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Abstract: This study aimed to compare the clinical picture of COVID-19 in the initial and later
period of Omicron dominance and to identify populations still at risk. A retrospective comparison of
the clinical data of 965 patients hospitalized during the early period of Omicron’s dominance (EO,
January–June 2022) with 897 patients from a later period (LO, July 2022–April 2023) from the SARSTer
database was performed. Patients hospitalized during LO, compared to EO, were older, had a better
clinical condition on admission, had a lower need for oxygen and mechanical ventilation, had less
frequent lung involvement in imaging, and showed much faster clinical improvement. Moreover, the
overall mortality during EO was 14%, higher than that in LO—9%. Despite the milder course of the
disease, mortality exceeding 15% was similar in both groups among patients with lung involvement.
The accumulation of risk factors such as an age of 60+, comorbidities, lung involvement, and oxygen
saturation <90% resulted in a constant need for oxygen in 98% of patients, an 8% risk of mechanical
ventilation, and a 30% mortality rate in the LO period. Multiple logistic regression revealed lower
odds of death during the LO phase. Despite the milder course of infections caused by the currently
dominant subvariants, COVID-19 prophylaxis is necessary in people over 60 years of age, especially
those with comorbidities, and in the case of pneumonia and respiratory failure.
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1. Introduction

In over three years of the coronavirus disease 2019 (COVID-19) pandemic, five se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs)
responsible for successive waves of epidemics worldwide have been identified [1]. Chrono-
logically, the most recent is Omicron (B.1.1.529), which was designated a VoC by the World
Health Organization [2] on November 2021, just days after being detected in South Africa
and Botswana [3]. The emergence of this line has changed the trajectory of the COVID-19
pandemic as, despite being more transmissible predominantly due to high evasion of
adaptive humoral immunity, it causes a milder course of the disease and lower mortality
compared to the previous viral variants, attributed to its intrinsic biological features, such
as the preference to use the endosomal pathway of cellular entry [4–7]. Selective advan-
tages of the Omicron variant have allowed it to quickly replace the previous Delta lineage
and become the dominant SARS-CoV-2 variant. Omicron spread rapidly in many regions
and, due to point mutations and recombination events, gradually evolved into numerous
sublines, some of which have become dominant worldwide [5,8]. Despite the lower clinical
relevance of Omicron, health systems in many countries were overwhelmed by the surge in
infections during the wave of this SARS-CoV-2 variant, with dynamics much higher than
during previous pandemic periods [9].

According to data provided by the WHO, Omicron caused about two-thirds of the
more than 768 million confirmed cases of SARS-CoV-2 infection as of 26 June 2023, and was
responsible for one-fifth of the nearly 7 million deaths recorded to that date [2]. However,
one should note that the true number of cases and deaths is likely significantly higher
due to underdiagnosis, underreporting, and excess mortality. Most cases of COVID-19
have been reported in Europe. On this continent, Omicron began to dominate in early
2022, with the BA.1 and BA.2 subvariants prevailing during the initial period, before being
replaced by BA.5, BA.2.75, and recombinant sublines BQ.1 and XBB.1.5 in the second half
of 2022 [1,10,11]. All Omicron subvariants show the ability to evade neutralization efficacy
induced by vaccination or past SARS-CoV-2 infection, with sublines with more enhanced
immune-evasive properties emerging over time [5,12].

Numerous reports have documented a less severe course of the disease, a lower rate
of hospitalization and intensive care unit (ICU) admissions, and a decrease in the mortality
rate during the Omicron wave as compared to surges caused by previous variants of SARS-
CoV-2 [13,14]. What is lacking, however, are studies evaluating the variability in the clinical
presentation and the outcomes of COVID-19 within Omicron alone, the line responsible for
the longest-lasting wave of the pandemic, and no analysis comparing the early and late
phases of the Omicron wave has been published to date.

Therefore, the aim of this study was to compare the clinical picture of COVID-19 in the
early and later periods of Omicron dominance and to identify populations still at risk of a
severe course and outcome of the disease. This is particularly important as SARS-CoV-2 is
far from eradication, continues to evolve, and requires monitoring, also using real-world
clinical analyses. They are also pivotal as a reference point for future assessment of the
clinical relevance of SARS-CoV-2 (sub)variants yet to come, particularly given the fact that
the World Health Organization announced on 5 May 2023 that COVID-19 is no longer
considered a Public Health Emergency of International Concern but remains an established
and ongoing health issue [15,16].

2. Materials and Methods

The data for this study were collected retrospectively, using the observational, multi-
center, nationwide SARSTer database supported by the Polish Association of Epidemiolo-
gists and Infectiologists, which has been operating since mid-2020 and includes data from
13,632 adult patients hospitalized in 30 centers due to COVID-19, who were diagnosed and
treated according to the national recommendations [17,18]. Following these guidelines, pa-
tients were evaluated for their coinfection with the influenza virus. For the purpose of this
study, a comparison of the clinical data of 965 patients hospitalized during the early period
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of Omicron’s dominance (EO, January–June 2022) with 897 patients from a later period
(LO, July 2022–April 2023) was performed. These were all consecutive patients hospitalized
at the centers participating in the SARSTer study; the only inclusion criterion was the time
of admission. The periods taken into account in the present study were established based
on sequences submitted by Polish laboratories according to the Global Initiative on Sharing
All Influenza Data (GISAID), the most reliable database on SARS-CoV-2 variants’ preva-
lence in different regions of the world [19]. According to data available for our country, the
defined EO period was dominated by the Omicron subvariants BA.1 and BA.2, whereas
the LO period was dominated by subvariants BA.5, BQ.1, XBB, and XBB.1.5, with a small
contribution of XBB.1.9 that emerged at the end of the considered timeframe (Figure 1).
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Figure 1. The dominant Omicron lineage subvariants in Poland during two periods defined for the
purpose of this study as early Omicron and late Omicron waves. The data and graphs retrieved from
Nexstrain.org [17].

Patient characteristics included gender, age, BMI, and comorbidities. Analysis of the
course of the disease was assessed within 28 days from the beginning of hospitalization,
including the follow-up period after discharge. It included symptoms of the disease, res-
piratory function on admission to the hospital based on oxygen saturation (SpO2), lung
changes on imaging, treatment administered, the length of hospitalization, the need for
oxygen therapy and mechanical ventilation, and the frequency of death. Moreover, the
clinical course of the disease was assessed on admission to the hospital, and then after 7,
14, 21, and 28 days, using an ordinal scale based on WHO recommendations, modified
to the 8-point version to match the specificity of the healthcare system, which was used
previously [4,13,20,21]. The score was defined as follows: (1) not hospitalized, no activity
restrictions; (2) not hospitalized, no activity restrictions, and/or not requiring oxygen
supplementation at home; (3) hospitalized, and not requiring oxygen supplementation
and not requiring medical care; (4) hospitalized, not requiring oxygen supplementation
but requiring medical care; (5) hospitalized, requiring normal oxygen supplementation;
(6) hospitalized, requiring non-invasive ventilation with high-flow oxygen equipment;
(7) hospitalized, for invasive mechanical ventilation or extracorporeal membrane oxygena-
tion; and (8) death.

Statistical analyses were conducted using Statistica v. 13 (StatSoft, Tulsa, OK, USA)
and MedCalc v. 15.8 (MedCalc Software Ltd., Ostend, Belgium). Differences in frequencies
of events between EO and LO groups were assessed with χ2 Pearson’s test or Fisher exact
test (when the number of observations was <10 in any compared category). The differences
in data expressed on the interval scale (age, BMI, saturation) were evaluated with a non-
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parametric Mann–Whitney U test because they did not meet the Gaussian assumption
(Shapiro–Wilk’s test, p < 0.05). Multiple logistic regression models were used to evaluate
the association between death or the need to use mechanical ventilation and the phase
of Omicron dominance. The confounding variables included in both models were age
> 60 years, obesity (BMI > 30 kg/m2), male sex, comorbidities, baseline SpO2 ≤ 90% at
admission, and the presence of chest imagining changes. A p-value of less than 0.05 was
considered statistically significant in all analyses.

3. Results

As shown in Table 1, patients hospitalized in the LO phase were significantly older
(mean ± SD; 73.7 ± 14.8) than those in the EO phase (68.7 ± 18.2), and the proportion of
patients ≥60 years of age was significantly higher in the LO phase than in the EO phase
(86% vs. 74%). In the LO phase, the percentages of patients with hypertension (65.9%)
and ischemic heart disease (27.1%) were significantly higher than in the early phase (57.2%
and 20.7%, respectively). No cases of coinfection with influenza virus were reported in the
analysed subpopulations.

Table 1. Patients’ characteristics during the domination of early and late Omicron subvariants.

Early Omicron
(n = 965)

Late Omicron
(n = 897) p-Value

The average number of
patients per month, n 161 90 -

Demographic characteristics

BMI, x ±SD 27.0 ± 5.5 27.1 ± 5.5 U = 278,693, z = 0.15,
p = 0.884

Gender, females/males, n (%) 494/471 (51.2/48.8) 472/425 (52.6/47.4) χ2 = 0.3, p = 0.538

Age (years), mean ±SD 68.7 ± 18.2 73.7 ± 14.8 U = 370,909, z = −5.30,
p < 0.001

<20 years, n (%) 1 (0.1) 2 (0.2) p = 0.611

20–40 years, n (%) 106 (11.0) 36 (4.0) χ2 = 32.1, p < 0.001

40–60 years, n (%) 142 (14.7) 89 (9.9) χ2 = 9.8, p = 0.002

60–80 years, n (%) 416 (43.2) 452 (50.4) χ2 = 9.9, p = 0.002

>80 years, n (%) 299 (31.0) 318 (35.5) χ2 = 4.2, p = 0.04

Comorbidities

Any comorbidities 889 (92.1) 828 (92.3) χ2 = 0.02, p = 0.883

Hypertension 552 (57.2) 591 (65.9) χ2 = 14.8, p = 0.002

Myocardial ischemic disease 200 (20.7) 243 (27.1) χ2 = 10.4, p = 0.013

Other cardiovascular diseases 310 (32.1) 271 (30.2) χ2 = 0.79, p = 0.373

Chronic obstructive
pulmonary disease 74 (7.7) 71 (7.9) χ2 = 0.04, p = 0.843

Other respiratory diseases 114 (11.8) 80 (8.9) χ2 = 4.3, p = 0.039

Diabetes 239 (24.8) 233 (26.0) χ2 = 0.36, p = 0.549

Other metabolic diseases 144 (14.9) 137 (15.3) χ2 = 0.045, p = 0.833

Cancers 150 (15.5) 155 (17.3) χ2 = 1.0, p = 0.312

Stroke 95 (9.8) 92 (10.3) χ2 = 0.09, p = 0.768

BMI, body mass index; SD, standard deviation.
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The proportion of patients with severe respiratory failure (SpO2 ≤ 90%) decreased
significantly in the LO phase compared to the EO phase (23.7% vs. 30.4%), and the mean
SpO2 value was significantly higher during the LO period (Table 2). In the LO phase,
compared to the EO phase, the percentage of patients with olfactory disorders decreased
(0.7% vs. 2.6%), and the percentage of patients with fatigue (39.1% vs. 34.1%) and fever
(56.4% vs. 48.7%) increased. However, these symptoms were definitely less frequent than
in the period of dominance of the Delta variant. Lung involvement typical of COVID-19
was found less frequently in imaging studies in the LO period (42.7%) than in the EO
period (58.8%) (Table 2). Antivirals, such as remdesivir, molnupiravir, and Paxlovid, were
used in 53% of patients in the EO phase and 63% in the LO phase. The percentage of
patients treated with all immunomodulators (dexamethasone, tocilizumab, and baricitinib)
decreased significantly during LO (24% vs. 44%) (Table 2). Clinical improvement (≥2 point
change on the ordinal scale) was observed in a greater proportion of patients during the
LO period than during the EO period, regardless of the time point of the follow-up, but a
statistically significant difference was noted only at 7 and 14 days of follow-up (Table 2).

Table 2. Symptoms, respiratory function, lung changes on imaging, treatment administered, and
clinical improvement in patients during the domination of early and late Omicron subvariants.

Early Omicron
(n = 965)

Late Omicron
(n = 897) p-Value

Symptoms of the disease

Cough, n (%) 475 (49.2) 441 (49.2) χ2 = 0.001, p = 0.980

Fever, n (%) 470 (48.7) 506 (56.4) χ2 = 9.6, p = 0.002

Dyspnea, n (%) 350 (36.3) 307 (34.2) χ2 = 0.851, p = 0.356

Disturbances of smell and/or taste, n (%) 25 (2.6) 6 (0.7) p = 0.002

Diarrhea, n (%) 101 (10.5) 72 (8.0) χ2 = 3.2, p = 0.07

Headaches, n (%) 89 (9.2) 99 (11.0) χ2 = 1.7, p = 0.194

Nausea, n (%) 71 (7.4) 69 (7.7) χ2 = 0.07, p = 0.784

Vomiting, n (%) 66 (6.8) 69 (7.7) χ2 = 0.503, p = 0.478

Fatigue, n (%) 329 (34.1) 351 (39.1) χ2 = 5.1, p = 0.02

Respiratory function on admission to the hospital

SpO2 (%), mean ± SD 92.1 ± 5.6 92.5 ± 5.8 U = 376,903, z = −2.35, p < 0.001

Asymptomatic, n (%) 49 (5.1) 19 (2.1) χ2 = 11.6, p < 0.001

Symptomatic stable, SpO2 > 95%, n (%) 288 (29.8) 315 (35.1) χ2 = 5.9, p = 0.015

Symptomatic unstable, SpO2 90–95%, n (%) 306 (31.7) 297 (33.1) χ2 = 0.41, p = 0.519

Symptomatic unstable, SpO2 ≤ 90%, n (%) 293 (30.4) 213 (23.7) χ2 = 4.3, p = 0.04

ARDS, n (%) 10 (1.0) 6 (0.7) p = 0.457

Unknown, n (%) 19 (2.0) 47 (5.2) χ2 = 14.5, p < 0.001

Lung changes on imaging

Examinations done, n (%) 823 (85.3) 799 (89.1) χ2 = 6.0, p = 0.015

Changes detected by any method, n (% of done) 484 (58.8) 341 (42.7) χ2 = 27.8, p < 0.001

Changes detected in X-ray, n (% of done) 131 (15.9) 108 (13.5) χ2 = 0.98, p = 0.322

Changes detected by CT n (% of done) 366 (44.5) 241 (30.2) χ2 = 25.9, p < 0.001

Changes detected by ultrasound, n (% of done) 1 (0.1) 1 (0.1) p = 1.0

Treatment administered

Heparin, n (%) 558 (57.8) 511 (57.0) χ2 = 0.139, p = 0.709
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Table 2. Cont.

Early Omicron
(n = 965)

Late Omicron
(n = 897) p-Value

Remdesivir, n (%) 276 (28.6) 392 (43.7) χ2 = 46.1, p < 0.001

Molnupiravir, n (%) 233 (24.1) 103 (11.5) χ2 = 50.4, p < 0.001

Nirmatrelvir/ritonavir, n (%) 0 (0.0) 66 (7.4) p < 0.001

Casirivimab, n (%) 21 (2.2) 0 (0.0) p < 0.001

Convalescent plasma, n (%) 4 (0.4) 0 (0.0) p = 0.126

Dexamethasone, n (%) 305 (31.6) 190 (21.2) χ2 = 25.9, p < 0.001

Tocilizumab, n (%) 89 (9.2) 23 (2.6) χ2 = 36.5, p < 0.001

Baricitinib, n (%) 29 (3.0) 1 (0.1) p < 0.001

Azithromycin, n (%) 3 (0.3) 5 (0.6) p = 0.493

Clinical improvement (at least 2 points decrease from baseline in the ordinal scale)

7 days, n (%) 180 (18.8) 294 (34.4) χ2 = 48.9, p < 0.001

14 days, n (%) 612 (63.8) 641 (75.1) χ2 = 13.7, p = 0.002

21 days, n (%) 735 (76.6) 709 (83.0) χ2 = 2.2, p = 0.137

28 days, n (%) 779 (81.2) 741 (86.8) χ2 = 1.1, p = 0.294

SpO2, Saturation of Peripheral Oxygen; SD, standard deviation; ARDS, acute respiratory distress syndrome;
CT, computed tomography.

As shown in Figure 1, in the LO phase, more patients were discharged from the
hospital after 7 days of hospitalization than in the EO period. In turn, the percentage of
patients requiring oxygen therapy in the EO phase was higher than in the LO phase. It is
especially visible in the early period of hospitalization (7, 14 days) (Figure 2).
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J. Clin. Med. 2023, 12, 5572 7 of 13

The mean hospitalization time in the EO phase was significantly longer (11.85 ± 9.15 days)
compared to the LO phase (9.34 ± 7.05 days). The percentages of patients requiring contin-
uous oxygen therapy (47.7% vs. 38.4%), mechanical ventilation (3.0% vs. 1.5%), and death
within 28 days (13.9% vs. 8.9%) were significantly more frequent in the EO period than in
the LO period (Table 3). A similar trend was observed in the analysis of subpopulations of
patients aged over 60 years with comorbidities or lung lesions documented by imaging.
In both periods, the mortality rate in patients with inflammatory changes in the lungs
exceeded as much as 15%. However, the accumulation of risk factors was associated with
statistically significant differences only with regard to the need for oxygen therapy.

Table 3. Comparison of clinical indicators of the severity of the disease (oxygen need, mechanical
ventilation, death) assessed in patients during the domination of early (EO) and late Omicron (LO)
subvariants depending on the presence of risk factors such as changes in the lungs, age, concomitant
diseases as well as their accumulation combined with oxygen saturation.

Number of
Patients

n

Need for
Oxygen Therapy

n (%)

Need for
Mechanical Ventilation

n (%)

Death
n (%)

EO LO EO LO EO LO EO LO

All patients 965 897
457 (47.4) 344 (38.4) 29 (3.0) 13 (1.5) 134 (13.9) 80 (8.9)

χ2 = 15.4, p < 0.001 χ2 = 5.1, p = 0.02 χ2 = 11.3, p < 0.001

Age >60 years (60+) 716 775
395 (55.2) 331 (42.7) 24 (3.4) 12 (1.5) 124 (17.3) 77 (9.9)

χ2 = 23.1, p < 0.001 χ2 = 3.4, p = 0.06 χ2 = 17.4, p < 0.001

Imaging changes (IC) 484 556
318 (65.7) 198 (58.1) 23 (4.8) 11 (3.2) 78 (16.1) 54 (15.8)

χ2 = 93.7, p < 0.001 χ2 = 6.3, p = 0.01 χ2 = 9.6, p = 0.002

Comorbidities (CM) 889 828
432 (48.6) 336 (40.6) 26 (2.9) 13 (1.6) 129 (14.5) 78 (9.4)

χ2 = 11.1, p < 0.001 χ2 = 3.5, p = 0.06 χ2 = 10.5, p = 0.001

Accumulation of risk factors

60+/IC/CM 383 307
270 (70.5) 188 (61.2) 18 (4.7) 10 (3.3) 71 (18.5) 52 (17.7)

χ2 = 6.5, p = 0.01 χ2 = 0.91, p = 0.340 χ2 = 0.29, p = 0.585

60+/IC/CM/SpO2 < 95% 306 241
252 (82.4) 181 (75.1) 15 (4.9) 10 (4.2) 59 (19.3) 47 (19.5)

χ2 = 4.3, p = 0.04 χ2 = 0.17, p = 0.675 χ2 = 0.004, p = 0.948

60+/IC/CM/SpO2 < 90% 165 126
155 (93.9) 123 (97.6) 11 (6.9) 10 (7.9) 40 (24.2) 38 (30.2)

p = 0.160 χ2 = 0.17, p = 0.678 χ2 = 1.27, p = 0.259

IC, imaging changes; CM, comorbidities; SpO2, Saturation of Peripheral Oxygen; EO—early Omicron;
LO—late Omicron.

As shown using the logistic multiple regression models, infection during LO was
associated with lower odds of death, while comorbidities and SpO2 < 90% at admission
significantly increased these odds. In turn, the presence of imaging lung changes and
SpO2 < 90% were independent predictors of higher odds of mechanical ventilation (Table 4).

Table 4. Logistic multiple regression results on the association between death and patient’s character-
istics and phase of Omicron domination in the studied cohort (n = 1862).

OR 95% CI p-Value

Predicted outcome: death

Age 60+ 0.93 0.59–1.45 0.741

BMI > 30 m2/kg 0.88 0.59–1.29 0.502

Male sex 0.99 0.70–1.39 0.959
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Table 4. Cont.

OR 95% CI p-Value

Imaging changes 1.08 0.76–1.53 0.661

Comorbidities 2.36 1.19–6.20 0.0317

SpO2 < 90% 2.04 1.40–2.96 0.0002

Late Omicron phase 0.55 0.39–0.79 0.0014

Predicted outcome: mechanical ventilation

Age 60+ 0.76 0.31–1.90 0.562

BMI > 30 m2/kg 0.82 0.36–1.86 0.636

Male sex 0.80 0.40–1.64 0.545

Imaging changes 2.21 1.05–4.67 0.038

Comorbidities 3.45 0.43–27.71 0.244

SpO2 < 90% 1.44 1.12–3.23 0.037

Late Omicron phase 0.52 0.23–1.14 0.103
OR—odds ratio; 95% CI—95% confidence interval; BMI—body mass index; SpO2, Saturation of
Peripheral Oxygen.

4. Discussion

While each of the previous SARS-CoV-2 VoCs dominated the world during the pan-
demic for a few months, the current dominant Omicron line has prevailed for more than
a year and a half [16]. During this time, the virus has continued to evolve and mutate,
resulting in new subvariants, including recombinant ones, that have serially transitioned
into globally dominant forms. A significantly higher number of mutations within the spike
protein in Omicron compared to previous SARS-CoV-2 VoCs facilitates immune escape,
accelerates transmission, and increases infectivity [16,22]. This results in a high number
of infections, not only primary but also reinfections, even within the same lineage, which
prompted the introduction of variant-adapted vaccines in late 2022 [23,24].

However, in parallel with these phenomena, a milder clinical course of COVID-19
and lower mortality caused by the Omicron variant has been documented compared to
previous pandemic waves [4,13,14,25,26]. Available analyses evaluating the clinical picture
and outcomes of COVID-19 focus on the comparison between infections caused by the
Omicron variant with other VoCs or separately describe different periods of Omicron
dominance [27–30]. There is a lack of publications comparing the severity of the clinical
course of SARS-CoV-2 infection in patients hospitalized in the early and late periods of
Omicron prevalence. To date, several comparative studies have been published taking into
account sublines BA.1, BA.2, BA.4, and BA.5. However, to the best of our knowledge, the
published data refer to the period up to mid-2022, cover a small percentage of hospitalized
patients, and do not concern Europe [30–33]. The comparative study assessed the late
period of the Omicron wave, also including the prevalence of the recombinant subvariants
and covering the period from July 2022 to January 2023, and was conducted in India, but
again, only 23% of patients were hospitalized [27]. Therefore, our study fills a knowledge
gap in the area of SARS-CoV-2-infected hospitalized patients in Europe and provides a
reference point for future epidemiological and real-world clinical analyses.

In the present study, the division we made between the early and late phases of the
Omicron wave according to GISAID data for our country corresponds to the periods of
dominance of the BA.1 and BA.2 variants, followed by BA.5, BQ.1, XBB, and XBB.1.5,
respectively, and the caesura was mid-2022 [19]. We found that in LO, the mean age of
hospitalized patients increased compared to the EO period, and the share of those aged 60
and older was significantly higher. Thus, we documented the continuation of the trend of
the increasing age of hospitalized patients observed in the Omicron wave compared to the
previous Delta surge confirmed by other researchers [26].
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In the symptomatology on admission, the very low proportion of patients with olfac-
tory and taste disorders is noteworthy, especially in LO, 0.7% vs. 2.6% in EO. At the very
beginning of the pandemic, it was a typical symptom reported in a much larger percentage
of patients, even exceeding 50% in some reports, and then its frequency was observed to
decrease in infections with subsequent VoCs [13,34,35]. We found fever, cough, dyspnea,
and fatigue to be the most common symptoms at baseline, which is consistent with other
reports [27,36].

In our analysis, patients admitted to the hospital in the LO phase were in a better
clinical condition and were significantly less often in an unstable state with oxygen sat-
uration equal to or lower than 90%. Over 80% of hospitalized patients underwent lung
imaging (mainly computed tomography) in both waves considered in this study, and a
significantly lower percentage of lung changes in LO patients was observed. This also
supports the thesis of a milder clinical course in this period. However, it should be noted
that in both analyzed Omicron wave phases, this rate was relatively low compared to
earlier periods of the pandemic, especially the Delta surge, supporting results from other
analyses [37,38]. The lower degree of lung involvement could be explained by the fact that
the viral load during infection with previous SARS-CoV-2 strains was higher in the lungs,
while in infection with the Omicron variant, it is higher in the upper respiratory tract [39].

Numerous studies assessing the severity of the disease during the Omicron wave
focused on the risk of hospitalization due to infection with specific variants, which is
significantly lower compared to the Delta wave and reaches up to 2% [40,41]. Unlike
such analyses, we did not compare SARS-CoV-2 infections in the general population but
their course and outcomes in the group of hospitalized individuals, keeping in mind that
any hospitalization, especially in more vulnerable patients, may be associated with the
risk of severe progression, which could be related to the age and patients’ underlying
condition and not only to the characteristics of the viral variant. Indeed, a higher mortality
rate, regardless of the phase of the Omicron dominance, was documented in patients
over 60 years of age and burdened with comorbidities, supporting findings from other
reports [30,32]. However, we confirmed the greatest negative effect on mortality for the
presence of inflammatory changes in the lungs in imaging examinations. It should be
emphasized that although the overall mortality in the LO phase was lower, it reached as
much as 30% in the group with the greatest accumulation of risk factors, being 6% higher
than in the similar group during the EO period. The same parameters that were associated
with higher mortality adversely affected the need for oxygen therapy, and again, in the
analyzed population, it was significantly lower in the LO phase, confirming the thesis of a
milder course of infection during this period. Finally, this was also confirmed by multiple
regression analysis that revealed significantly decreased odds of death during LO when
controlling for potential risk factors, such as age, BMI, sex, comorbidities, low saturation,
and changes in chest imaging at admission.

Nevertheless, based on existing evidence, it cannot be assumed that the future evo-
lution of SARS-CoV-2 will always lead to a decrease in the clinical relevance of infec-
tions [16,42]. Although the Omicron lineage is generally characterized by lower fuso-
genicity, a parameter that affects viral pathogenicity, more recent sublineages, including
XBB, revealed enhanced fusogenic potential [43–45]. Although this may not translate into
greater clinical relevance, future viral evolution could potentially drive gradually increased
fusogenicity, particularly if it is accompanied by mutations leading to higher viral loads
and, subsequently, better transmissibility. Under such a scenario, the odds of an over-
active pro-inflammatory and cytotoxic immune response in infected individuals would
be increased, leading to a higher clinical severity of COVID-19. Therefore, it continues
to be necessary to ensure a high uptake of COVID-19 vaccines, including booster doses,
especially in risk groups such as elderly individuals with comorbidities [16].

In addition to the potential for immune escape due to numerous mutations, the im-
portance of the therapeutic escape of Omicron subvariants is also emphasized [8,12,29,46].
This resistance or reduced susceptibility compared to previous VoCs applies to monoclonal
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antibodies, while the antiviral drugs used so far remain active against recombinant sub-
variants of Omicron [5,8,47,48]. In our study, monoclonal antibodies were administered
in single patients during the EO phase. Antivirals were used more frequently in the LO
period, while the administration of immunomodulators significantly decreased from 44%
in EO to 24% in the LO phase. This was related to the less frequently observed progression
of the disease from the viral to the immune phase and is another confirmation of a milder
course of infection and documented faster clinical improvement assessed according to the
WHO ordinal scale.

Several limitations of our study must be addressed. Firstly, it had a retrospective
observational design with possible bias and lacked some data. Secondly, the exact SARS-
CoV-2 Omicron subvariant with which the considered patients were infected was not
established using viral genome sequencing, but instead, we used reliable data from the
GISAID database to distinguish two periods characterized by the domination of different
Omicron sublineages. Thirdly, we did not evaluate the impact of vaccination because
in order to plausibly assess the influence of this parameter, one would have to take into
account not only the fact of vaccination, but the number of doses, the type of vaccine, and
the time interval of COVID-19 since the last vaccination. Moreover, it appears that in the
current phase of the pandemic, even in countries with insufficient vaccination rates, such
as Poland, a large percentage of the population has already been naturally immunized [49].
We also did not collect data on reinfection, but given the high risk of such events in the
Omicron wave [40,50], this knowledge would not have contributed much to the analysis.

However, the strength of our study is the assessment of clinical differences and the
comparison of the short-term prognosis between the two periods of the Omicron wave
among a large cohort of patients hospitalized for COVID-19, as well as its multicenter
nature, which allows the generalization of the results.

5. Conclusions

The older age of patients, better condition at hospital admission with a lower per-
centage of those with pneumonia on imaging, better prognosis with a less frequent need
for oxygen therapy and mechanical ventilation, and lower mortality characterize the late
period of Omicron dominance compared to its early phase. The decreased odds of death
during this period were independent of a patient’s characteristics and clinical state at
admission. However, the age of over 60 years, the presence of inflammatory changes in the
lungs, and comorbidities worsened the prognosis in both periods of the Omicron wave.
In these patient populations at risk of a more severe course and unfavorable outcomes of
COVID-19, it is necessary to provide appropriate antiviral medication and ensure its con-
tinuous availability, promote immunization with variant-adapted vaccines, and emphasize
the importance of booster vaccine doses, particularly in periods during which an increased
number of SARS-CoV-2 infections can be expected.
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