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Abstract: Background: Microperimetric biofeedback training improved visual acuity and fixation
stability in patients who previously underwent macular surgery. We aimed to compare the functional
results of biofeedback training with the standard of care in patients who underwent successful
inverted Internal Limiting Membrane (ILM)-flap technique for high myopic macular holes (hMMH).
Methods: This was a retrospective, comparative, cohort study. Patients with hMMH after surgical
hole closure underwent microperimetric biofeedback using structured light stimulus plus acoustic
tone (n = 12; Biofeedback) or standard of care with scheduled visits (n = 11; Control). Best-corrected
visual acuity, retinal sensitivity at central 12◦ (RS) and 4◦ (CRS) with a mean deviation at central
12◦ (MD), and fixation stability as bivariate contour ellipse area (BCEA 68%, 95%, and 99%) were
assessed at baseline and month 1, 3, 6, and 12. The Mann–Whitney test was used to test the difference
between the groups. Results: Baseline functional parameters were not significantly different among
the groups. BCVA significantly improved in each group (Biofeedback, p = 0.002; Control, p ≤ 0.02)
at all follow-up visits. CRS significantly improved at 6 (p = 0.03) and 12 (p = 0.01) months in
the Biofeedback group and at month 12 (p = 0.01) in the Control group. RS (p = 0.001) and MD
(p = 0.005) improved at the last follow-up only in the trained group. After training, BCEA 68% and
95% significantly improved (6 and 12 months, p < 0.05). The Biofeedback group had better results in
RS (p ≤ 0.02), CRS (p ≤ 0.02), and BCEA 68%, 95%, and 99% (p ≤ 0.01) compared to the Control at all
follow-ups. BCVA and MD were better in the Biofeedback group at month 3 (p = 0.01), and month
3 (p = 0.01) and 12 (p = 0.003), respectively. Conclusions: Microperimetric biofeedback can increase
retinal sensitivity and stabilize fixation better than the standard care over months after a successful
inverted ILM-flap for hMMH.

Keywords: high myopic macular hole; inverted flap technique; microperimeter; biofeedback; retinal
sensitivity; fixation

1. Introduction

Macular holes (MHs) are a known clinical finding in patients with high myopia [1],
with a prevalence of 8.5% [2], and the age at the onset of high myopic MH (hMMH) sig-
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nificantly decreases with the increase in myopic refraction [1]. Surgical intervention for
hMMH is recommended when macular traction and visual acuity impairment progress [3].
The inverted internal limiting membrane (ILM)-flap surgical approach has demonstrated
its effectiveness in terms of anatomical closure rate and visual acuity recovery compared
to other techniques, including the traditional ILM peeling and the autologous transplan-
tation of ILM [4–6]. The ILM-flap technique provides a high closure rate, ranging from
91.8% to 97.1%, but the pooled visual acuity improvement rate only ranges from 66.2% to
77.3% [7]. In addition, patients often naturally discover ways to adapt their visual system,
such as shifting their focus to a non-central point (known as the Preferred Retinal Locus
or PRL) to work around a macular hole scotoma [8–11]. However, the PRL location is not
always ideal for optimal visual performance [12], as it may be in areas with low retinal
sensitivity far from the center of the eye [13]. Additionally, fixation stability is weaker when
focusing on peripheral areas compared to the center [14,15], and unstable fixation has been
linked to reduced visual acuity [9,16,17]. Microperimetry was used to assess quantitative
measures of macular function including retinal sensitivity and fixation behavior that may
precisely correlate macular morphology and related function when assessing the outcomes
of high myopic macular hole treatments [18]. The technique of visual rehabilitation has
been extensively used to treat eye conditions that involve visual decline and instability in
central fixation [19]. Biofeedback training improved eccentric vision, reinforcing a trained
retinal locus (TRL) closest to the fovea and with the highest retinal sensitivity, that was se-
lected from among the PRL spontaneously created and used for fixation by the patient [20].
Previous studies have shown that using biofeedback techniques that combine acoustic
tones and structured light stimuli can improve visual function, reading speed, fixation
behavior, and retinal sensitivity [21–24]. This technique may also improve communica-
tion between intraretinal neurons and support a “remapping phenomenon” in the retina–
brain connection [19,25–27]. In patients who previously underwent macular surgery, mi-
croperimetric biofeedback training improved fixation stability and visual acuity [20] up to
6 months [20,28,29]. In this study, we compared the functional results of patients receiving
biofeedback rehabilitation with those of patients receiving standard of care after successful
vitrectomy and inverted ILM-flap technique to repair high myopic macular holes.

2. Materials and Methods
2.1. Study Design and Objectives

We conducted a single-center, retrospective, comparative cohort study on 23 patients
affected by hMMH who achieved successful hole closure with the inverted ILM-flap tech-
nique. Before undergoing surgical treatment, all participants were required to read and
sign a written informed consent form. In all cases, surgery was performed at the Eye Clinic
of the University of Bari, Bari, Italy, between April 2019 and April 2022. All the surgeries
were performed by the same experienced retinal specialist (GS). The surgical success was
identified by the feature of the complete disappearance of a closed full-thickness macular
hole and absence of neurosensory defect over the fovea, revealed by optical coherence
tomography (OCT) scans [30]. After the operation, 12 patients underwent a standard-
ized biofeedback rehabilitation protocol (Biofeedback) using MP-1 Microperimeter (MP-1,
Nidek Technologies, Padova, Italy) while 11 were followed up with standard care (Con-
trol). All patients in the Biofeedback group gave informed consent for the rehabilitation
protocol. The inclusion criteria were 18 years old or older; a high myopia, defined as an
axial length greater than 26.5 mm [axial length was measured with a Zeiss IOLMaster 500®

(SNR > 200)] and/or refraction (spherical equivalent) over −6.00 diopters; successful clo-
sure of hMMH achieved with a single operation confirmed with OCT at 1 month after
surgery; Best-corrected visual acuity (BCVA) better or equal to 1 logMAR after surgery; and
a follow-up period ≥ 6 months. The exclusion criteria were amblyopia, corneal disease, a
subcortical cataract or cataract with more than 3 nuclear scleroses or cortical opacity [31],
glaucoma or ocular hypertension, diabetic retinopathy, retinal vascular disease, age-related
macular degeneration, choroidal neovascularization, pre-surgical traumatic macular hole,



J. Clin. Med. 2023, 12, 5188 3 of 11

pre-surgical macular hole complicated by foveoschisis or retinal detachment, a minimum
diameter of the hole > 1000 µm, and signs of severe chorioretinal atrophy involving the
fovea like the absence of outer retinal layers and backscattering around the macular hole
evaluated by spectral-domain OCT (SD-OCT). The study protocol was approved by the
ethics committee (IRB) of the Eye Clinic, University of Bari, Bari, Italy (according to
the Declaration of Helsinki and its later amendments) in 2021 (Project identification code:
01-12/21). According to the Italian law for retrospective studies, the patients’ non-opposition
is sufficient to process retrospective data.

2.2. Assessments

All patients were assessed at 1 month post-surgery, as the baseline time point, and
at months 3, 6, and 12. During the visit, BCVA was measured with a standardized Early
Treatment Diabetic Retinopathy Study (ETDRS) protocol; ETDRS values were converted to
the logarithm of the minimum angle of resolution (logMAR) for statistical analysis; retinal
sensitivity and fixation behavior were measured by an MP-1 microperimeter (MP-1, Nidek
Technologies, Padova, Italy). Sensitivity was measured using a stimulus of 0.4 degrees,
presented for 200 ms. Mean retinal sensitivity (RS), the mean sensitivity of all 45 loci
in the central 12◦, and mean central retinal sensitivity (CRS), and the mean sensitivity
of the central 13 loci within central 4◦ were recorded. The threshold at each point was
determined using a 4-2 staircase. The mean deviation (MD) was calculated by the MP-1
microperimeter software after a comparison of the measured retinal sensitivity with a
normative database [32]. The “follow-up” feature of the software was used to obtain
measurements at the same retinal sites during all visits. Fixation stability was recorded
during the light sensitivity examination [33]. The bivariate contour ellipse area (BCEA)
parameter was applied to enable collection of quantitative data on fixation stability in three
concentric ellipsoid areas containing 68%, 95%, and 99% of the fixation points. To measure
eye fixation, BCEA uses Cartesian axes to plot the position of each fixation and calculates
the area of an ellipse that covers a set percentage of fixation points. This calculation relies
on the standard deviations of horizontal and vertical eye movements during fixation [34,35].
A red cross with a 1◦ arm extension was used as the fixation target, but it was increased
to ≥2◦ if patients could not see it [29,33,36]. Before beginning the examination, a 2 min
demonstration pre-test was performed to avoid a learning effect. An auto-tracking system
was used to calculate the horizontal and vertical shifts from the reference recording of the
fixation area. Examinations that took longer than 15 min were excluded from the study.

2.3. Surgical Technique

During the surgeries, a retrobulbar block was administered using a mixture of 2%
Lidocaina and 2% Mepivacaina, and the Constellation vitrectomy system from Alcon in
Fort Worth, TX, USA was used. Phacoemulsification was performed on all phakic eyes, and
all patients underwent a 27-gauge transconjunctival sutureless vitrectomy with a posterior
vitreous detachment using either a soft silicone-tipped cannula or active suction with the
vitrectomy probe. The macula area was stained with Brilliant Blue G to facilitate ILM
peeling using an inverted ILM-flap technique, which was based on the original description
by Michalewska et al. [37] with some modifications. To treat the macular hole, we used
the pinch and grasp technique to remove the ILM up to about 2 disc diameters around it.
We trimmed the edges of the ILM with a cutter and then flipped it over to cover the hole.
During the air–fluid exchange and flap inversion, we reduced the perfusion pressure. The
medical procedure involved the use of 22% SF6 gas tamponade, and patients were advised
to maintain a face-down position for three days after the operation.

2.4. Biofeedback Strategy

In the Biofeedback group, after recording baseline BCVA, RS, CRS, MD, and BCEA
at 1 month after surgery, all the patients underwent the same biofeedback rehabilitation
protocol using an MP-1 Microperimeter [29] after signing the informed consent form. The
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protocol consisted of 12 training sessions, each lasting 10 min, twice a week. All functional
tests were performed with the patient’s best correctable prescription employed. The fellow
eye was occluded using a simple eye patch. During each session, patients were asked to
move the eye according to audio feedback and a standardized, structured, and flickering
light stimulus (a checkboard pattern with low spatial black/white elements with a size of
about 0.5◦ on the fixation target), which advised patients when they were getting closer
to the selected site of fixation. The PRL was considered more suitable for training than
the aforementioned TRL, which was chosen by the ophthalmologist, preferring the PRL
naturally developed by the patient within an area of fair retinal sensitivity. The frequency of
the auditory signal increased and became continuous with the approach of fixation toward
the TRL. Simultaneously, the flickering structured pattern was projected on the TRL instead
of the fixation target. The fixation on the TRL had to be maintained as long as possible. The
best TRL to be trained should have been located as close as possible to the scotoma, on the
superior retinal field, with appropriate retinal sensitivity to ensure the reinforcement of
fixation, as demonstrated by Nilsson [38].

2.5. Statistical Analysis

Statistical analysis was based on all patients included in the study. Mean and stan-
dard deviation for continuous variables, and relative frequency for categorical were used
as indices of centrality and dispersion of the variable distribution. The non-parametric
Chi-square test and Wilcoxon rank-sum test (Mann–Whitney test) were used to test the
difference between the two groups. A Wilcoxon matched-pairs signed-rank test was per-
formed on the changes in functional parameters of each group over follow-up. All statistical
tests were performed at the p < 0.05 significance level. All the statistical computations were
performed using StataCorp, 2015, Stata Statistical Software: Release 14. College Station, TX,
USA: StataCorp LP.

3. Results

The demographic and pre-surgical data are reported in Table 1.

Table 1. Pre-operative characteristics of patients.

Parameters * Biofeedback Group
(n = 12)

Control Group
(n = 11) p §

Gender (M) (%) 10 (83.33) 4 (36.36) 0.04 ˆ

Age (yrs) 63.25 ± 8.79 68.00 ± 7.22 0.17
AL (mm) 26.72 ± 1.09 27.89 ± 2.40 0.04
Hole size (µm) 347.00 ± 115.84 404.73 ± 186.49 0.45
Lens status (%) 0.64 ˆ

Phakic 10 (83.33) 8 (72.73)
Pseudophakic 2 (16.67) 3 (27.27)
RE in phakic eyes (D) −8.35 ± 2.90 −11.93 ± 7.80 0.35
BCVA pre-surgical (logMAR) 1.03 ± 0.11 1.15 ± 0.30 0.21

* As mean and standard deviation (M ± SD) for continuous variables, and percentage (%) for categorical variables.
Abbreviations: AL, axial length; RE, refractive error (spherical equivalent); BCVA, best-corrected visual acuity;
§ Wilcoxon rank-sum (Mann–Whitney) test; ˆ Chi square test.

The study enrolled 23 patients, 12 who underwent biofeedback rehabilitation training
and 11 who were followed with standard care. Overall, there were 14 males and 6 females.
The overall mean age was 65.5 ± 8.2 years. The age of the patients ranged from 51 to
79 years in the Biofeedback group and 57 to 76 years in the Control group. There was a
statistical difference in gender and axial length between the groups (p = 0.04) but not for
age, hole size, lens status, and refractive error of phakic eyes. Furthermore, there was no
statistical difference in pre-surgical BCVA between the two groups. During the 12-month
follow-up, there were no dropouts in both groups. Over follow-up, in all cases, the hole
closure was confirmed by OCT scans. BCVA not significantly improved after surgery
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when we compared the pre-surgical to baseline visual acuity in each group (Biofeedback:
1.03 ± 0.11 logMAR vs. 0.93 ± 0.19 logMAR, p = 0.05; Control, 1.15 ± 0.3 logMAR vs.
1.04 ± 0.22 logMAR, p = 0.08). However, the functional improvement was significant when
pre-surgical visual acuity was compared to the last visual acuity in each group (Biofeedback:
0.35 ± 0.2 logMAR, p < 0.001; Control, 0.61 ± 0.35 logMAR, p = 0.001). The Biofeedback
group had better baseline functional parameters including BCVA, retinal sensitivity, and
fixation stability than the Control, though there was no statistical difference between the
groups for all parameters. In both groups, BCVA significantly improved at all follow-up
visits [(Biofeedback group: 3, 6, and 12 months, p = 0.002) (Control group: 3 months,
p = 0.02; 6 and 12 months, p < 0.01)] compared to baseline. In the Biofeedback group, CRS
significantly improved at the 6- (p = 0.03) and 12-month follow-ups (p = 0.01) from baseline,
while a significant improvement for RS (p = 0.001) and MD (p = 0.005) was observed only at
the last follow-up. In the Control group, only CRS (p = 0.01) significantly improved at the
last follow-up (Figure 1).
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Figure 1. Changes in visual acuity and retinal sensitivity in Biofeedback and Control group. In both
groups, a significant improvement in visual acuity (BCVA) was observed at all time points. In the
Biofeedback group, all parameters of retinal sensitivity (RS, MD, CRS) significantly improved after
training. In the Control group, only the sensitivity at central 4◦ (CRS) improved. Each point with
a vertical bar represents the mean ± standard deviation. (BCVA, Best-corrected visual acuity; RS,
retinal sensitivity; MD, mean deviation; CRS, central retinal sensitivity); * p < 0.05 within each group.

Some patients in both the Biofeedback and Control groups showed a decrease in RS
and CRS at the last follow-up. Specifically, 4 out of 12 patients in the Biofeedback group
experienced a drop of sensitivity ranging from 0.5 dB to 1.8 dB, while 5 out of 11 patients in
the Control group experienced a drop ranging from 0.3 dB to 5.8 dB (Table S1).

A significant decrease in the value of BCEA (by 68% and 95%) was observed in the
Biofeedback group at the 6- and 12-month follow-ups. On the other hand, in the Control
group, although there was a slight decrease in BCEA 68% and 95% at all follow-ups, it
was not significant. However, an increase in BCEA 99% was observed at 3 and 6 months
(Figure 2).
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The comparison of functional parameters between the two groups at each follow-up
revealed that RS, CRS, and BCEA 68%, 95%, and 99% were significantly better in the
Biofeedback group than the Control group at months 3, 6, and 12. BCVA was significantly
better in the trained group than the Control only at the 3-month follow-up. Lastly, MD was
significantly better in the Biofeedback group at months 3 and 12 (Table 2).

Table 2. Comparison of clinical parameters between the groups over follow-up.

Parameters *
Control Group Biofeedback Group
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The postoperative complications included mild ocular hypertension (IOP ≤ 25 mmHg)
in five patients (Biofeedback group, n = 2; Control group, n = 3).

4. Discussion

This study examined the impact of a biofeedback training method that used visual
and auditory stimuli on functional outcomes, such as visual acuity, retinal sensitivity, and a
quantitative measure of fixation behavior (known as BCEA), in patients with closed hMMH
after undergoing an inverted ILM-flap procedure. The results were compared to a control
group that had similar anatomical outcomes and were monitored through scheduled visits.
The biofeedback training gave significantly better functional outcomes, including retinal
sensitivity within the central 4 and 12 degrees and fixation stability over a follow-up of
12 months from successful macular surgery. In line with previous studies [4–7,39], the mean
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visual acuity significantly improved after the inverted ILM-flap technique, as observed
in both groups. The mean visual acuity was significantly better in the trained group
only at month 3, and the final mean visual gain was not so different between the groups
(Biofeedback, 0.57 logMAR; Control, 0.43 logMAR). The cataract extraction performed
in all phakic eyes and the study population’s selection criteria, including the absence of
retinal detachment and schisis with macular hole and an axial length ≥ 30 mm in only
three cases, may justify the good visual acuity recovery as previously reported [40–42].
However, the visual acuity recovery did not reveal all functional changes related to the high
myopic condition and surgical maneuvers. The high myopic condition [43–45], the loss of
macular integrity due to the hole [18], and the morphologic changes after surgery [33,46,47]
negatively influence retinal sensitivity and fixation behavior, which play an essential
role in visual performance and could predict visual acuity recovery [33]. At baseline,
microperimetry recorded a lower CRS than RS in both groups, revealing a deep central
scotoma, which corresponds to the neurosensory defect of the macular hole, surrounded by
a relative scotoma around the hole [46,47]. During the 12-month study, both groups showed
improvement in the average values of retinal sensitivity parameters (RS, CRS, and MD).
However, the Biofeedback group demonstrated significant improvement in RS and MD
after the 12-month period, and in CRS after 6 and 12 months. On the other hand, the Control
group showed significant improvement only in CRS at the last follow-up. Additionally, the
trained group showed significantly better sensitivity parameters than the Control group
throughout all follow-ups. Upon further analysis, we noticed a decrease in CRS and RS
(Biofeedback: 33%, Control: 45%) during the last follow-up for some patients in both groups,
regardless of their visual acuity improvement. However, the decrease was less significant
in the trained group. There may be a correlation between improved sensitivity and cataract
extraction [48], but the gliosis process caused by the inverted ILM-flap could negatively
impact central sensitivity [33,46,47,49]. Additionally, ILM peeling may result in paracentral
scotomata and reduced sensitivity within the central 12◦ due to temporary swelling in the
arcuate nerve fiber layer [50]. The group that received biofeedback showed a significant
improvement in sensitivity compared to the Control group. This suggests that combining
biofeedback with an inverted ILM-flap technique may help preserve and enhance retinal
sensitivity. Similar results were observed in prior studies when microperimetric training
was performed after macular surgery [20,28,29]. Fixation stability is another functional
parameter to be considered, probably more than the fixation location because the fixation
site could already be naturally relocated out of the fovea [8–10,51,52]. BCEA significantly
improved with a reduction in the dimension of the innermost internal areas of the fixation
points only in the Biofeedback group at 6 and 12 months, and the trained group achieved
better fixation than the Control at all follow-ups. Patients typically adapt within a few
months to using an eccentric locus for fixation [8,53], and also they can develop a PRL in a
not helpful location for left-to-right reading [54]. So, we encouraged the patients to fixate
on their PRL in a convenient location and within an area of adequate retinal sensitivity.
Otherwise, we selected a TRL, which was preferentially located within an area of good
retinal sensitivity, not too far from the central fovea and in a convenient location. Extensive
training [55] and neuro-psychology rehabilitative procedures, such as microperimetric
biofeedback, can help patients effectively use a new locus of fixation [8]. This includes
training patients to perform eccentric viewing, which can increase retinal sensitivity and
stabilize fixation, ultimately improving visual performance [8]. It is not clear how the
modification of the locus of fixation and the improvement in visual perception are achieved.
One possible explanation is that training redirects the oculomotor system to a location with
better visual sensitivity [56]. When the retina suffers from local damage, the affected area
cannot be stimulated, but cortical neurons that are usually driven by stimuli in this area
remain active and respond selectively to stimulation from other parts of the retina [57,58].
As previously observed, combining structured and acoustic stimuli increases the function
of PRL [21,22,28]. Acoustic feedback can help strengthen the PRL by increasing attentional
modulation, while the structural light stimulus targets visual receptive fields that are
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highly sensitive to medium spatial frequencies [15]. Microperimetric biofeedback, which
provides auditory feedback, may aid in maintaining target stimulation of the retina, thereby
strengthening the patient’s cortical plasticity and facilitating neural signals within the retina
and between the retina and brain [25].

Our biofeedback protocol consisted of 12 training sessions, each lasting 10 min, twice
a week. Until now, research that aims to determine the most optimal protocol is still being
carried out. Several studies reported differences in intensity, frequency, and duration
of training with different but satisfactory rehabilitation outcomes [20,27,29,59,60]. Some
authors reported that visual performance could be maintained by performing follow-up
training sessions [27,29]. However, the duration effect of biofeedback on visual function
remained vague and more extensive studies with longer follow-up are required. Eccentric
viewing training has been found to offer greater benefit in terms of improved near-vision
tasks and vision-related quality of life [61,62]. Thus, due to its non-invasive nature and
quick execution, it has the potential to become a standard post-surgery procedure. There
were no studies that included an economic evaluation of eccentric viewing training in-
cluding biofeedback training strategy. However, it is possible to theorize that there could
be positive socioeconomic effects for patients who experience an improvement in their
visual function.

One of the strengths of this study is that it compares a well-defined population of
patients who have undergone surgical resolution of hMMH. It should be mentioned that
the Biofeedback group, which consisted of patients who had undergone surgery more
recently, showed better pre-surgical and baseline parameters compared to the Control
group. However, this difference did not reach statistical significance. The improvement in
the Biofeedback group could be due to the surgeon’s enhanced surgical skills. The study
also followed a standardized protocol of biofeedback rehabilitation and had a long-term
follow-up. However, the study’s limitations include the retrospective nature of the study,
a small sample size, the absence of analysis of the restoration of the ellipsoid zone and
external limiting membrane, and their relationship with functional changes. In this regard,
recent studies have shown that the status of the outer retinal layers is connected to visual
function, such as visual acuity [63], retinal sensitivity, and fixation behavior [49]. However,
it is important to note that the analysis of structural parameters was based solely on the
horizontal scans of OCT images, while scans from all directions should be considered.
Additionally, the measurement of morphologic parameters such as the diameter of the
ellipsoid zone and external limiting membrane defect, as well as their thickness and
reflectivity before and after surgery, must be standardized, especially when using image
analysis software outside of the OCT device [63]. Lastly, our study did not analyze any
changes in vision-related quality of life after rehabilitation training, and there may have
been some measurement error or intrinsic variability in the microperimetric test [22].

5. Conclusions

The visual acuity and retinal sensitivity improvement also confirmed the effectiveness
of the inverted ILM-flap technique on functional recovery. After a successful inverted ILM-
flap surgery for hMMH, using microperimetric biofeedback can enhance retinal sensitivity
and improve fixation stabilization beyond the standard care strategy. Further research is
required to study the effect of this rehabilitation training on daily activities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm12165188/s1, Table S1: Retinal sensitivity parameters (RS, Retinal
Sensitivity; MD, Mean Deviation; CRS, Central Retinal Sensitivity) for each patient in both groups
over follow-up.
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