. These algorithms can be used with electronic health
records (EHRs) and other clinical data to identify patterns and indicators of sepsis that may
not be immediately apparent to human practitioners [21]. This enables the early detection
of sepsis and the beginning of prompt therapies.

Machine learning techniques have greatly aided in sepsis detection and prediction.
Logistic regression, support vector machines (SVMs), random forests, and gradient boost-
ing are examples of common machine learning approaches. These algorithms make use of
vital signs (such as heart rate and blood pressure), laboratory results (such as white blood
cell count and lactate level), and clinical factors (such as age and comorbidities) to predict
the likelihood of sepsis. High sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC-ROC) values have been reported for these models by researchers,
demonstrating their propensity for sepsis prediction [18,22–29]. In response to the persist-
ing challenge of sepsis-related fatalities, Wang et al. [30] sought to develop an AI algorithm
for early sepsis prediction, successfully creating a random forest model utilizing 55 clinical
features from ICU patient data, yielding an AUC of 0.91, 87% sensitivity, and 89% specificity,
with potential wider applicability pending external validation. Similarly, Kijpaisalratana
et al. (2022) [31] have developed novel machine learning-based sepsis screening tools and
compared their performance with traditional methods for early risk prediction of sepsis.
Using retrospective electronic health record data from emergency department visits, the
machine learning models, including logistic regression, gradient boosting, random forest,
and neural network models, exhibited significantly better predictive performance (e.g.,
AUROC 0.931) compared to reference models (AUROC 0.635 for qSOFA (quick Sepsis
Related Organ Failure Assessment), 0.688 for MEWS (Modified Early Warning Score), and
0.814 for SIRS (Systemic Inflammatory Response Syndrome)), highlighting their potential
to enhance sepsis diagnosis in emergency patients. The ability of DL, a subset of ML, to
automatically develop hierarchical representations from complicated data has generated a
great deal of interest in sepsis prediction. DL models, particularly convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) have shown encouraging results
in several medical applications, including in sepsis detection. Nemati et al. (2018) combined
CNN and long short-term memory (LSTM) networks to construct a deep learning model to
predict sepsis using EHR data. The model beat traditional ML models with an AUC-ROC
of 0.83 [32]. Addressing the pressing issue of sepsis’s exponential impact and increased
mortality in ICU patients, Singh et al. [33] presents a highly accurate machine learning
model for early detection, outperforming existing approaches with a proposed ensemble
model achieving a balanced accuracy of 0.96.

This article’s goal is to give readers an overview of recent studies on ML- and DL-
based sepsis diagnosis and early prediction. Due to the rapid pace of progress in this field
of study, it is essential to review and evaluate the present state of the art in the field of
sepsis detection and onset prediction. By analyzing the pertinent research, we assessed
the effectiveness of various ML and DL models, the features employed for prediction,
and the difficulties and future directions in this area. The purpose of this research was
to provide an in-depth investigation of the most recent research by utilizing data taken
from the electronic health records of adults and employing ML and DL models. To achieve
this, we thoroughly searched for relevant articles in four popular electronic databases and
developed a new assessment criterion for the quality assessment of different articles. The
characteristics of different selected articles are thoroughly studied and summarized in this
article. To the best of our knowledge, this article covers a systematic review of the largest
number of research articles published between Jun 2016 and March 2023. In addition, we
have discussed the current challenges and future direction of research in this domain, along
with the limitations of the current study.

2. Background and Fundamental Concepts

The subsequent portion of this section provides concise explanations of key concepts
that are essential for a deeper comprehension of the subjects addressed in the following
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sections. It is important to note that the selection of methods discussed in this section mir-
rors the methodologies utilized in the chosen articles as a direct outcome of the systematic
review process.

2.1. Sepsis Definition

Sepsis criteria and definitions have changed over time to improve early care and
identification. Sepsis-2 and Sepsis-3 are the two main definitions of sepsis that have gained
widespread support.

The Sepsis-2 definition [34] is based on the existence of a systemic inflammatory
response syndrome (SIRS) brought on by infection and was first published in 2001. Ac-
cording to Sepsis-2, sepsis is characterized by the presence of at least two SIRS criteria,
which include leukopenia or leukocytosis in the case of abnormal white blood cell counts,
as well as abnormal body temperature (fever or hypothermia), increased heart rate (tachy-
cardia), increased respiratory rate (tachypnea), and abnormal body temperature (fever or
hypothermia). Septic shock is defined as severe sepsis with prolonged hypotension despite
fluid resuscitation, and severe sepsis combined with organ dysfunction is known as severe
sepsis.

The Sepsis-3 definition [35] was put up in 2016 to increase the precision and clinical
utility of sepsis detection. Instead of depending primarily on the SIRS criteria, it emphasizes
organ failure as sepsis’ defining feature. According to Sepsis-3, sepsis is characterized as a
potentially fatal organ malfunction brought on by an improperly managed host defense
against infection. The Sequential Organ Failure Assessment (SOFA) score, which assesses
the function of the respiratory, cardiovascular, hepatic, renal, coagulation, and central
nervous systems, is used to measure organ dysfunction. If the SOFA score rises by two or
more points as a result of infection, sepsis is thought to be present. A blood lactate level of
more than two mmol/L and persistent hypotension requiring vasopressors to maintain
a mean arterial pressure of 65 mmHg or higher are both considered signs of septic shock.
These definitions play a crucial role in standardizing the identification and management of
sepsis, aiding clinicians in making timely and accurate diagnoses and facilitating effective
interventions to improve patient outcomes. The most widely adopted definition of sepsis is
Sepsis-3 [36]. The key advantages of the Sepsis-3 definition include the following:

• By incorporating organ dysfunction criteria, the Sepsis-3 definition improves the
specificity of sepsis diagnosis. This helps differentiate sepsis from other conditions
that may present with signs of infection but do not involve organ dysfunction.

• The Sepsis-3 definition simplifies the criteria for sepsis by focusing on organ dysfunc-
tion rather than the systemic inflammatory response syndrome (SIRS) criteria used in
previous definitions. This simplification reduces the potential for misdiagnosis and
facilitates a more targeted approach to sepsis identification.

• The early prediction of sepsis is crucial for timely intervention. The SOFA score,
which is part of the Sepsis-3 definition, provides a tool for assessing organ dysfunction
and predicting patient outcomes. Higher SOFA scores are associated with increased
mortality rates and can help identify patients at higher risk who require immediate
attention.

• The Sepsis-3 definition has facilitated the standardization of sepsis diagnosis and
research. The use of a consistent definition enables better comparison of studies, data
sharing, and the development of evidence-based management strategies.

2.2. Common Machine Learning Models and Performance Metrics

A summary of common classical machine learning (ML) and deep learning models,
as well as of performance metrics commonly used for the early prediction of sepsis, is
listed below.

Classical ML Models:

• Decision Trees (DT)
• Random Forest (RF)
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• Support Vector Machine (SVM)
• Logistic Regression (LR)
• Gradient Boosting (GB)
• Naïve Bayes (NB)
• k-Nearest Neighbor (kNN)

Deep Learning Models:

• Long Short-Term Memory (LSTM) Networks
• Convolutional Neural Network (CNN)
• Gated Recurrent Unit (GRU)
• Neural Network (NN)
• Multitask Gaussian Process and Attention-based Deep Learning Model (MGP-AttTCN)
• Temporal Convolutional Network (TCN)
• Recurrent Neural Network (RNN)
• CNN-LSTM
• CNN-GRU

Performance Metrics:

• Area Under the Curve (AUC) or AUROC (Receiver Operating Characteristics Curve)
• Sensitivity (Recall)
• Specificity
• Accuracy
• Precision
• F1 score
• Matthews Correlation Coefficient (MCC)
• Mean Average Precision (mAP)
• Positive Predictive Value (PPV)
• Negative Predictive Value (NPV)
• Positive Likelihood Ratio (PLR)
• Negative Likelihood Ratio (NLR)

These models and metrics have been widely used to assess the predictive perfor-
mance of algorithms for early sepsis prediction using EHRs. The selection of models
and metrics may vary depending on the specific study and dataset under consideration.
Supplementary Tables S1 and S2 provide short definitions of these ML and DL models and
performance metrics.

3. Materials and Methods
3.1. Search Strategy

A comprehensive search strategy was employed to identify relevant studies from elec-
tronic databases including PubMed, IEEE Xplore, Google Scholar, and Scopus (Figure 1).
The bibliographic research for this systematic review was conducted by a team of two expe-
rienced researchers with expertise in the fields of medical informatics and machine learning.
Additionally, the team consulted an information specialist with extensive knowledge in
database searching and retrieval. The search terms used included variations of “sepsis”,
“prediction”, “machine learning”, “deep learning”, and “electronic health records”. The
search was limited to articles published in English between Jun 2016 and Mar 2023. This
systematic review is not registered in PROSPERO or any other database.

We combined our search terms using Boolean operators (e.g., AND, OR) to create an
effective search query. We used parentheses to group related terms: for example, “(sepsis
OR prediction) AND (machine learning OR prediction) AND (electronic health records
OR prediction)”. We executed our search query in each selected database. We applied the
necessary filters, such as publication date or language, to refine our results, and saved the
search strategy for reporting purposes, as shown in Supplementary Table S3.
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3.2. Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were used for this study:

3.2.1. Inclusion Criteria

• Studies that focused on the application of machine learning and deep learning
algorithms for the early prediction of sepsis.

• Studies utilizing electronic health records (EHR) data as the primary sources of
information.

• Studies that involved adult human subjects (i.e., age ≥ 18).
• Studies that reported on the performance metrics (e.g., sensitivity, specificity, area

under the curve) of the machine learning models for sepsis prediction.
• Studies published in peer-reviewed journals.
• Studies available in the English language.
• Studies published within a specific time frame (e.g., Jun 2016 and March 2023).

3.2.2. Exclusion Criteria

• Studies that did not focus on early prediction of sepsis.
• Studies that focused only on using clinical notes.
• Studies that did not involve the use of machine learning/deep learning algorithms.
• Studies that did not utilize electronic health records as data sources.
• Studies that primarily focused on non-human subjects or experimental setups not

related to human healthcare.
• Studies that did not report on performance metrics for machine learning models.
• Studies that were not published in peer-reviewed journals.
• Studies published in languages other than English.

It should be noted that Sepsis definition was not considered in the inclusion or ex-
clusion criteria. The Population, Intervention, Comparator, Outcome, and Study Design
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(PICOS) criteria for the systematic review, including both the inclusion and exclusion
criteria, are detailed in Supplementary Table S4.

3.3. Study Selection

After retrieving search results using the above-mentioned search strategy in the se-
lected databases, we used manual screening to identify and remove duplicate articles
from the search results. We reviewed the titles and abstracts of the remaining articles to
determine their relevance to our research question and inclusion/exclusion criteria. We
excluded clearly irrelevant articles at this stage. We excluded randomized controlled trials,
study overviews and protocols, and meta-epidemiological studies. We also checked the
systematic reviews and meta-analysis papers published in the time span and cross-checked
them with what we had collected, and added any missing article as “More article selected
from other sources”.

The study selection process was carried out by two independent authors, and discrep-
ancies were resolved through discussion and consensus. In cases where disagreements
arose, a third author was consulted to make a final decision. The authors assessed the
relevance of each study based on predetermined inclusion and exclusion criteria. The initial
screening involved reviewing the titles and abstracts of the identified articles, followed by a
full-text assessment of potentially eligible studies. This process was conducted in duplicate
to ensure a thorough and unbiased selection of studies for inclusion in the systematic
review. The inter-rater agreement between the two authors was assessed using Cohen’s
Kappa coefficient, and a score of above 0.85 indicated substantial agreement. We aimed
to minimize bias and ensure the robustness of study selection through this rigorous and
collaborative process.

3.4. Data Extraction

Data extraction was carried out independently by two authors, and any disparities
were resolved through consensus. In cases where differences persisted, a third author was
consulted to reach a final decision. The authors utilized a standardized data extraction
form to systematically collect relevant information from the included studies. This process
involved extracting key details such as study characteristics, participant demographics,
intervention specifics, outcome measures, and relevant results. The data extraction was
performed in duplicate to ensure accuracy and reliability. The level of agreement between
the two authors was assessed using Cohen’s Kappa coefficient, with a value exceeding
0.85 indicating substantial concordance. We prioritized consistency and quality in data
extraction through this collaborative and meticulous approach. To assess the quality of
the articles and perform our systematic review, we extracted the following data from
each article:

Publication characteristics: Collected the last name of the first author and the year of
publication.

Study Design: Identified the study design used in the article (e.g., prospective cohort
study, retrospective analysis).

Objectives: Determined the specific research objectives or aims stated by the authors,
which were supposed to match our study criteria.

Cohort Selection: Extracted information about the characteristics of the study partic-
ipants such as sample size, demographics, prevalence of sepsis, and any relevant inclu-
sion/exclusion criteria.

Data Source: Identified the source of the data used in the study (e.g., electronic health
records, administrative databases, clinical trials) and whether it is a publicly accessible
dataset or not.

Model Selection: Extracted information about machine learning or deep learning meth-
ods employed for data analysis, including feature engineering for classical ML, hyperpa-
rameters, ways to handle overfitting, etc.
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Reproducibility: Assessed whether the article provides sufficient information to reproduce
the study, including details on data availability, code availability, and software/hardware
specifications.

Performance Measures and Explainability: Determined whether the performance matrices
are reported in the study or not and whether the reported model is explainable or not.

Limitations: Noted the limitations or potential biases acknowledged by the authors in
the article, such as sample size limitations, selection bias, or confounding factors.

Funding Source: Identified any sources of funding or financial support disclosed by
the authors.

3.5. Quality Assessment

The risk of bias in the included studies was assessed using a predefined comprehensive
approach to assessing the quality of eligible articles. The criteria include unmet needs,
reproducibility, robustness, generalizability, and clinical significance. Based on Moor et al. [18]
and Qiao et al. [37], modified quality assessment criteria are presented, which include sample
size (>50), data availability, code availability, mobile/web deployment, handling of missing
data, sepsis prevalence, feature engineering, machine learning model, hyperparameters,
overfitting prevention technique, reporting of performance metrics, validation using external
data, explainability, limitation of the study in question, and discussion of clinical application.
The inclusion of 16 relevant criteria and the use of a quality assessment table with “yes” or
“no” ratings for each category contribute to a systematic and transparent evaluation of study
quality.

The quality assessment of the included studies was conducted by two authors in-
dependently, and any discrepancies were resolved through discussion and consensus. If
a consensus could not be reached, a third author was involved to make a final decision.
To evaluate inter-rater agreement, Cohen’s Kappa coefficient was computed, yielding a
substantial agreement level of 0.85 between the two authors. This demonstrated a high
level of concordance in their assessments. We placed significant emphasis on evaluating
the methodological quality of the included studies, aiming to ensure the reliability and
validity of the overall findings.

3.6. Impact of Funding Source

The funding source should not influence the design, conduct, analysis, interpretation,
or reporting of a systematic review. It is crucial to maintain the independence and objectivity
of the review process to ensure the integrity of the findings. Depending on the funding
source, there may be implications for the generalizability of the findings. If the funding is
specific to a particular setting, population, or intervention, it is important to consider the
applicability of the results to other contexts.

4. Results
4.1. Selection Process

The initial search yielded a total of 1942 articles (Figure 1). Out of these initially
selected articles, only 42 articles met the complete inclusion criteria. Most studies (n = 1900)
were disregarded because they did not meet the inclusion criteria. These criteria included:
research not involving machine learning or deep learning; conducting research on the
wrong population (e.g., pediatric, or neonatal); conducting research on a topic outside the
scope of the current review (e.g., mortality prediction); and conducting research using a
study design different from that used in the current article, i.e., not peer reviewed.

4.2. Study Characteristics

Among the 42 studies selected for this systematic review, 38 were retrospective studies,
while 4 were prospective studies. Most of the studies (35) use populations from the United
States, while two studies are from China, two are from South Korea, and one each is from
Singapore, Israel, and Denmark. The majority of the studies (34) used ICU data, while
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11 studies used ED data, and the remaining six studies used general ward data (Figure 2).
Some studies used data from multiple sources.
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Figure 3 shows that the most commonly used data source is MIMIC-III (n = 14, 29.8%),
while the second most used dataset is the 2019 PhysioNet/CinC Challenge (n = 6, 12.8%),
and the Emory Healthcare System (n = 4, 8.5%) is the third most used dataset. Each of the
University of Pennsylvania Health System, University of California, San Francisco (UCSF),
Methodist Le Bonheur Healthcare (MLH) System, and MIMIC-II datasets were used for
two studies. It is worth noting here that some studies used multiple datasets. The Sepsis-2
(33.3%, n = 14) or Sepsis-3 (52.4%, n = 22) definitions of sepsis were utilized in the majority
of the investigations. Depending on the nature of these studies, the time windows that
were used have changed, and numerous researchers revised the Sepsis-2 or -3 definition.
ICD-9 was utilized in certain studies (n = 4, 9.5%), while ICD-10 was used in others (n = 2,
4.8%). Intensive care unit specialists diagnosed sepsis in some of these investigations.
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The proportion of patients with sepsis varied from 0.41% to 63.6%; however, most
of the studies used imbalanced datasets, with very small numbers of patients with sepsis
compared to the study populations. Figure 4 shows that in only 12 studies out of 42 studies,
the prevalence of sepsis was more than 20%, while the median of sepsis prevalence was
9.5%. For three studies (18th, 22nd, and 31st), the sepsis prevalence data were not provided.
Therefore, most of the ML or DL studies need to adopt some form of data augmentation or
balancing techniques to develop reliable machine learning models. This systematic review
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only focused on the studies carried out on adult patients. Supplementary Figure S1 shows
the sample size and sepsis-positive population in numbers and percentages, which made
it possible to have a clear visual depiction of the imbalance distribution of the dataset.
Two studies were discarded from this plot as those studies would make the plot biased, and
a clear picture of the sample size and sepsis prevalence becomes unclear if those studies
are incorporated.
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Most of the studies were carried out using vital signs (73.1%), laboratory data (65.4%),
and demographics (55.8%), while some studies also used clinical notes, treatments or
medications, comorbidities, imaging, clinical context, diagnosis, etc., as shown in Figure 5.
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A wide range of parameters is used in different studies, from as low as two to as high
as one hundred and sixty eight. However, the median number of parameters used in the
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studies is 22. Figure 6 clearly shows that eight studies used more than fifty parameters,
while most of the studies used a smaller number of parameters. Sixteen studies reported
the feature importance among the variables available in the respective datasets.
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After the careful evaluation of important features identified by the studies, the Top
20 features were shown in Figure 7 based on their appearance in the important feature lists
of 16 articles. It is noticed that heart rate, temperature, white blood cell (WBC) count, SBP,
age, DBP, and RR are the six most ranked features reported in these studies.
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4.3. Machine Learning Models

The selected studies exhibited a diverse array of machine learning and deep learning
models, encompassing a total of 29 different approaches. Notably, within this spectrum,
58% of the articles opted for classical machine learning models, while the remaining 42%
delved into the application of various deep learning models. This distribution underscores
the comprehensive exploration of both traditional and cutting-edge techniques to address
the complexities of early sepsis prediction.
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4.4. Cross-Validation (CV) Techniques

Two cross-validation strategies were used in the articles: train-val-test split and N-
fold cross-validation. Among the 42 selected articles, 14 articles used train-val-test split
techniques, while 23 articles reported N-fold cross-validation techniques. Four different
types of N-fold CV techniques are used: 4-fold CV (n = 4), 5-fold CV (n = 6), 6-fold CV
(n = 1), and 10-fold CV (n = 12). It is clear that a 10-fold CV is popular among researchers
for CV, while a large number of articles used a train-val-test split, which is equivalent to a
single-fold CV.

4.5. Performance Metrics

Although different articles used different performance metrics, some performance
metrics were common in the majority of articles, such as area under the curve (AUC)
or area under the receiver operating characteristics curve (AUROC) (29.8%), sensitiv-
ity or recall (R) (19.8%), specificity (S) (21.5%), and accuracy (A) (9.9%). One metric
was specific to the dataset, such as in the example of the Utility score being suitable
for the 2019 PhysioNet/CinC Challenge. Other used metrics were precision, F1 score,
F2 score, MCC, mAP, PPV, NPV, PLR, NLR, and response rate. AUROC values range
between 0.80 and 0.97 in different studies. However, comparing model performance
based solely on specific metrics can be limiting due to dataset variations. Given diverse
datasets and experimental setups, assessing article performance solely based on such
metrics is inappropriate. The models demonstrated improved accuracy and performance
compared to traditional methods in identifying patients at risk of sepsis. Several studies
reported high sensitivity and specificity, highlighting the potential for early detection
and timely intervention. We have reported them in Table 1; however, we should not
judge these articles based on these metrics. Moreover, it is beyond the scope of this sys-
tematic review to evaluate the articles using these performance metrics; rather, we have
reported a quality evaluation in Section 3.5 to evaluate the quality of the articles based on
16 performance measures.
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Table 1. Summary of the selected articles.
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1 Gholamzadeh et al. [38] 2023 MIMIC-III Sepsis-3 1,552,210 27,916 1.79 Demographics,
labs, vitals 38 DT, RF,

XGB 0.918 R
AUROC,
A, P, R, S,

F1
-

2 Duan et al. [39] 2023 Shanghai
Hospital Sepsis-2 282 114 40.43 Demographics,

labs, vitals 29
Double

fusion DL
framework

0.92 R AUC, A, S,
R 24

3 Strickler et al. [40] 2023
2019 Phys-
ioNet/CinC
Challenge

Sepsis-3 40,336 2932 7.33 Demographics,
labs, vitals 40

CSE, MSC-
LSTM,

MSC-CSE
- R

A, P, S, R,
F1, MCC,

Utility
-

4 Zhou et al. [41] 2021
2019 Phys-
ioNet/CinC
Challenge

Sepsis-3 40,336 2932 7.33 Demographics,
labs, vitals 40

RG, XGB,
LR, RF,

SVC
- R Average

regret -

5 Al-Mualemi and Lu [42] 2021
2019 Phys-
ioNet/CinC
Challenge

Sepsis-3 40,336 2932 7.33 Demographics,
labs, vitals 40

SVM,
RNN-
LSTM,

Adaptive
CNN

- R A, S, R -

6 Rosnati and Fortuin [43] 2021 MIMIC-III Sepsis-3 22,007 7936 36.06 Labs, vitals 24 MGP-
AttTCN 0.660 R AUC 5

7 Zhang et al. [44] 2021

2019 DII
National

Data
Science

Challenge

Sepsis-2 178,843 52,802 29.5 Demographics,
labs, vitals 145

GRU,
RETAIN,
Dipole,
LSTM

0.892 R AUC 4

8 Shashikumar et al. [45] 2021

Emory
Healthcare

System,
UCSD,

MIMIC-III

Sepsis-3 85,046 4794 5.64 Demographics,
labs, vitals 65 DeepAISE 0.90 R AUC 4
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9 Aşuroğlu and Oğul [46] 2021 MIMIC-III Sepsis-3 5154 1404 27.24 Vitals 7 DSPA 0.97 R AUC 6

10 Oei et al. [47] 2021 MIMIC-III Sepsis-3 48,632 13,935 28.65 Labs, vitals 8 Deep
learning 0.86 R AUC 3

11 Rafiei et al. [48] 2021
2019 Phys-
ioNet/CinC
Challenge

Sepsis-3 40,336 2932 7.33 Demographics,
labs, vitals 40

Smart
Sepsis

Predictor
0.86 R AUC, S, A 12

12 Goh et al. [49] 2021

Singapore
government-

based
hospital

Sepsis-3 5317 327 6.15
Demographic,
vitals, notes,

labs, treatment
15 SERA

algorithm 0.94 P AUC, R, S 12

13 Bedoya et al. [50] 2020

Duke
University

Health
System

Sepsis-2 42,979 8160 19.0

Demographics,
vital, lab,

comorbidities,
medications

86 RNN, LR,
RF 0.88 R AUROC 5

14 Yang et al. [51] 2020
2019 Phys-
ioNet/CinC
Challenge

Sepsis-3 40,336 2932 7.33 Demographics,
labs, vitals 168 XGB,

EASP 0.85 R

Utility
score,

AUROC, R,
S

6

15 Yuan et al. [52] 2020

Taipei
Medical

University
Hospital

Sepsis-2 1588 444 27.96

Vitals, lab,
exam reports,

text and
images

18 GB 0.89 P
F1 score, A,

R, S,
PPV

-

16 Kok et al. [53] 2020
2019 Phys-
ioNet/CinC
Challenge

Sepsis-3 40,000 2932 7.33 Demographics,
labs, vitals 40 TCN 0.99 R

A, R, S,
AUROC,
AUPRC

-

17 Reyna et al. [54] 2020

Emory
Healthcare

System,
MIMIC-III

Sepsis-3 60,000 2932 7.3 Demographics,
labs, vitals 40 ML

Models 0.815 R AUROC,
Utility 6
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18 Lauritsen et al. [19] 2020 CROSSTRACKSSepsis-2 3126 - -

Diagnoses,
labs, vitals,

imaging,
medications,

treatment

6
CNN-
LSTM 0.88 R AUROC,

mAP 3

19 Choi et al. [55] 2020

Yonsei
University

(YU)
Severance
Hospital

Sepsis
(ICD-10) 7743 1136 14.67 laboratory data 36 LR 0.86 R

A,
AUROC, R,

S, PPV,
NPV

-

20 Kim et al. [56] 2020
Tertiary

academic
hospital

Sepsis-3 49,560 4817 9.7 Demographics,
labs, vitals 29

SVM, GB,
MARS,
LASSO,

Ridge, RF

0.93 R
AUROC, R,

S, PPV,
NPV

-

21 Ibrahim et al. [57] 2020 MIMIC-III Sepsis-2 13,728 4256 31.0 Vitals, labs 63 RF, GB,
SVM 0.96 R R, S, AUC,

PLR, NLR -

22 Fagerstrom et al. [58] 2019 MIMIC-III Sepsis-2 59,000 - -

Demographics,
labs, vitals,
treatment,

medications,
diagnoses

- LSTM 0.83 R AUROC 40

23 Kaji et al. [59] 2019 MIMIC-III Sepsis-2 36,176 23,008 63.6
Demographics,

labs, vitals,
medications

119 LSTM 0.88 R AUROC, R,
PPV 24

24 Giannini et al. [60] 2019

University
of Pennsyl-

vania
Health
System

Sepsis
(ICD-9) 172,700 950 0.55 Demographics,

labs, vitals 20 RF 0.88 R AUROC, R,
S 6
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25 Ginestra et al. [61] 2019

University
of Pennsyl-

vania
Health
System

Sepsis
(ICD-9) 162,212 943 0.58

Vitals,
comorbidity,

labs
-

Early
Warning
Systems
2.0 (EWS

2.0)

- P Response
rate 6

26 Schamoni et al. [62] 2019

University
Medical
Center,

Mannheim

Sepsis-3 620 200 32.3
Demographics,
Labs, clinical

data
55

Non-
Linear
ordinal

regression

0.84 R AUROC 4

27 Barton et al. [63] 2019 MIMIC-III,
UCSF Sepsis-3 112,952 3673 3.3 Vitals 6 XGBoost 0.88 R AUROC, R,

S 24

28 Delahanty et al. [64] 2019
Tenet

Healthcare
System

Sepsis-3 2,759,529 54,661 1.98

Demographics,
labs, vitals,

medications,
nursing notes

13 GB 0.97 R AUROC, R,
S, P 24

29 Scherpf et al. [65] 2019 MIMIC-III Sepsis-2 46,520 2724 7.7 Lab, vitals 10
RNN-
GRU,

Insight
0.81 R AUROC 3

30 Bloch et al. [66] 2019 RMC Sepsis-2 600 300 50 Vitals 4 NN, SVM,
LR 0.88 R

AUROC, R,
S, PPV,
NPV

4

31 VanWyk et al. [67] 2019 MLH
System

Sepsis
(ICD10) 586 - - Lab, vitals 7 RF, RNN - R F2 score, A,

R, S, PPV 4

32 van Wyk et al. [68] 2019 MLH
System Sepsis-2 1161 377 32.47 Demographics,

vitals 8 RF - R R, F1 5
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33 Yee et al. [69] 2019 MIMIC-III Sepsis-3 9165 872 9.5
Demographics,

labs, vitals,
diagnosis

Bayesian
network 0.81 R

AUROC, R,
S, PPV,
NPV

24

34 Mao et al. [70] 2018 MIMIC-III,
UCSF Sepsis-2 90,353 1965 9.1 Vitals 30 Insight 0.92 R AUROC, R,

S 4

35 Nemati et al. [32] 2018
Emory

Healthcare
System

Sepsis-3 27,527 2375 8.6
Demographics,

labs, vitals,
clinical data

65 AISE 0.85 R A, R, S,
AUC 4

36 Taneja et al. [71] 2017

Carle
Founda-

tion
Hospital

Sepsis-3 444 76 17.11 Demographics,
labs, vitals 15 SVM 0.81 R R, S, AUC -

37 Horng et al. [72] 2017

Beth Israel
Deaconess

Medical
Center

Sepsis
(ICD-9) 230,936 32,331 14

Vitals,
demographics,

and notes
12 SVM 0.86 R AUROC, R,

S, PPV -

38 Kam and Kim [73] 2017 MIMIC-II Sepsis-2 6362 360 6.2 Demographics,
labs, vitals 9

Sepsis
LSTM

(SepLSTM)
0.92 R A, R, S,

AUC 3

39 Shashikumar et al. [74] 2017
Emory

Healthcare
System

Sepsis-3 250 100 40.0

Demographics,
comorbidity,

clinical context,
vitals

2 SVM 0.80 P AUROC, S 2

40 Calvert et al. [75] 2016 MIMIC-II Sepsis-2 1394 159 11.4 Demographics,
labs, vitals 9 InSight 0.92 R

A,
AUROC, R,

S
3

41 Desautels et al. [76] 2016 MIMIC-III Sepsis-3 22,853 1840 9.7 Demographics,
labs, vitals 8 InSight 0.88 R AUROC 4
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Table 1. Cont.
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42 Brown et al. [77] 2016

LDS
Hospital
and Inter-
mountain
Medical
Center

Sepsis
(ICD-9) 132,748 549 0.41 Demographics,

labs, vitals 9 NB 0.953 R
AUROC, R,

S, PPV,
NPV

-

Note: MIMIC—Medical Information Mart for Intensive Care, DT—Decision tree, RF—Random Forest, XGB—Extreme Gradient Boosting (XGboost), ROC—Receiver Operating
Characteristic Curve, AUROC—Area under the ROC Curve, A—Accuracy, P—Precession, R—Recall (Sensitivity), S—Specificity, F1—Harmonic mean of precision and recall, AUC—Area
under the ROC Curve, CSE—Computational sepsis expert, MSC—Multi-set classifier, MSC-CSE—Multi-set classifier–Computational sepsis expert, MCC—Matthews’s correlation
coefficient, RG—Random Guess, LR—Logistic Regression, SVC—Support Vector Classifier, SVM—Support Vector Machine, LSTM—Long short-term memory networks, CNN—
Convolutional neural network, MGP-AttTCN—Multitask Gaussian Process and attention-based deep learning model, GRU—Gated Recurrent Unit, RETAIN—REverse Time AttentIoN
model (RETAIN), UCSF—University of California, San Francisco, UCSD—University of California, San Diego, MLH—Methodist Le Bonheur Healthcare, DeepAISE—Deep Artificial
Intelligence Sepsis Expert, DSPA—Deep SOFA-Sepsis Prediction Algorithm, SERA—Sequential Element Rejection and Admission, EASP—explainable AI sepsis predictor, GB—Gradient
Boosting, MARS—Multivariate Adaptive Regression Splines, LASSO—Least Absolute Shrinkage and Selection Operator, PPV—Positive predictive value, TCN—Temporal Convolutional
Network, AUPRC—Area under Precision Recall Curve, ML—Machine Learning, mAP—Mean average precision, NPV—Negative predictive value, PLR—Positive likelihood ratio,
NLR—Negative likelihood ratio, RNN—Recurrent Neural Network, NN—Neural Network, AISE—Artificial Intelligence Sepsis Expert, NB—Naïve Bayes Classifier, Latter-day Saints
(LDS) Hospital and Intermountain Medical Center.
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4.6. Early Prediction of Sepsis Onset

Among the 42 articles, 30 (71.4%) articles used longitudinal data for the early prediction
of sepsis onset, while the remaining 12 (28.6%) articles did not report early prediction
(Figure 8). Only eight articles reported sepsis onset prediction 12 or more hours earlier.
Five articles reported 24 h earlier, while one article reported 40 h earlier. The majority of
the articles reported sepsis onset 2–6 h earlier.
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Figure 8. Early prediction of sepsis onset among different studies.

4.7. Quality Assessment of Included Studies

Table 2 displays the outcomes of the quality analysis. The quality evaluation was meant
to evaluate how well certain prediction models were implemented and reported. Some
studies reported a challenge or did not properly report their ML/DL model. Reyna et al. [54]
presented the findings of the 2019 PhysioNet/Computing in Cardiology Challenge, which
made such an article difficult to assess. The remaining studies had quality ratings ranging
from extremely low (meeting 30% of assessment criteria) to very good (more than 80% of
assessment criteria). There was no study that met all 16 criteria. Three requirements were
met by every single study; all of them had used a sample size of more than 50, used a sepsis
definition that adhered to ours in the study design, and reported performance metric(s).
One requirement was fulfilled by 95% of the studies, which was reporting sepsis prevalence,
while the reporting of the machine learning model in use had been provided in 93% of
studies. Out of all the studies, 69% had reported the techniques adopted for handling
missing data, 83% of the studies had reported feature engineering techniques used, and
74% of the studies had reported the limitations of their contents. Only a small percentage of
research studies (n = 2 (5%)) had deployed their model for prospective study or real-world
validation. Only six studies had made their data-cleaning, analysis, and ML/DL code
available. Interestingly, 52% of studies had been carried out on publicly available datasets,
while only 17% of studies had validated the machine learning models on external datasets,
and 21% of studies had reported explainable AI models. Out of all the studies, 46% had
reported hyperparameters, 43% had reported techniques to avoid overfitting, and 50% had
discussed the clinical applicability of their proposed approaches. We have categorized the
articles according to our newly adopted tool (Table 2) into four categories: low quality (LQ)
(0–40%), average quality (AQ) (40–60%), above-average quality (AAQ) (60–80%), and high
quality (HQ) (80–100%). According to our evaluation criteria, there are 5 HQ, 19 AAQ,
13 AQ, and 5 LQ articles among the 42 articles investigated in this study.
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Table 2. A quality assessment tool for the included studies.
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1 Gholamzadeh et al. [38] 2023
√ √

× ×
√ √ √ √

×
√ √ √

× ×
√ √

68.75 AAQ
2 Duan et al. [39] 2023

√
× × ×

√
×

√ √ √ √ √ √
× ×

√
× 56.25 AQ

3 Strickler et al. [40] 2023
√ √

× ×
√ √ √ √ √ √ √ √

×
√ √

× 75.00 AAQ
4 Zhou et al. [41] 2021

√ √ √ √
×

√ √ √ √ √
×

√
×

√ √ √
81.25 HQ

5 Al-Mualemi and Lu [42] 2021
√ √

× ×
√ √ √ √

×
√

×
√

× ×
√ √

62.50 AAQ
6 Rosnati and Fortuin [43] 2021

√ √ √
×

√ √ √ √ √ √
×

√
×

√
× × 68.75 AAQ

7 Zhang et al. [44] 2021
√

×
√

×
√ √ √ √ √ √ √ √

×
√

×
√

75.00 AAQ
8 Shashikumar et al. [45] 2021

√ √
×

√ √ √ √ √ √ √ √ √ √ √
×

√
87.50 HQ

9 Aşuroğlu and Oğul [46] 2021
√ √

× ×
√ √ √ √ √ √

×
√

× ×
√ √

68.75 AAQ
10 Oei et al. [47] 2021

√ √
× ×

√ √ √ √ √ √ √ √
× × × × 62.50 AAQ

11 Rafiei et al. [48] 2021
√ √

× ×
√ √ √ √

×
√ √ √

× ×
√ √

68.75 AAQ
12 Goh et al. [49] 2021

√
× × × ×

√ √ √
×

√
×

√ √
×

√ √
56.25 AQ

13 Bedoya et al. [50] 2020
√

× × ×
√ √ √ √ √ √

×
√ √

×
√

× 62.50 AAQ
14 Yang et al. [51] 2020

√ √ √
×

√ √ √ √
×

√
×

√
×

√ √
× 68.75 AAQ

15 Yuan et al. [52] 2020
√

× × ×
√ √ √ √

×
√

×
√

× ×
√

× 50.00 AQ
16 Kok et al. [53] 2020

√ √
× ×

√ √
×

√ √ √ √ √
× ×

√ √
68.75 AAQ

17 * Reyna et al. [54] 2020
√ √ √

×
√ √

× × ×
√

×
√

× × × × 43.75 AQ
18 Lauritsen et al. [19] 2020

√
× × ×

√ √ √ √ √ √ √ √
× ×

√ √
68.75 AAQ

19 Choi et al. [55] 2020
√

× × ×
√ √ √ √

×
√

×
√

× ×
√

× 50.00 AQ
20 Kim et al. [56] 2020

√
× × ×

√ √ √ √ √ √ √ √
× ×

√
× 62.50 AAQ

21 Ibrahim et al. [57] 2020
√ √

× ×
√ √ √ √ √ √ √ √

× × × × 62.50 AAQ
22 Fagerstrom et al. [58] 2019

√ √
× ×

√ √ √ √ √ √ √ √ √ √ √
× 81.25 HQ

23 Kaji et al. [59] 2019
√ √ √

×
√ √ √ √ √ √

×
√

×
√ √ √

81.25 HQ
24 Giannini et al. [60] 2019

√
× × × ×

√
× × ×

√
×

√
× × ×

√
31.25 LQ

25 Ginestra et al. [61] 2019
√

× × × ×
√

× × ×
√

×
√

× ×
√ √

37.50 LQ
26 Schamoni et al. [62] 2019

√
× × ×

√ √ √ √ √ √
×

√ √
× ×

√
62.50 AAQ

27 Barton et al. [63] 2019
√

× × ×
√ √ √ √ √ √ √ √ √

×
√ √

75.00 AAQ
28 Delahanty et al. [64] 2019

√
× × × ×

√ √ √
×

√
×

√
× ×

√ √
50.00 AQ

29 Scherpf et al. [65] 2019
√ √

× ×
√ √ √ √

×
√

×
√

× ×
√ √

62.50 AAQ
30 Bloch et al. [66] 2019

√
× × × ×

√ √ √
×

√
×

√
× ×

√
× 43.75 AQ

31 VanWyk et al. [67] 2019
√

× × × ×
√

×
√ √ √

×
√

× ×
√ √

50.00 AQ
32 van Wyk et al. [68] 2019

√
× × × ×

√ √ √ √ √ √ √
× ×

√
× 56.25 AQ

33 Yee et al. [69] 2019
√ √

× × ×
√

×
√

×
√

×
√

× × ×
√

43.75 AQ
34 Mao et al. [70] 2018

√ √
× ×

√ √ √ √
×

√ √ √
× ×

√ √
68.75 AAQ

35 Nemati et al. [32] 2018
√ √

× ×
√ √ √ √

×
√ √ √ √ √ √ √

81.25 HQ
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Table 2. Cont.
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36 Taneja et al. [71] 2017
√

× × × ×
√ √ √

×
√

×
√

× × × × 37.50 LQ
37 Horng et al. [72] 2017

√
× × ×

√ √ √ √
×

√
×

√
× ×

√
× 50.00 AQ

38 Kam and Kim [73] 2017
√ √

× ×
√ √ √ √

×
√ √ √

× ×
√

× 62.50 AAQ
39 Shashikumar et al. [74] 2017

√
× × × ×

√ √ √
×

√
×

√
× × × × 37.50 LQ

40 Calvert et al. [75] 2016
√ √

× × ×
√

×
√

×
√ √ √

× ×
√

× 50.00 AQ
41 Desautels et al. [76] 2016

√ √
× ×

√ √ √ √
×

√
×

√
× ×

√
× 56.25 AQ

42 Brown et al. [77] 2016
√

× × × × ×
√ √

×
√

×
√

× ×
√

× 37.50 LQ
% prevalence of each category 100% 52% 14% 5% 69% 95% 83% 93% 46% 100% 43% 100% 17% 21% 74% 50%

Note: * this study has reported the outcome of a challenge.
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4.8. Impact of Funding Source

In our evaluation process, we meticulously assessed the quality of the articles by
considering various factors including the availability of funding information. However,
our comprehensive analysis revealed that there was no discernible correlation between the
presence of funding information and the overall quality of the articles. This observation
underscores the independence of funding disclosure from the overall rigor and validity
of the research findings, emphasizing the importance of a comprehensive evaluation
encompassing various dimensions of article quality, which is reported in Table 2.

5. Discussion

This section sheds light on the current state of research, revealing several important
insights. However, upon comparison with the existing literature, we acknowledge the
existence of other comprehensive systematic reviews and meta-analyses that delve into
intricate technical and clinical aspects of sepsis prediction algorithms, thereby offering
clinicians an understanding of the challenges and opportunities within this domain. This
section also discusses the limitations of our study and challenges and future directions of
research in this domain.

5.1. Key Findings

The systematic review conducted a comprehensive search resulting in 1942 articles, from
which 42 studies were ultimately selected based on stringent inclusion criteria. These criteria
ensured the relevance of the chosen studies, with non-machine learning or -deep learning
studies and those with pediatric populations, divergent topics, and non-peer-reviewed designs
excluded. The predominance of retrospective designs (n = 38) among the selected studies
highlighted the utilization of historical data for analysis, with geographical diversity observed,
including a concentration of investigations in the United States (n = 35). The variety of
healthcare settings utilized, including ICU (n = 34), ED (n = 11), and general ward data,
underscored the complexity of sepsis detection across different contexts. Notably, various
datasets were incorporated, with MIMIC-III, PhysioNet/CinC Challenge, and the Emory
Healthcare System being primary sources. The adoption of Sepsis-2 and Sepsis-3 definitions for
diagnosis indicated the evolving nature of sepsis classification. The range of sepsis prevalence
(0.41% to 63.6%) exposed the inherent dataset imbalance, leading many studies to employ data
augmentation techniques. The range of parameter utilization and feature importance analysis
highlighted the heterogeneity of approaches within the field, emphasizing the ongoing quest
for the optimal model.

The analyzed studies reveal a balanced distribution between classical machine learn-
ing models (58%) and various deep learning models (42%), indicating a diverse spectrum
of approaches. Validation strategies were categorized into train-validation-test split and
N-fold cross-validation, with the latter being prominent, especially 10-fold CV. Common
metrics like AUROC, Sensitivity, Specificity, and Accuracy were recurrently used. Large
disparities are found among sepsis definitions, making it impossible to compare the AU-
ROC value of every study to find the best machine learning model. AUROC values range
between 0.80 and 0.97 in different studies. However, comparing model performance based
solely on specific metrics can be limiting due to dataset variations. The analysis demon-
strates that 71.4% of studies utilized longitudinal data for early sepsis onset prediction,
often forecasting sepsis 2–6 h ahead. Quality assessments ranged from extremely low to
very good, showcasing the multifaceted nature of article quality. Notably, no study met all
16 quality criteria, highlighting the complexity of evaluation. Funding information showed
no consistent correlation with article quality.

A substantial portion of EHR data resides within unstructured clinical notes, encom-
passing clinician insights not captured by physiological variables. Several studies have
explored leveraging natural language processing (NLP) techniques to extract predictive
features from clinical notes, targeting sepsis detection [49,52,64,72]. However, most of these
investigations have treated NLP features in isolation without integrating them with physio-
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logical data. The study conducted by Goh et al. [49] showcases the synergy of NLP and
physiological features when early predicting sepsis. This study highlights that combining
NLP and physiological attributes yields superior classification performance compared to
utilizing NLP or physiological features in isolation.

To ensure a comprehensive evaluation of the quality of the articles, several key aspects
should be considered. Firstly, the sample size in a study should be a reasonable size to
enhance the statistical robustness of the findings. Additionally, data accessibility and the
availability of code should be prioritized to ensure the transparency and replicability of the
study. Secondly, for practicality and broader usability, exploring the potential of mobile
or web deployment for the developed models can enhance their real-world applicability.
Thirdly, the handling of missing data should be addressed using effective strategies to
maintain data integrity. Moreover, evaluating the developed models against the prevalence
of sepsis is crucial, and meticulous feature engineering should be emphasized to extract
relevant insights. Ensuring the adoption of suitable machine learning models and careful
tuning of hyperparameters is essential to prevent the risk of overfitting. Furthermore, the
transparent reporting of performance metrics enables a clear assessment of model efficacy.
External validation is imperative to establish the generalizability of the models, and their
explainability should be a priority. Lastly, the discussion should encompass both the clinical
implications of the findings and a candid exploration of the study’s limitations.

The quality assessment conducted in this study, as reported in Table 2, reveals that
among the studies included, five were designated as high quality, five as low quality,
nineteen as above-average quality, and thirteen as average quality.

5.2. Summaries of Recent Systematic Reviews in Relevant Fields

Eight systematic reviews and meta-analyses have been identified in the literature
(Supplementary Table S5), each focusing on distinct facets of sepsis prediction, precluding
direct comparison with our study. Our investigation encompassed a substantial volume of
peer-reviewed journal articles, contrasting with some literature sources that also included
conference papers. Some articles lacked quality assessment reporting. Nonetheless, our
findings align with the majority of these articles except for meta-analysis papers that
explored a narrower selection of articles but conducted in-depth investigations.

Jahandideh et al. (2023) [25] explored the use of ML techniques for predicting patient
clinical deterioration in hospitals. A total of 29 primary studies were identified, utilizing
various ML models, including supervised, unsupervised, and classical techniques. The
models exhibited diverse performance, with area-under-the-curve values ranging from
0.55 to 0.99, highlighting the potential for automated patient deterioration identification, al-
though further real-world investigations are needed. Deng et al. (2022) [26] introduced new
evaluation criteria and reporting standards for assessing 21 machine learning models based
on PRISMA, revealing inconsistent sepsis definitions, varied data sources, preprocessing
methods, and models, with AUROC improvement being linked to machine learning’s role
in feature engineering. Deep neural networks coupled with Sepsis-3 criteria show promise
for time-series data from sepsis patients, aiding clinical model enhancements. Yan et al.
(2022) [28] assessed the impact of using unstructured clinical text in machine learning for
sepsis prediction. Various databases were searched for articles using clinical text for ML or
natural language processing (NLP) to predict sepsis. Findings indicated that combining
text with structured data improved sepsis prediction accuracy compared to structured
data alone, with varying methods and definitions influencing outcomes. However, the
lack of comparable measurements prevented meta-analysis. Giacobbe et al. (2021) [27]
focused on the impact of sepsis definition, input features, model performance, and AI’s
role in healthcare, with potential benefits in medical decision-making. Sepsis prediction
studies in the ICU often rely on MIMIC-II or MIMIC-III data, but insufficient code-sharing
hampers reproducibility [18]. Bias in datasets is observed with predominantly Western
cohorts, impacting sepsis label creation due to demographic and policy differences. In-
consistent study parameters and metrics prevent meta-analyses, highlighting the need for
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improved methods and shared code to enhance predictive accuracy and research compa-
rability. Fleuren et al. (2020) [29] demonstrated ML model accuracy in predicting sepsis
onset in retrospective cohorts with clinically relevant variables. While individual models
outperform traditional tools, study heterogeneity limits pooled performance assessment.
Clinical implementation across diverse patient populations is crucial to assess real-world
impact. Islam et al. (2019) [23] carried out a meta-analysis investigating ML model perfor-
mance in predicting sepsis 3–4 h before onset. The ML model in the study outperformed
traditional sepsis scoring tools like SIRS, MEWS, SOFA, and qSOFA in recognizing sepsis
and non-sepsis cases, with higher ability for sepsis detection. Different datasets showed
consistent performance, suggesting machine learning’s potential to reduce sepsis-related
mortality and hospital stay by accurately identifying at-risk patients, despite the challenge
of sepsis diagnosis due to organ dysfunction and preexisting conditions. Schinkel et al.
(2019) [22] identified fifteen articles on sepsis diagnosis with AI models (best AUROC 0.97),
seven on mortality prognosis (AUROC up to 0.895), and three on treatment assistance.
However, 22 articles exhibited high risk of bias due to the overestimation of performance
caused by predictor variables coinciding with sepsis definitions. The authors also reported
that AI holds potential for early antibiotic administration, but bias, overfitting, and lack of
standardization hinder clinical implementation.

5.3. Limitations

This systematic review is subject to publication bias as we have selected studies with
significant or positive results. There is a lack of studies reporting negative or null results;
therefore, the systematic review’s findings may overstate the effectiveness of machine
learning-based early prediction models for sepsis. The studies included in this systematic
review vary in terms of patient populations, healthcare settings, study designs, machine
learning algorithms used, and outcome measures. This heterogeneity limits the comparabil-
ity and generalizability of the results, making it challenging to draw definitive conclusions
on the performance of different machine learning models used on diverse datasets. Addi-
tionally, issues related to data quality, feature availability, and the interpretability of models
were identified as challenges in the field. To address these limitations, future studies should
focus on the prospective validation of machine learning models, external validation across
diverse healthcare systems, and comparative analyses of different algorithms. Efforts
to improve data quality, feature engineering, and the interpretability of models are cru-
cial. Furthermore, studies should evaluate the clinical impact of implementing machine
learning-based sepsis prediction models, considering patient outcomes, healthcare resource
utilization, and cost-effectiveness.

Handling missing data in EHRs, along with noting whether a study is retrospective or
prospective, is pivotal. Imputing substantial missing values, even with robust statistical
methods, as seen in MIMIC-based studies with up to 50% imputed data, can pose limitations
and uncertainties for sepsis prediction—a critical concern for clinicians within machine
learning approaches. Assessing the quality and risk of bias in included studies is an
essential aspect of a systematic review. However, in this study, we have introduced a
16-parameter quality assessment tool based on previous studies [18,37] to assess the quality
of the included articles. Although there are subjective metrics in the scoring system, due to
the addition of a large number of metrics, this assessment tool made this evaluation more
reproducible compared to earlier systematic reviews.

This systematic review relies on published studies only, which has led to the exclusion
of relevant studies available only as preprints. This exclusion could impact the compre-
hensiveness of the review and potentially overlook recent advancements or findings in the
field. Machine learning-based early prediction of sepsis is a rapidly evolving field, and
this systematic review has used a cut-off date (March 2023) for the inclusion of studies.
Consequently, the review may not capture the most recent advancements or developments
in the field, limiting the review’s currency. This systematic review has language restric-
tions, such as including only studies published in English, which can introduce language
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bias. Additionally, systematic reviews may only include studies published in indexed jour-
nals, leading to potential publication bias by excluding relevant studies from non-indexed
sources and conferences.

5.4. Challenges and Future Directions

Considering our findings in the context of the broader literature, we recognize several
challenges that demand further exploration and investigation. The application of machine
learning algorithms in the early prediction of sepsis using EHRs holds great potential for
improving patient outcomes [32,70]. By leveraging large amounts of patient data, these
models can identify subtle patterns and early indicators of sepsis that may go unnoticed
by human clinicians. The early prediction of sepsis enables timely interventions, such
as appropriate antibiotic therapy and fluid resuscitation, which can significantly reduce
morbidity and mortality rates. However, several challenges need to be addressed for the
successful implementation of machine learning-based sepsis prediction models in clinical
practice. Here are some key challenges and potential future directions in the field [32,78–80]:

• EHR data can be heterogeneous, incomplete, and prone to errors, which poses chal-
lenges for accurate prediction models. Future research should focus on improving data
quality and standardization, integrating data from multiple sources, and developing
techniques to handle missing data effectively.

• EHR data contain a vast number of variables, and not all of them may be relevant for
sepsis prediction. Feature selection techniques and advanced representation learning
methods, such as deep learning, can help identify the most informative features and
extract meaningful representations from the EHR data.

• Sepsis is a relatively rare event compared to non-sepsis cases, leading to imbalanced
datasets. Class imbalance can affect model performance, and handling this issue
requires techniques such as oversampling, under-sampling, or employing advanced
algorithms designed for imbalanced data.

• Machine learning models trained on one healthcare system may not be generalized
well to other institutions or patient populations. Future research should focus on the
external validation and generalizability of sepsis prediction models across diverse
healthcare settings to ensure their real-world effectiveness.

• Black-box machine learning models may lack interpretability, which can limit their
adoption in clinical practice. Developing interpretable models and providing explana-
tions for model predictions can enhance trust and facilitate clinicians’ understanding
of the underlying reasons for sepsis predictions.

• Early detection and timely intervention are crucial for sepsis management. Fu-
ture research should focus on developing real-time prediction models that integrate
seamlessly into clinical workflows, triggering alerts to clinicians and facilitating
prompt action.

• Demonstrating the clinical impact of machine learning-based sepsis prediction models
is essential. Prospective validation studies in clinical settings are needed to assess these
models’ effectiveness, impact on patient outcomes, and cost-effectiveness compared to
existing clinical practices.

• EHR datasets defining sepsis onset time becomes crucial for predictive models’ clin-
ical relevance. The challenge lies in aligning model predictions with actual clinical
timelines, considering symptoms’ varying occurrence times. Symptoms manifesting
hours before hospital arrival or in different healthcare settings pose complexities in
early prediction models’ optimization, which necessitates detailed exploration and
discussion regarding patient record alignment and optimization.

6. Conclusions

Sepsis exerts significant mortality, morbidity, and healthcare strains, necessitating
strategies such as heightened sepsis awareness, early diagnosis, standardized care proto-
cols, and post-sepsis monitoring to alleviate its impact. This systematic review aims to
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comprehensively synthesize the existing evidence, encompassing diverse classical machine
learning (ML) and deep learning (DL) prediction models, performance metrics, key features,
and limitations. Notably, around half of the evaluated articles demonstrate above-average
quality. The systematic evaluation underscores the potential of ML models (AUROC: 0.80
to 0.97) in predicting sepsis onset using electronic health records (EHRs), often forecasting
sepsis emergence 2–6 h beforehand. This research emphasizes the ability of ML-based
early sepsis prediction to enhance patient care despite existing challenges. The progres-
sive exploration of this domain promises the development of robust models for clinical
integration, ultimately facilitating timely interventions and improved patient outcomes in
sepsis management.
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the systematic review. Table S5. Summary of systematic review and meta-analysis in the literature.
Figure S1. Visual representation of sample size and sepsis-positive patient numbers and percentage.
Note: Studies # 1 and 28 were removed while plotting this figure as these datasets are outliers, and
including these two studies would make the plot non-representative to most of the studies.

Author Contributions: Conceptualization K.R.I., J.K. and M.E.H.C.; Data curation K.R.I., J.P. and
M.S.I.S.; Formal analysis K.R.I., J.P. and M.S.I.S.; Project Management J.K., T.L.T., M.B.I.R. and
M.E.H.C.; Investigation K.R.I., J.P., J.K. and M.E.H.C.; Methodology M.E.H.C., J.K., T.L.T. and M.B.I.R.;
Software K.R.I., J.P. and M.S.I.S.; Project administration J.K. and M.E.H.C.; Resources M.E.H.C. and
J.K.; Supervision J.K., M.E.H.C., T.L.T. and M.B.I.R.; Validation J.K., T.L.T., M.B.I.R. and M.E.H.C. All
authors equally contributed to the reviewing and editing of the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors can provide the dataset upon reasonable request.

Acknowledgments: This study was supported by Faculty of Medicine, Universiti Kebangsaan
Malaysia and Qatar National Library (QNL).

Conflicts of Interest: There is no conflict of interest to declare.

References
1. Vincent, J.L.; Opal, S.M.; Marshall, J.C.; Tracey, K.J. Sepsis definitions: Time for change. Lancet 2013, 381, 774–775. [CrossRef]

[PubMed]
2. Caraballo, C.; Jaimes, F. Focus: Death: Organ dysfunction in sepsis: An ominous trajectory from infection to death. Yale J. Biol.

Med. 2019, 92, 629. [PubMed]
3. Jain, A.; Jain, S.; Rawat, S. Emerging fungal infections among children: A review on its clinical manifestations, diagnosis, and

prevention. J. Pharm. Bioallied Sci. 2010, 2, 314. [CrossRef]
4. Arina, P.; Singer, M. Pathophysiology of sepsis. Curr. Opin. Anesthesiol. 2021, 34, 77–84. [CrossRef] [PubMed]
5. Liang, S.Y.; Kumar, A. Empiric antimicrobial therapy in severe sepsis and septic shock: Optimizing pathogen clearance. Curr.

Infect. Dis. Rep. 2015, 17, 493. [CrossRef] [PubMed]
6. Dorsett, M.; Kroll, M.; Smith, C.S.; Asaro, P.; Liang, S.Y.; Moy, H.P. qSOFA has poor sensitivity for prehospital identification of

severe sepsis and septic shock. Prehospital Emerg. Care 2017, 21, 489–497. [CrossRef]
7. Levy, M.M.; Artigas, A.; Phillips, G.S.; Rhodes, A.; Beale, R.; Osborn, T.; Vincent, J.L.; Townsend, S.; Lemeshow, S.; Dellinger, R.P.

Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: A prospective cohort study. Lancet
Infect. Dis. 2012, 12, 919–924. [CrossRef]

8. Hunt, A. Sepsis: An overview of the signs, symptoms, diagnosis, treatment and pathophysiology. Emerg. Nurse 2019, 27, 32–41.
[CrossRef]

9. Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke,
R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive
Care Med. 2013, 39, 165–228. [CrossRef]

https://www.mdpi.com/article/10.3390/jcm12175658/s1
https://www.mdpi.com/article/10.3390/jcm12175658/s1
https://doi.org/10.1016/S0140-6736(12)61815-7
https://www.ncbi.nlm.nih.gov/pubmed/23472921
https://www.ncbi.nlm.nih.gov/pubmed/31866778
https://doi.org/10.4103/0975-7406.72131
https://doi.org/10.1097/ACO.0000000000000963
https://www.ncbi.nlm.nih.gov/pubmed/33652454
https://doi.org/10.1007/s11908-015-0493-6
https://www.ncbi.nlm.nih.gov/pubmed/26031965
https://doi.org/10.1080/10903127.2016.1274348
https://doi.org/10.1016/S1473-3099(12)70239-6
https://doi.org/10.7748/en.2019.e1926
https://doi.org/10.1007/s00134-012-2769-8


J. Clin. Med. 2023, 12, 5658 27 of 29

10. Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer,
S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study.
Lancet 2020, 395, 200–211. [CrossRef]

11. Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United
States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [CrossRef] [PubMed]

12. Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann,
M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021.
Intensive Care Med. 2021, 47, 1181–1247. [CrossRef] [PubMed]

13. Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of
global incidence and mortality of hospital-treated sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016,
193, 259–272. [CrossRef] [PubMed]

14. Iwashyna, T.J.; Ely, E.W.; Smith, D.M.; Langa, K.M. Long-term cognitive impairment and functional disability among survivors of
severe sepsis. JAMA 2010, 304, 1787–1794. [CrossRef]

15. Rhee, C.; Murphy, M.V.; Li, L.; Platt, R.; Klompas, M. Comparison of trends in sepsis incidence and coding using administrative
claims versus objective clinical data. Clin. Infect. Dis. 2015, 60, 88–95. [CrossRef]

16. Shakoor, S.; Warraich, H.J.; Zaidi, A.K. Infection prevention and control in the tropics. In Hunter’s Tropical Medicine and Emerging
Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 159–165.

17. Luu, S.; Spelman, D.; Woolley, I.J. Post-splenectomy sepsis: Preventative strategies, challenges, and solutions. Infect. Drug Resist.
2019, 12, 2839–2851. [CrossRef]

18. Moor, M.; Rieck, B.; Horn, M.; Jutzeler, C.R.; Borgwardt, K. Early prediction of sepsis in the ICU using machine learning:
A systematic review. Front. Med. 2021, 8, 607952. [CrossRef]

19. Lauritsen, S.M.; Kalør, M.E.; Kongsgaard, E.L.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Early detection of sepsis
utilizing deep learning on electronic health record event sequences. Artif. Intell. Med. 2020, 104, 101820. [CrossRef]

20. Ramlakhan, S.; Saatchi, R.; Sabir, L.; Singh, Y.; Hughes, R.; Shobayo, O.; Ventour, D. Understanding and interpreting artificial
intelligence, machine learning and deep learning in Emergency Medicine. Emerg. Med. J. 2022, 39, 380–385. [CrossRef]

21. Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 23, 738–755.
[CrossRef]

22. Schinkel, M.; Paranjape, K.; Panday, R.N.; Skyttberg, N.; Nanayakkara, P.W. Clinical applications of artificial intelligence in sepsis:
A narrative review. Comput. Biol. Med. 2019, 115, 103488. [CrossRef] [PubMed]

23. Islam, M.M.; Nasrin, T.; Walther, B.A.; Wu, C.C.; Yang, H.C.; Li, Y.C. Prediction of sepsis patients using machine learning approach:
A meta-analysis. Comput. Methods Programs Biomed. 2019, 170, 1–9. [CrossRef] [PubMed]

24. Komorowski, M.; Green, A.; Tatham, K.C.; Seymour, C.; Antcliffe, D. Sepsis biomarkers and diagnostic tools with a focus on
machine learning. EBioMedicine 2022, 86, 104394. [CrossRef] [PubMed]

25. Jahandideh, S.; Ozavci, G.; Sahle, B.; Kouzani, A.; Magrabi, F.; Bucknall, T. Evaluation of machine learning-based models for
prediction of clinical deterioration: A systematic literature review. Int. J. Med. Inform. 2023, 175, 105084. [CrossRef] [PubMed]

26. Deng, H.F.; Sun, M.W.; Wang, Y.; Zeng, J.; Yuan, T.; Li, T.; Li, D.H.; Chen, W.; Zhou, P.; Wang, Q.; et al. Evaluating machine
learning models for sepsis prediction: A systematic review of methodologies. Iscience 2022, 25, 103651. [CrossRef] [PubMed]

27. Giacobbe, D.R.; Signori, A.; Del Puente, F.; Mora, S.; Carmisciano, L.; Briano, F.; Vena, A.; Ball, L.; Robba, C.; Pelosi, P.; et al. Early
detection of sepsis with machine learning techniques: A brief clinical perspective. Front. Med. 2021, 8, 617486. [CrossRef]

28. Yan, M.Y.; Gustad, L.T.; Nytrø, Ø. Sepsis prediction, early detection, and identification using clinical text for machine learning:
A systematic review. J. Am. Med. Inform. Assoc. 2022, 29, 559–575. [CrossRef]

29. Fleuren, L.M.; Klausch, T.L.; Zwager, C.L.; Schoonmade, L.J.; Guo, T.; Roggeveen, L.F.; Swart, E.L.; Girbes, A.R.; Thoral, P.;
Ercole, A.; et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy.
Intensive Care Med. 2020, 46, 383–400. [CrossRef]

30. Wang, D.; Li, J.; Sun, Y.; Ding, X.; Zhang, X.; Liu, S.; Han, B.; Wang, H.; Duan, X.; Sun, T. A machine learning model for accurate
prediction of sepsis in ICU patients. Front. Public Health 2021, 9, 754348. [CrossRef]

31. Kijpaisalratana, N.; Sanglertsinlapachai, D.; Techaratsami, S.; Musikatavorn, K.; Saoraya, J. Machine learning algorithms for early
sepsis detection in the emergency department: A retrospective study. Int. J. Med. Inform. 2022, 160, 104689. [CrossRef]

32. Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An interpretable machine learning model for
accurate prediction of sepsis in the ICU. Crit. Care Med. 2018, 46, 547. [CrossRef] [PubMed]

33. Singh, Y.V.; Singh, P.; Khan, S.; Singh, R.S. A machine learning model for early prediction and detection of sepsis in intensive care
unit patients. J. Healthc. Eng. 2022, 2022, 9263391. [CrossRef] [PubMed]

34. Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al.
2001 sccm/esicm/accp/ats/sis international sepsis definitions conference. Inten-Sive Care Med. 2003, 29, 530–538. [CrossRef]
[PubMed]

35. Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.;
Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315,
801–810. [CrossRef]

https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1097/00003246-200107000-00002
https://www.ncbi.nlm.nih.gov/pubmed/11445675
https://doi.org/10.1007/s00134-021-06506-y
https://www.ncbi.nlm.nih.gov/pubmed/34599691
https://doi.org/10.1164/rccm.201504-0781OC
https://www.ncbi.nlm.nih.gov/pubmed/26414292
https://doi.org/10.1001/jama.2010.1553
https://doi.org/10.1093/cid/ciu750
https://doi.org/10.2147/IDR.S179902
https://doi.org/10.3389/fmed.2021.607952
https://doi.org/10.1016/j.artmed.2020.101820
https://doi.org/10.1136/emermed-2021-212068
https://doi.org/10.1542/neo.23-10-e738
https://doi.org/10.1016/j.compbiomed.2019.103488
https://www.ncbi.nlm.nih.gov/pubmed/31634699
https://doi.org/10.1016/j.cmpb.2018.12.027
https://www.ncbi.nlm.nih.gov/pubmed/30712598
https://doi.org/10.1016/j.ebiom.2022.104394
https://www.ncbi.nlm.nih.gov/pubmed/36470834
https://doi.org/10.1016/j.ijmedinf.2023.105084
https://www.ncbi.nlm.nih.gov/pubmed/37156168
https://doi.org/10.1016/j.isci.2021.103651
https://www.ncbi.nlm.nih.gov/pubmed/35028534
https://doi.org/10.3389/fmed.2021.617486
https://doi.org/10.1093/jamia/ocab236
https://doi.org/10.1007/s00134-019-05872-y
https://doi.org/10.3389/fpubh.2021.754348
https://doi.org/10.1016/j.ijmedinf.2022.104689
https://doi.org/10.1097/CCM.0000000000002936
https://www.ncbi.nlm.nih.gov/pubmed/29286945
https://doi.org/10.1155/2022/9263391
https://www.ncbi.nlm.nih.gov/pubmed/35378945
https://doi.org/10.1007/s00134-003-1662-x
https://www.ncbi.nlm.nih.gov/pubmed/12664219
https://doi.org/10.1001/jama.2016.0287


J. Clin. Med. 2023, 12, 5658 28 of 29

36. Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.;
Singer, M.; et al. Assessment of clinical criteria for sepsis: For the Third International Consensus Definitions for Sepsis and Septic
Shock (Sepsis-3). JAMA 2016, 315, 762–774. [CrossRef]

37. Qiao, N. A systematic review on machine learning in sellar region diseases: Quality and reporting items. Endocr. Connect. 2019, 8,
952–960. [CrossRef]

38. Gholamzadeh, M.; Abtahi, H.; Safdari, R. Comparison of different machine learning algorithms to classify patients suspected of
having sepsis infection in the intensive care unit. Inform. Med. Unlocked 2023, 38, 101236. [CrossRef]

39. Duan, Y.; Huo, J.; Chen, M.; Hou, F.; Yan, G.; Li, S.; Wang, H. Early prediction of sepsis using double fusion of deep features and
handcrafted features. Appl. Intell. 2023, 53, 17903–17919. [CrossRef]

40. Strickler, E.A.; Thomas, J.; Thomas, J.P.; Benjamin, B.; Shamsuddin, R. Exploring a global interpretation mechanism for deep
learning networks when predicting sepsis. Sci. Rep. 2023, 13, 3067. [CrossRef]

41. Zhou, A.; Beyah, R.; Kamaleswaran, R. OnAI-comp: An online ai experts competing framework for early sepsis detection.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 3595–3603. [CrossRef]

42. Al-Mualemi, B.Y.; Lu, L. A deep learning-based sepsis estimation scheme. IEEE Access 2020, 9, 5442–5452. [CrossRef]
43. Rosnati, M.; Fortuin, V. MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis. PLoS ONE 2021, 16,

e0251248. [CrossRef] [PubMed]
44. Zhang, D.; Yin, C.; Hunold, K.M.; Jiang, X.; Caterino, J.M.; Zhang, P. An interpretable deep-learning model for early prediction of

sepsis in the emergency department. Patterns 2021, 2, 100196. [CrossRef] [PubMed]
45. Shashikumar, S.P.; Josef, C.S.; Sharma, A.; Nemati, S. DeepAISE–an interpretable and recurrent neural survival model for early

prediction of sepsis. Artif. Intell. Med. 2021, 113, 102036. [CrossRef] [PubMed]
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