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Abstract: Background: Tumor extension and metastatic cervical lymph nodes’ (LNs) number and
dimensions are major prognostic factors in patients with oral squamous cell carcinoma (OSCC).
Radiomics-based models are being integrated into clinical practice in the prediction of LN status
prior to surgery in order to optimize the treatment, yet their value is still debated. Methods: A
systematic review of the literature was conducted according to the PRISMA guideline. Baseline
study characteristics, and methodological items were extracted and summarized. Results: A total of
10 retrospective studies were included into the present study, each of them exploiting a single imaging
modality. Data from a cohort of 1489 patients were analyzed: the highest AUC value was 99.5%,
ACC ranges from 68% to 97.5%, and sensibility and specificity were over 0.65 and 0.70, respectively.
Conclusion: Radiomics may be a noninvasive tool to predict occult LN metastases (LNM) in OSCC
patients prior to treatment; further prospective studies are warranted to create a reproducible and
reliable method for the detection of LNM in OSCC.

Keywords: radiomics; head and neck; cancer; oral squamous cell carcinoma; oral carcinoma artificial
intelligence

1. Introduction

Oral squamous cell carcinoma (OSCC) is the eighth most common malignancy world-
wide [1]. It has a poor prognosis, with an overall 5-year survival rate of around 45–55%
depending on the series considered [2]. This figure is much lower (around 20–30% at five
years) especially in advanced stages according to the eighth edition of the AJCC/UICC [3].
The major prognostic factors are depth of invasion (DOI) > 5 mm, extranodal extension,
positive or close surgical margins, pT3 or pT4 tumor (i.e., larger than 4 cm or infiltrating
bony structures such as the mandible), pN2 or pN3 nodal disease, perineural invasion,
vascular invasion, and lymphatic invasion. In particular, the presence of lymph node
metastases (LNM) alone is known to reduce survival by approximately 50% [4].

The standard of care for OSCC is complete surgical resection with sufficient surgical
margins (at least 5 mm are deemed necessary), followed by adjuvant radio-/chemotherapy
in properly selected cases where the aforementioned adverse prognostic features are present.
The following therapeutic strategies are currently available in managing a clinically negative
(cN0) neck in early stage OSCCs [5]:

1. Elective neck dissection (ND): which is associated with esthetic and functional mor-
bidity and it represents a procedure that may affect negatively the quality of life of
the patient; the decision on whether to perform or not ND in all cases of cN0 neck is
still under debate [6];
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2. Watch and wait policy: this is currently disregarded as a valid option because it was
substantially demonstrated that elective neck dissection resulted in longer overall and
disease-free survival than did therapeutic neck dissection after nodal relapse [7];

3. Sentinel node biopsy (SNB): in 2015, the Sentinel European Node Trial (SENT) reported
an overall sensitivity and negative predictive value of 86% and 95%, respectively [8],
and this strategy may be considered the current gold standard for early stage OSCC [9].

The introduction of artificial intelligence (AI) and its application to clinical decision-
making in order to individualize patient care has become a major topic of discussion.
Radiomics is a machine-learning (ML) approach for image analyses using advanced mathe-
matical analysis [10].

In recent years, due to the development of ML algorithms coupled with more accessi-
ble digital data, more and more researchers have begun to focus on predicting molecular
biomarkers, therapeutic responses, and survival prognostic factors in patients with head
and neck (HN) carcinomas by extracting radiomics information features (e.g., shape de-
scription, intensity, or texture characteristics) from different imaging patterns (e.g., CT,
MRI, PET, ultrasound images) [11]; in Mossinelli’s [12] retrospective study on 79 patients
with oral tongue squamous cell carcinoma (OTSCC) MRI-based radiomics represents a
promising noninvasive method of precision medicine, improving prognosis prediction
before surgery.

Different non-invasive strategies exist for the prediction of LN status: clinical exam-
ination by digital palpation, neck imaging by ultrasound/CT/MRI potentially coupled
with fine-needle aspiration of the suspected nodes, DNA microarray gene-expression
profiling [13], nuclear medicine techniques such as positron emission tomography, the
degree of differentiation of the primary tumor or the depth of invasion [14], but the gold
standard is postoperative histopathological examination of the LNs. As a matter of fact,
only a detailed (by simple microscopy and by techniques of immunohistochemistry) exami-
nation of the excised specimens can allow a surgical pathologist to identify micrometastases,
which would have otherwise been overlooked. Despite the fact that ND is associated with
many potential surgical complications, it remains true that up to 30% of early stage disease
has occult cervical micrometastatic disease [15].

If we rely only upon preoperative standard imaging techniques, we know that lymph
nodes larger than 10 mm are considered abnormal, yet around 20% of such nodes are
pathologically free of disease, while up to 23% of nodes that show histological extracapsular
spread measure less than 10 mm. Other features such as the presence of intranodal necrosis
or irregular margins may indicate cancerous involvement but with variable accuracy [16,17].

In order to improve the diagnostic yield of these techniques, radiomics analyses have
been successfully applied to predict the LN status of colorectal [18], cervical [19], and
bladder cancer [20]. The role of radiomics in the assessment of occult lymph nodes in
OSCCs patients have never been addressed to the best of our knowledge, and the aim of
the present systematic review is to summarize the currently available clinical evidence on
this topic while highlighting the unmet needs in this context.

2. Materials and Methods
2.1. Searching Strategy and Selection Criteria

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guideline [21] we conducted a literature search of articles published from the
beginning up to February 2023, using PubMed, Embase, Cochrane Library, and Scopus
in order to identify the relevant studies. The following keywords were used: “radiomics
AND oral cancer OR tumor”.

We included all original studies that implemented radiomics-based algorithms for
analyzing preoperative imaging in patients with proven histology of OSCC. Articles
were excluded based on the following criteria: studies with less than 10 patients or
case reports, meeting abstracts, review/meta-analysis, and data not clearly stating the
diagnostic performance.
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The present systematic review is unregistered.

2.2. Data Collection

The title and abstract of the selected papers were carefully read according to the
inclusion and exclusion criteria and duplicates were removed. We extracted data from each
study, which were reviewed for consistency among the authors, and any discrepancies
were resolved by consensus. The full text of the included studies was then read in order to
extract the following data:

Reference: first author, year of publication, and country;
Study design (retrospective, prospective);
Preoperative imaging technique;
Where the predictive imaging features were extracted from (primary tumor, cervical

lymph nodes);
Software used for the radiomics-based analysis;
Recruitment time span;
Sample size: divided into primary/train cohort and validation/test cohort;
Tumoral subsite of the oral cavity and staging (TNM 8th edition);
Number of positive and negative LNs or number of patients with positive and

negative nodes;
Diagnostic quantitative data: sensitivity, specificity, accuracy (ACC), area under the

receiving operator curve (AUC).

2.3. Definition of the Outcomes, Synthesis of the Literature, and Meta-Analysis

In manuscripts where multiple ML models were implemented, we have chosen the
one with the highest AUC value. Due to the heterogeneity of the preoperative imaging
techniques, the segmentation and features extraction, it was not possible to meta-analyze
the papers; it was thus decided to critically discuss all the articles qualitatively.

2.4. Quality Assessment and Statistical Methods

The quality and the risk of bias of the articles included in this review were evaluated by
the Quality In Prognosis Studies (QUIPS) tool with any discrepancies resolved by consensus
by the authors [22]. Visualization of the risk-of-bias assessments was performed by creating
a traffic lights plot using the robvis tool (version 0.3.0.900) [23].

3. Results

A flowchart of the study selection process is reported in Figure 1. We identified a total
of 419 articles, we excluded 35 duplicates and 301 records because they were not relevant;
out of the 63 papers screened, a total of 10 manuscripts were selected for in-depth analysis
as shown in Table 1.

The majority of the articles (70%) were published in 2022, one in 2020, one in 2021 and
one in 2019, while none of the included articles was published before 2019.

All the studies were retrospective in nature and most of them were based on single-
center evaluation with a variable number of patients (total n = 1489; range = 40–313). The
preoperative imaging study was made using MRI in five studies, CT in four, and PET in a
remaining one.

A total of 60% of the articles focused on primary carcinoma of the tongue, amongst
other oral cavity subsites (gingiva, floor of mouth), with a predictable spotlight on early
stages (stage I–II).

In more than half of the cases, a validation cohort was screened using the same criteria
as that for the primary cohort. Where the segmentation subsite was the tumor, the partition
into the validation and the primary cohort was made among the patients; on the contrary,
when the subsite was the LN, the division was made among the examined LNs.

In 60% of the included articles, the predictive features for occult LNM were derived
from radiological features of the primary tumor, while in 30% they were derived from
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the features of the LNs; overall, the most accurate diagnostic models were derived using
tumor-based features.

The diagnostic performances of the included studies are summarized in Table 2.
Wang et al. [26] reported the highest AUC value (0.995), meanwhile, the least value was ob-
served by Kudoh [30] (0.79); ACC ranges from 0.68 to 0.975; sensibility and specificity, when
reported, are over 0.65 and 0.70, respectively, in two out of seven they were above 0.90.
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Table 1. Characteristics of the included studies. MRI, magnetic resonance imaging; CT, computed tomography; PET, positron emission tomography; LN, lymph
node; NA, not available; pts, patients.

Study Country

Study Type
(Retrospective
R, Prospective

P)

Imaging
Technique
(MRI 1, CT

2, PET 3)

Feature
Extraction Software Year of

Recruitment
Sample
Size (n)

Primary/Train
Cohort (%)

Validation/Test
Cohort (%) Subsite (%) Staging Positive

LNs (n)
Negative
LNs (n)

Wang Y
et al., 2022

[24]
China R 1 LN LIFEx

(EVOMICS)
2013–
2021 160 75 25

100 oral
cavity (70.1

tongue)

61 I–II
39 III–IV NA NA

Tomita et al.,
2021 [25] Japan R 2 LN Python 2013–

2017 44 70 30

100 oral
(tongue,
gingiva,
floor of
mouth)

I–IV 51 150

Wang F
et al., 2022

[26]
China R 1 Tumor

Python
(version

3.5.2)

2012–
2019 236 67 33 100 tongue I–IV 99 137

Kubo et al.,
2022 [27] Japan R 2 LN

Python
(Pyradiomics

software)

2008–
2019 161 NA NA 100 tongue I–III 63 NA

Zhong et al.,
2022 [28] China R 2 Tumor Matlab 2018b

(MathWork)
2013–
2018 313 60 40 100 tongue I–IV 143 170

Committeri
et al., 2022

[29]
Italy R 2 Tumor PyRadiomics 2016–

2020 81 80 20 100 tongue I–II NA NA

Kudoh et al.,
2022 [30] Japan R 3 Tumor Matlab 2015–

2019 40 80 20 100 tongue
15 I, 30 II,

18 III,
37 IV

19 pts 21 pts

Traverso
et al., 2020

[31]
Multicentric R 1 NA PyRadiomics

v2.1.2
2003–
2017 243 70 30 100 oral NA NA NA

Traverso
et al., 2019

[32]
Multicentric R 1 Tumor PyRadiomics NA 134 80 20 100 oral NA NA NA

Ren et al.,
2022 [33] China R 1 Tumor Pyradiomics 2015–

2021 55 NA NA 100 tongue I–II 21 pts 34 pts



J. Clin. Med. 2023, 12, 4958 6 of 12

Table 2. Diagnostic performance of the included studies. ACC, accuracy; AUC, Area Under the
Curve; NA, not available.

Study Sensitivity Specificity ACC (95%CI) AUC (95%CI)

Wang Y et al., 2022 [24] 0.85 0.71 0.79 0.82

Tomita et al., 2021 [25] 0.74 0.88 0.85 0.85

Wang F et al., 2022 [26] 0.95 0.98 0.97 0.99

Kubo et al., 2022 [27] NA NA 0.85 0.92

Zhong et al., 2022 [28] 0.82 0.87 0.84 0.91

Committeri et al., 2022 [29] 0.94 0.98 0.96 0.93

Kudoh et al., 2022 [30] 0.65 0.70 0.68 ± 0.13 0.79

Traverso et al., 2020 [31] NA NA 0.70 (0.67–0.71) NA

Traverso et al., 2019 [32] NA NA NA 0.83

Ren et al., 2022 [33] 0.79 0.86 0.82 0.87 (0.77–0.96)

Only three studies included a comparative analysis of the ML model with the radiolo-
gists’ evaluation: Committeri et al. [29] demonstrated a better performance of radiomics
over the clinician’s performance, in Ren’s study [33] they were similar, and Wang Y [24]
reported slightly worse values for ML model. Expectedly, the combination of clinical and
ML models outperformed the single modality.

A traffic lights plot was created to visualize the risk-of-bias assessment (Figure 2), with
a moderate-to-low risk of bias among all the included studies.
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4. Discussion

In the present systematic review, we examined the use of radiomics-based analysis for
the detection of occult neck metastasis in OSCC. Given the prognostic value of any nodal
metastasis, early detection of OSCC and a comprehensive therapeutic strategy for both the
primary tumor and the associated lymph nodes are of utmost importance.

Radiomics is a growing area of research that extracts and models medical image
features using ML methods. Its goal is to implement AI algorithms in order to create
a more accurate, cost-effective, and patient-tailored diagnostic and/or therapeutic tool.
In the literature there are multiple studies that use radiomics for HN tumors: various
authors critically reviewed the developments in diagnostic and therapeutic approaches in
nasopharyngeal [34], laryngeal [35], thyroid [36], and salivary gland tumors [37]. Giannitto
et al. [38] focused the attention on the diagnostic accuracy and methodological quality items
in radiomics-based ML for the diagnosis of LNM in patients with HN cancer; however,
the review did not discriminate outcomes based on tumor subsite, with almost half of
the patients being affected by thyroid tumor. Additionally, Romeo et al. [39] used a
similar approach in the prediction of tumor grade and nodal status on oropharyngeal and
oral carcinomas.

ML models can be applied potentially to all imaging techniques, although it is pref-
erentially used for more standardizable and reproducible ones, such as CT and MR. In
the included papers, only Kudoh et al. [30] processed PET images and, interestingly, they
reported the lowest diagnostic performance. Moreover, like the vast majority of studies of
radiomics in HN, the studies herein analyzed are based on a single imaging modality.

Apart from the chosen imaging protocol, methodological heterogeneity is present also
in the delineation of the region of interest (ROI), in the software used for image elaboration
and radiomics feature extraction and processing.

Useful data on nodal status can be obtained even from the primary tumor mass
because it is probably related to tumor biological heterogeneity and aggressiveness. As a
matter of fact, the majority of the studies in our review extracted features from tumors (6),
while only three were from LNs.

By focusing on these latter, in Wang’s article [24] the inclusion criteria were as follows:
histopathologically proven OSCC who underwent ND and preoperative MRI contrast-
enhanced scans of the head and neck. The LN with the “largest volume or with unclear
edges and internal necrosis”, that is radiologically suspicious lymph nodes, were selected
as the ROI. Only eight features were used to build the radiomics model. Tomita’s study [25]
also included patients with histologically proven OSCC with benign or metastatic cervical
LNs and available preoperative contrast-enhanced CT data. ROIs were drawn across
all slices of the cross-sectional areas of the targeted LNs, that is those levels that were
known to harbor micrometastases at final histopathology. For the evaluation of the CT
scans, three radiologists independently assessed the LN status using specific criteria to
determine if they were considered metastatic. The AUC values of the best ML-based
model were superior to those of each individual human reader (p < 0.05); additionally,
there were significant differences in specificity and diagnostic accuracy rates between them,
demonstrating the potential of radiomics analysis in improving the accuracy of LN status
assessment compared to human readers. Lastly, Kubo et al. [27] focused on cN0 patients
diagnosed with tongue cancer who received treatment aimed at the primary tumor site
without additional therapies (elective ND, chemotherapy). For patients that developed
occult cervical LNM, but with no recurrence of the primary tumor, salvage surgery was
performed, and histological analysis confirmed the presence of metastatic squamous cell
carcinoma in these LNs. To analyze the CT scans, two radiation oncologists manually
contoured each neck node level slice by slice in the axial plane rather than the primary
tumor. It is crucial to point out that Wang Y [24] and Tomita [25] conducted an analysis
on patients with suspicious LN that could be detected preoperatively on the radiological
scans and then underwent ND. By comparing the results of AI-based analysis with clinical
assessments, they can evaluate the potential of ML-based models as a tool in diagnosing
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and predicting malignancy in patients with positive LNs. Unsurprisingly, the choice of the
ROI where to perform the extraction of the features was performed retrospectively. ML has
the main objective to identify occult nodal disease: even if the exact ROI may be ambiguous
where no radiologically suspicious region exists by definition, the anatomical levels most
at risk (e.g., ipsilateral I-II-III levels for a cancer of the lateral tongue margin) remain those
to assess with the focus on LNs rather than the primary tumor site, the researchers aim
to improve the accuracy of cervical nodal staging; furthermore, the primary tumor itself
could sometimes be challenging to contour accurately due to artifacts or its small size [27],
while contouring neck nodes could be a more standardized process with fewer variations
among different individuals.

Divergence in the qualitative items comes along with quantitative differences (e.g.,
number of images and/or features extracted). It is misleading to evaluate the performance
of ML when diverse choices, selection methods, and classifiers are applied because the
resulting models become sensitive to perturbation, contamination, and leakage of data.

Concerning the performance evaluation, and by excluding Kudoh’s results [30], AUC
is over 82% in the reviewed studies. Only three out of ten conducted generalizability
assessment with an independent (n = 1) or an external validation cohort.

There are many articles that introduce conventional imaging methods to predict
cervical LN status early in OSCC. Van den Brekel et al. [40] compared the performance
of ultrasound, CT, and MRI in 88 cN0 necks: sensitivity, specificity, and accuracy were
for ultrasound 58%, 75%, and 68%, for CT 49%, 78%, and 66%, for MRI 55%, 88%, and
75%, respectively; FDG-PET studies reported sensitivity and specificity are quite variable:
although this imaging modality is very useful in differentiating between benign and
metastatic cervical LNs, inflammation and small nodal size can affect the nodal status
assessment [41].

The current review found five studies that reported the traditional diagnostic perfor-
mance of the radiologists; it is interesting to note that the average AUC, ACC, sensibility,
and specificity curves of the clinicopathological factors were not always lower than those
of the radiomics features. Wang Y et al. [24] found that the AUC of the model of MRI
radiomic features was 0.88, which was better than that of the ADC and LN size; also
Tomita [25] claimed that the radiomics approach yielded better diagnostic performance for
differentiating between benign and metastatic cervical LNs than conventional CT; in Wang’s
article [26] multivariate logistic regression analysis identified MRI-reported LN status (OR
2.432, 95% CI, 1.093–5.411) as an independent predictor of LNM. Kudoh [30] demonstrated
that the 18F-FDG PET-based model had better potential for diagnosing cervical LNM and
predicting late LNM in patients with OSCC than the clinicopathological factors model.
Eventually, none of them performed a decision curve analysis to offer clinical guidelines
for the preoperative management of the patient.

The specificity of ultrasound-guided FNAC is approximately 100%, advantages of
the technique are its relatively low cost, lack of radiation exposure, and low-threshold
availability; the main drawbacks are the sampling error of the aspirate due to the small
size or inaccessibility of the LN and the operator-dependent nature of the procedure. If
radiomic features of the primary tumor can outperform diagnostic assessment of the neck
with imaging or ultrasound-guided FNAC is a demanding query to which we cannot give
an answer yet [42]. However, cross-sectional imaging has the advantage to perform a full
assessment of the lymph nodes, while FNAC is capable to sample only a part of it where
the tumoral cells might not be identified.

The ambition of AI-based models is to help clinical evaluations in detecting occult
LNM in OSCCs and unfortunately, a meta-analysis could not be conducted for the afore-
mentioned methodological issues: this is the first limitation of our work.

Other limitations that must be acknowledged are the failure to validate model perfor-
mance on a large, independent, external data set that prevents the applicability of findings
to populations at large scale; the absence of well-structured, public/open, and worldwide
“big data”, and of the methods used for training. AI-based algorithms notably require an
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enormous quantity of input information, therefore even in the face of over a thousand
patients, we are far from reaching a definite answer in this field [43]. In this regard, the
standardization of the automated methods, and the availability of high-quality open-source
data seem imperative. Moreover, no prospective studies have been conducted and there
is still the problem of “overfitting” which happens when AI gives undue importance to
spurious correlations within past data.

All the reviewed articles are retrospective and they support and echo these findings.
This systematic review is poor in terms of clinical utility evaluation. We conducted a

meticulous and independent search, according to PRISMA guidelines, of multiple online-
available databases in order to provide an overview of the best performance of radiomics in
LN status characterization in OSCCs; we wanted to highlight the strengths of this analysis
but also the weak points, in order to create a shared approach in terms of both feature
computation and methodology that will hopefully move this field of research to the routine
clinical practice.

This is a rapidly evolving research area. Nowadays, we can talk about “multi-omics”
data analysis (radiomics, genomics, proteomics, and metabolomics) that can be integrated
with clinicopathological factors to help in accurate disease prediction, patient stratification,
and delivery of precision medicine [44].

Radiomics prediction model has the potential to become a non-invasive diagnostic
tool for HN cancer and LN status before treatment. By digitizing and analyzing the medical
image data, the model’s predictions become more objective and standardized, thus reducing
potential subjectivity in the diagnosis process and human error. Secondly, models can be
validated and modified as more data becomes available, further enhancing its accuracy and
reliability; moreover, AI may support inexperienced doctors in the assessment of lesions.
This possibility also introduces medico-legal issues since the medical human judgment
can fail as well as the AI: who would be liable if a mistake is made during AI-enhanced
decision-making—such as ML-aided radiological diagnosis [45,46].

Cost-effective AI models can allow hospitals to incorporate the latter into daily clinical
use; in order to make it happen, in addition to the development of a shared database of
different medical centers from all over the world, prospective studies with a uniform and
standardized imaging and processing protocol applied on a large and homogeneous cohort
with an independent and/or external validation cohort should be conducted.

5. Conclusions

This systematic review provides an overview of the performance of radiomics-based
models concerning the LN status in OSCCs. From our preliminary findings, the addition
of AI-based models in the assessment of preoperative imaging may satisfactorily improve
the detection of pathological lymph nodes in OSCC’s patients. Future reproduction of our
results in other cohorts and by a uniform analytical protocol is anticipated. Finally, a proper
clinical validation of these models in terms of oncological endpoints such as survival and
disease-free recurrence is needed before incorporating these models in the decision-making
process for these patients.
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