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Abstract: Early identification of Apolipoprotein E (APOE)-related microvascular pathology will
help to study the microangiopathic contribution to Alzheimer’s disease and provide a therapeutic
target for early intervention. To evaluate the differences in retinal microvasculature parameters
between APOE ε4 carriers and non-carriers, asymptomatic older adults aged ≥ 55 years underwent
APOE ε4 genotype analysis, neuropsychological examination, and optical coherence tomography
angiography (OCTA) imaging. One hundred sixty-three older adults were included in the data
analysis. Participants were also defined as cognitively impaired (CI) and non-cognitively impaired
(NCI) according to their MoCA scores and educational years. APOE ε4 carriers demonstrated
reduced SVC (p = 0.023) compared to APOE ε4 non-carriers. Compared to NCI, CI participants
showed reduced SVC density (p = 0.006). In the NCI group, no significant differences (p > 0.05)
were observed in the microvascular densities between APOE ε4 carriers and non-carriers. In the CI
group, APOE ε4 carriers displayed reduced microvascular densities compared to non-carriers (SVC,
p = 0.006; DVC, p = 0.048). We showed that CI and APOE ε4 affect retinal microvasculature in older
adults. Quantitative measures of the retinal microvasculature could serve as surrogates for brain
microcirculation, providing an opportunity to study microvascular contributions to AD.

Keywords: APOE genotype; cognition; optical coherence tomography angiography; retinal microvas-
culature; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD), the most prevalent cause of dementia, is strongly geneti-
cally linked to the APOEε4 genotype, the most potent risk factor for sporadic Alzheimer’s
disease [1,2]. The precise role of the APOE gene in AD pathogenesis remains the subject of
ongoing investigation. Nonetheless, several studies [3–5] have suggested a potential con-
nection between the APOE gene and vascular health, indicating the possible involvement
of vascular pathways in the development of AD.

Cerebral imaging studies [4,6–8] using magnetic resonance imaging (MRI) have shown
that APOE ε4 carriers display significant cerebral microstructural and vascular changes
compared to APOE ε4 non-carriers. Additionally, the study suggested that APOE ε4-
mediated neurodegeneration is related to vascular pathology [9]. These investigations
imply that APOE ε4-related microvascular impairment might play a part in AD’s patho-
logical landscape. However, the exact mechanisms by which these APOE ε4-mediated
microvascular alterations contribute to AD pathology are not entirely clear. In recent
research [10], it was shown that mice carrying human APOE ε4 alleles exhibit capillary
pathology, a compromised blood–brain barrier (BBB), and impaired function of the neu-
rovascular unit (NVU). MRI has undoubtedly provided valuable indirect insights into
APOE ε4-related cerebral pathology, such as white matter hyperintensity, microbleed, and
enlarged perivascular space. However, MRI cannot directly realize the visualization of
cerebral microvasculature, and it has limited availability due to high costs, inaccessibility,
and the need for a professional post-processing system. Those highlight the need for more
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accessible and cost-effective biomarkers. Identifying such markers could facilitate the
early detection of cerebral microvasculature changes and improve our understanding of
APOE’s role in AD pathophysiology, develop biomarkers for early diagnosis, and provide
therapeutic targets for early intervention.

The retina, a neurosensory tissue in the eye, and the brain share similar characteristics,
such as precise neuronal cell layers, microvasculature, and embryologic origin [11]. The
potential for early detection of disease-related biomarkers in Alzheimer’s disease through
retinal imaging is promising due to its direct visual connection to the retina and shared
neurobiology with the brain. Previous studies [12,13] using fundus photographs have
shown that quantitative changes in retinal vessel width (narrower arteriolar caliber and
wider venules) and reduced fractal dimension are associated with AD patients. Further-
more, some reports [12,13] have demonstrated that these retinal microvascular changes
are linked with cognitive performance in AD patients. Recent reports [14,15] utilizing
fundus photography have revealed the noteworthy role of APOE gene polymorphism in
the development of retinal microvascular changes among older adults.

Optical coherence tomography angiography, an imaging technique, offers a non-
invasive way to depict the retinal microvasculature with exceptional clarity [16,17]. Unlike
earlier retinal imaging methods like fundus angiography [17], this technology produces
detailed three-dimensional (3D) images of the retinal structure and microvasculature
across various layers. OCTA has been extensively applied in neurological diseases such
as AD [12,13,18] and Parkinson’s disease [19,20]; these reports showed patients with these
neurological disorders had reduced retinal microvascular densities and sparser retinal
microvasculature. Taken together, these reports suggest that OCTA has the potential to be
used as a tool to detect and monitor microvascular changes in these neurological diseases.
Previous studies investigated the effect of the APOE gene on retinal microvasculature in
symptomatic AD and dementia; however, little is known about the effect of APOE on
retinal microvasculature in the preclinical disease stage.

As part of the current study, we utilized OCTA’s established sensitivity to detect
subclinical capillary pathology to investigate APOEε4-associated microvascular disease in
older asymptomatic adults.

2. Materials and Methods
2.1. Study Design

This study is part of an ongoing study assessing the connection between retinal
biomarkers and neurodegenerative disease in older adults at the Department of Neurology,
West China Hospital of Sichuan University. Inclusion in our study required participants to
be ≥55 years of age, without complaints of memory decline, have intact visual function,
speak Chinese Mandarin, and cooperate with retinal imaging. Eligible participants under-
went neuropsychological evaluation, APOE gene analysis, blood investigations, MRI scans,
and a thorough medical history review, including history of ophthalmic disease, cardiovas-
cular risk factors such as smoking and drinking status, previous stroke, hypertension, and
diabetes mellitus, and current prescribed medications, was conducted. Details of all par-
ticipants were reviewed and discussed among neurologists, neuro-ophthalmologists, and
clinical research fellows. Exclusion criteria from the study were as follows: individuals with
a history of psychiatric or neurological disorders (such as dementia, Parkinson’s disease,
stroke, traumatic brain injury, brain surgery, drug addiction, depression, schizophrenia,
and so on), any significant systemic disease (heart failure, renal insufficiency, cancer, etc.),
and current use of any medications known to affected cognition. Additionally, visual
acuity ≤0.8 (LogMAR), uncontrolled hypertension, and uncontrolled diabetes mellitus
were also employed as exclusion criteria. The protocol was approved by the Ethics Com-
mittee of West China Hospital of Sichuan University (2020-104). Written informed consent
was obtained before data collection.
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2.2. Neuropsychological Examination

Participants underwent the Montreal Cognitive Assessment (MoCA) and mini-mental
state examination (MMSE). Participants were defined as cognitively impaired (CI) and
non-cognitively impaired (NCI) by their MoCA scores and educational years, as previously
reported [21,22]. The cut-offs are shown in Table S4.

2.3. Apolipoprotein E Gene Analysis

Blood samples were procured from the peripheral blood of individuals and examined
at the West China Hospital of Sichuan University. Subsequently, the samples underwent
amplification using the polymerase chain reaction (PCR) method through the utilization
of an ABI 7500 FAST instrument from Applied Biosystems, Thermo Fisher Scientific, lo-
cated in Waltham, MA, USA [23]. For the determination of APOE haplotypes, an APOE
haplotype determination kit from Memorigen Biotech in Xiamen, China, was employed.
This kit operated on the basis of fluorescent PCR technology and employed three pairs
of detection reagents designed to selectively identify specific single nucleotide polymor-
phisms (RS429358 and RS7412) associated with APOE gene types 2, 3, and 4. This approach
facilitated the identification and amplification of the genetic samples. In instances where
the genetic sample’s APOE allele corresponded with the amplification system, a PCR ampli-
fication reaction was initiated within the system. The exonuclease activity located at the 5′

to 3′ terminus of DNA polymerase was utilized to enzymatically degrade DNA molecular
probes labeled with fluorescence. Following this enzymatic degradation, the probe became
responsive to a fluorescence signal upon stimulation, which was then detectable by the
monitoring system. The categorization of an individual’s APOE ε4 carrier status as either
positive (ε2/ε4, ε3/ε4, ε4/ε4) or negative (ε2/ε2, ε2/ε3, ε3/ε3) was established based on
the obtained genetic analysis outcomes.

2.4. Ophthalmological Examination
2.4.1. Visual Acuity (VA) Examination

Participants underwent visual acuity (VA) examination under light using the Snellen
chart. VA for each eye was later converted to a logarithm of the minimum angle of
resolution (LogMAR).

2.4.2. Swept Source Optical Coherence Tomography Angiography (SS-OCTA) Imaging

The SS-OCTA tool (VG200; SVision Imaging, Henan, China) contained a central
wavelength of 1050 nm and a scan rate of 200,000 A-scan per second. The tool was set with
an eye-tracking function based on an integrated confocal scanning laser ophthalmoscope
to remove eye-motion artifacts. The specifications of the OCTA tool are well described in
our previous reports [24,25].

En face angiograms of the superficial vascular plexus (SVC) and deep vascular plexus
(DVC) were obtained by the OCTA tool in a 3 mm × 3 mm area centered on the fovea. The
inner retina, containing the SVC and DVC, extended from 5 µm above the inner limiting
membrane (ILM) to 25 µm below the lower border of the inner nuclear layer (INL). The
segmentation (Figure 1) between the SVC and the DVC was set in the inner two-thirds
and outer one-third interface of the ganglion cell layer and inner plexiform layer (GCIPL).
Microvascular densities of each plexus were measured by the OCTA tool. OCTA data
displayed in our study followed the OSCAR-IB quality criteria [26] and APOSTEL recom-
mendation [27]. The exclusion criteria of our participants were as follows: confounding
ocular disorders such as diabetic retinopathy, hypertensive retinopathy, severe cataracts,
age-related macular degeneration (AMD), glaucoma, and history of vitreoretinal or optic
nerve disease. If a participant presented with any of these disorders in one eye, the other
eye was used; if both eyes had the aforementioned disorders, the participant was excluded
from the study.
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of this permutation test are shown in the Supplementary Materials (Supplementary Tables 
S2 and S3). p-values < 0.05 were considered statistically significant. Data analysis and plot-
ting were performed in R version 4.0.3. 

Figure 1. Comparison of OCTA parameters between APOE ε4 non-carriers and APOE ε4 carriers
and segmentation of retinal microvasculature. (A) shows the comparison of SVC and DVC density
between APOE ε4 non-carriers and APOE ε4 carriers. (B) shows the segmentation between the SVC
and the DVC was set in the inner two-thirds and outer one-third interface of the ganglion cell layer
and inner plexiform layer (GCIPL).

2.5. Statistics Analysis

Continuous variables were described by mean ± standard deviation (SD), and cat-
egorical variables were presented as frequency and percentages. The t-test was used for
continuous variables, and the Chi-square test was used for categorical variables when
comparing the demographic and clinical characteristic differences between the two groups.
Generalized estimating equations (GEE) with multiple linear regression were used to in-
vestigate the retinal microvascular differences between APOE ε4 carriers vs. APOE ε4
non-carriers while adjusting for age, gender, education, vascular risk factors (diabetes,
hypertension, hyperlipidemia, and smoking), and intereye dependencies, and CI vs. NCI
while adjusting for age, gender, education, LogMAR, vascular risk factors (hypertension,
diabetes mellitus, hyperlipidemia, and smoking), and intereye dependencies. GEE was
conducted for subgroup analysis that investigated the retinal microvascular differences
between APOE ε4 carriers vs. APOE ε4 non-carriers within the subgroups of individuals
with CI and NCI while considering potential confounding factors as covariates. ANOVA
analysis was used to perform interaction analysis to examine whether there was an inter-
action between APOE genotype and cognition status, and the results were presented in
Supplementary Figure S1. To investigate the relative importance of APOE genotype and
cognition to retinal microvasculature, we also built a multivariate linear model to examine
their relative contribution. Finally, permutation tests [28] were used as sensitivity analysis
for all parameter comparisons because of the sample size difference between the APOE
ε4 carrier group and non-carrier group. The detailed method and results of this permu-
tation test are shown in the Supplementary Materials (Supplementary Tables S2 and S3).
p-values < 0.05 were considered statistically significant. Data analysis and plotting were
performed in R version 4.0.3.

3. Results

Figure 2 shows the flow diagram of our final participants. In total, 163 participants
(62.58% females) and 311 eyes were included in our final analysis. Of the 163 participants,
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35 participants were APOE ε4 carriers, and 128 participants were APOE ε4 non-carriers. Of
note, 89 participants were grouped as NCI, and 74 were grouped as CI.
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3.1. Baseline Analysis

No significant differences were observed in the age, gender, education, cognitive
assessment, visual acuity, and vascular risk parameters between APOE ε4 carriers and
APOE ε4 non-carriers (Table 1). Supplementary Table S1 shows no significant differences
were seen in the demographics and clinical information of NCI and CI.

3.2. Retinal Vasculature Analysis of APOE ε4 Carriers vs. APOE ε4 Non-Carriers

Table 2 and Figure 3 show the results of OCTA parameter comparisons between
APOE ε4 carriers and APOE ε4 non-carriers. APOE ε4 carriers showed reduced SVC
density (p = 0.023) compared to APOE ε4 non-carriers in all participants when considering
age, gender, education, diabetes, hypertension, hyperlipidemia, and smoking as covari-
ates. However, there was no significant difference in the DVC density between the two
groups (p = 0.221).
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Table 1. Demographics and clinical information of APOE ε4 non-carriers and ε4 carriers in all participants.

All APOE
ε4 Non-Carriers

APOE
ε4 Carriers p-Value

n 163 128 35
Age, years 59 (54–65) 59 (54–65) 58 (54–65) 0.810

Female, n (%) 102 (62.58%) 82 (64.06%) 20 (57.14%) 0.581
Education, years 9 (6–12) 9 (6–12) 9 (6–15) 0.395

Hypertension, n (%) 43 (26.71%) 35 (27.78%) 8 (22.86%) 0.714
Diabetes, n (%) 18 (11.18%) 16 (12.70%) 2 (5.71%) 0.366

Hyperlipidemia, n (%) 59 (36.65%) 50 (39.68%) 9 (25.71%) 0.187
Smoking, n (%) 13 (8.07%) 9 (7.14%) 4 (11.43%) 0.482
Drinkers, n (%) 14 (8.70%) 12 (9.52%) 2 (5.71%) 0.736

MMSE 29 (26–30) 29 (26–30) 29 (27–30) 0.281
MoCA 23 (20–26) 23 (20–26) 23 (21–27) 0.724

VA, LogMAR 0.2 (0.1–0.2) 0.2 (0.1–0.2) 0.1 (0.1–0.2) 0.304
OCTA parameters

Eyes, n 311 242 69
SVC, % 39.23 ± 5.42 39.61 ± 5.32 37.91 ± 5.58 0.021 *
DVC, % 50.22 ± 4.12 50.39 ± 3.92 49.64 ± 4.75 0.182

APOE: Apolipoprotein E, VA: visual acuity (VA), LogMAR: Logarithm of the Minimum Angle of Resolution,
MMSE: mini-mental state examination, MoCA: Montreal Cognitive Assessment, SVC: superficial vascular plexus,
and DVC: deep vascular plexus, *: p value < 0.05.

Table 2. Multivariate analysis of examining retinal vascular density differences of CI (143 eyes) vs.
NCI (168 eyes) and APOE ε4 carriers (69 eyes) vs. non-carriers (242 eyes) in all participants.

CI NCI p-Value ε4 Carriers ε4 Non-Carriers p-Value

SVC, % 38.42 ± 5.32 39.91 ± 5.42 0.006 * 37.91 ± 5.58 39.61 ± 5.32 0.023 †

DVC, % 49.92 ± 3.97 50.49 ± 4.25 0.231 49.64 ± 4.75 50.39 ± 3.92 0.221

NCI: non-cognitively impaired; CI: cognitively impaired; SVC: superficial vascular complex; DVC: deep vascular
complex. * p-value was adjusted for age, gender, education, visual acuity, vascular risk factors (hypertension,
diabetes mellitus, hyperlipidemia, and smoking), and intereye dependencies. † p-value was adjusted for age,
gender, education, vascular risk factors (hypertension, diabetes mellitus, hyperlipidemia, and smoking), and
intereye dependencies.

3.3. Retinal Vasculature Analysis of CI vs. NCI

Results of the OCTA parameter comparison of CI and NCI are presented in Table 2
and Figure 3. Compared to NCI, CI participants showed reduced SVC density (p = 0.006)
in all participants after adjusting for age, gender, education, LogMAR, vascular risk factors
(hypertension, diabetes mellitus, hyperlipidemia, and smoking), and intereye dependen-
cies. No significant difference was observed in the DVC density when both groups were
compared (p = 0.231).

3.4. Subgroup Analysis

Table 3 and Figure 3 provide the results of the subgroup analysis concerning OCTA
parameters specifically related to APOE ε4 carriers. Following adjustments for age, gender,
education, vascular risk factors (including hypertension, diabetes mellitus, hyperlipi-
demia, and smoking), as well as accounting for intereye dependencies, the outcomes of
the subgroup analysis indicated the following: in the NCI group, no significant differences
(p > 0.05) in microvascular densities were observed between APOE ε4 carriers and APOE ε4
non-carriers; conversely, within the CI group, APOE ε4 carriers exhibited notably reduced
densities in SVC (p = 0.006) and DVC (p = 0.048) when compared to non-carriers.
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Figure 3. Comparison of OCTA parameters between APOE ε4 carriers vs. APOE ε4 non−carriers
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Table 3. Comparison of OCTA parameters between APOE ε4 carriers (69 eyes) vs. non-carriers
(242 eyes) in subgroups of CI or NCI.

ε4 Carriers ε4 Non-Carriers p-Value

NCI
SVC, % 39.05 ± 5.84 40.18 ± 5.28 0.796
DVC, % 50.39 ± 4.84 50.51 ± 4.07 0.780

CI
SVC, % 36.42 ± 4.92 38.96 ± 5.32 0.006 *
DVC, % 48.66 ± 4.53 50.25 ± 3.76 0.048 *

NCI: non-cognitively impaired; CI: cognitively impaired; SVC: superficial vascular complex; DVC: deep vascular
complex. p-values were adjusted for age, gender, education, vascular risk factors (hypertension, diabetes mellitus,
hyperlipidemia, and smoking), and intereye dependencies; *: p value < 0.05.

3.5. Interaction Analysis

Figure S1 shows the results of interaction analysis, and there is no significant interac-
tion between cognition and APOE genotype on SVC (p = 0.333).

3.6. Relative Importance Analysis

Table 4 illustrates the varying impacts of APOE genotype and cognitive factors on
retinal vasculature. Notably, our analysis revealed that, when accounting for additional
covariates such as age, gender, education, hypertension, diabetes mellitus, hyperlipidemia,
and smoking, the influence of APOE genotype on the microvascular density of SVC was
more pronounced compared to cognition.
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Table 4. Multivariate linear analysis of examining the relative contribution of APOE genotype and
cognition to retinal microvascular density.

Variables SVC DVC

- B SE p-Value B SE p-Value

APOE ε4 carriers −1.638 2.588 0.024 * −0.772 0.579 0.183
CI −1.397 0.606 0.021 * −0.674 0.485 0.166

APOE: Apolipoprotein E; CI: cognitively impaired; SVC: superficial vascular complex; DVC: deep vascular
complex; B: partial regression coefficients; SE: standard error; *: p value < 0.05.

4. Discussion

Despite extensive research on retinal microvasculature in AD patients and preclinical
conditions, little is known about how APOE genetic factors affect the retinal microvascu-
lature [13]. In our observational study, we demonstrated that APOE ε4 carriers reduced
SVC density compared to non-carriers in older adults. We also showed CI participants had
reduced SVC density compared to NCI. Importantly, in CI participants, APOE ε4 carriers
demonstrated reduced microvascular densities compared to APOE ε4 non-carriers.

Using the SS-OCTA, our study provides further insights into the pathogenesis of
cognitive impairment in older adults. Although cerebral microvascular impairment has
been suggested to contribute to cognitive impairment, data to support such hypotheses
are few [29]. Pathological studies [30,31] have shown AD is associated with a variety of
structural and physiological changes in the cerebral microvasculature, including arteriolar
narrowing, capillary damage, endothelial dysfunction, and blood–brain barrier damage.
These structural microvascular changes may lead to abnormal microvascular flow patterns
and neurodegeneration, eventually resulting in plaques and neurofibrillary tangles charac-
teristic of AD and/or dementia. Retinal microvascular changes (specifically the superficial
vessels) are suggested to reflect the cerebral microvasculature [32]. Using the retinal mi-
crovasculature as a proxy to the cerebral microvasculature, we showed CI participants
had reduced SVC density compared to NCI. Reduced microvascular density in the SVC is
thought to be indicative of a disturbed blood–retina barrier, disturbed blood flow, vessel
wall dysfunction, and tissue hypoxia [12]. Thus, our study supports the hypothesis that
microvascular impairment may play an important role in the development of cognitive
impairment. Furthermore, these findings offer clues to the specific pathophysiological
processes that occur in the cerebral microvasculature of older adults with cognitive im-
pairment. Prior reports [12,13] showed individuals with cognitive impairment had wider
venules and narrow arterioles. Of note, the retinal arterioles and venules are found in
the SVC [33], suggesting reduced microvascular density in the SVC may be due to the
structural microvascular changes associated with cognitive impairment. Taken together,
we suggest that reduced SVC density may be an important pathological feature in the
development of cognitive impairment in older adults.

The APOE ε4 genotype is the strongest common genetic risk factor for sporadic AD.
Previous model reports demonstrated that APOE ε4 affects microvascular density and neu-
rovascular regulation [5,34]. It is suggested that APOE ε4 carriers are associated with retinal
vascular pathology independent of diabetes and hypertension [35]; individuals with APOE
ε4 showed blot hemorrhages, indicative of blood–retina barrier damage [36]. Using the
OCTA, a previous report [37] showed lower retinal capillary densities in cognitively normal
APOE ε4 carriers when compared to non-carriers. In our current study, asymptomatic older
adults with APOE ε4 carriers demonstrated reduced SVC density compared to non-carriers.
The role of ApoE in the blood–brain barrier function has led to the hypothesis that it might
impact this function either directly or indirectly by acting as a signaling molecule [10]. The
SVC forms the inner blood–retina barrier and is suggested to reflect cerebral microcircu-
lation [32]; given the close similarity between the blood–retina barrier and blood–brain
barrier, the ε4 allele of ApoE might be linked to more permeable blood–retina barriers,
potentially explaining the findings related to retinal microvasculature.
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Elahi FM [37] reported reduced capillary density in clinically unimpaired APOE ε4
gene carriers based on SD-OCT. Similarly, we found microvascular densities were lower in
APOE ε4 carriers compared to non-carriers in NCI, though the results are not significant.
Device difference and sample size may account for inconsistency, and standardized OCTA
studies with large sample sizes are required to validate the results. In the CI group,
we found microvascular densities were significantly reduced in APOE ε4 carriers when
compared to non-carriers. It is suggested that AD patients have the greatest degree of
microvascular damage in the DVC [38,39] because the microvessels are thinner and have a
smaller cross-section, which makes them sensitive to disease progression [40]. Our findings
suggest that the APOE ε4 genotype is associated with retinal microvasculature changes
dependent on the degree and level of cognitive function. Our study suggests that in
APOE ε4 carriers, the pathological mechanism may be more selective and affect the SVC
from the asymptomatic stage, suggesting that the superficial vessels of the retina may be
sensitive to the earliest changes associated with AD pathology in older adults as previously
reported [41].

Studying retinal microvascular changes in at-risk individuals can provide insight into
how vascular contributions to AD can be studied. Interventions for AD may be more
effective if they target biomarkers that reveal the earliest detectable abnormalities in the
asymptomatic or preclinical stage rather than the clinical disease that is evident. This shift
in perspective led to the development of biomarker-driven criteria for AD research based on
amyloid, tau, and neurodegeneration (A/T/N) [42,43]. Research into how microvascular
impairment can contribute to cognitive impairment and AD remains important and active.
Modeling disease progression and clinical manifestation using in vivo imaging modalities
such as OCTA may help detect high-risk individuals at an early stage. The retinal microvas-
culature imaged and measured with the OCTA could reflect on microvascular impairment
that occurred in AD pathology, which may enable the assessment of purported treatments.

Our study has several limitations. The cross-sectional design of the study limits the
interpretation of the results for cause and effect. The results were from a Chinese cohort,
which limits the generalizability of the data to other races. Furthermore, individuals with
ocular and neurological disorders that could affect our data were excluded, which might
introduce selection bias.

5. Conclusions

In conclusion, we showed that older adults with CI had reduced SVC density com-
pared to NCI. We also showed that APOE ε4 carriers showed reduced SVC density com-
pared to APOE ε4 non-carriers. Importantly, in the CI group, APOE ε4 carriers showed
reduced SVC and DVC densities compared to non-carriers. The microvascular changes
observed in the sub-analysis of APOE genotype and cognitive status suggest that reduced
retinal microvascular densities may be a subtle indicator in the AD continuum. Longitudi-
nal studies of retinal and amyloid/tau pathology in the APOE ε4 cohort will help decipher
the causality of vascular changes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm12175649/s1. Figure S1: The results of interaction analysis of APOE
genotype and cognition on SVC; Table S1: Demographics and clinical information of NCI and CI in
all participants; Table S2: Permutation analysis of demographics and clinical information of APOE
ε4 non-carriers vs. ε4 carriers in participants; Table S3: Permutation analysis of comparison OCTA
parameters between APOE ε4 carriers vs. non-carriers in subgroup of CI or NCI; Table S4: cut-offs
of CI.
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