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Abstract: Advances in cancer therapies have led to a global improvement in patient survival rates.
Nevertheless, the price to pay is a concomitant increase in cardiovascular (CV) morbidity and
mortality in this population. Increased inflammation and disturbances of the immune system are
shared by both cancer and CV diseases. Immunological effects of anti-cancer treatments occur with
both conventional chemotherapy and, to a greater extent, with novel biological therapies such as
immunotherapy. For these reasons, there is growing interest in the immune system and its potential
role at the molecular level in determining cardiotoxicity. Early recognition of these detrimental effects
could help in identifying patients at risk and improve their oncological management. Non-invasive
imaging already plays a key role in evaluating baseline CV risk and in detecting even subclinical
cardiac dysfunction during surveillance. The aim of this review is to highlight the role of advanced
cardiovascular imaging techniques in the detection and management of cardiovascular complications
related to cancer treatment.

Keywords: cardiovascular magnetic resonance; nuclear imaging; cardioncology; cardiotoxicity

1. Non-Invasive Imaging in Cardio-Oncology: General Considerations

Several definitions of cardiotoxicity or cancer therapy-related cardiac dysfunction
(CTRCD) have been provided over the years. Nevertheless, the unifying element for
diagnosis is the detection of a new cardiac dysfunction defined as either reduction in
the left ventricular ejection fraction (LVEF) or, more recently, in the global longitudinal
strain (GLS) [1]. Both American and European guidelines highlight the role of the baseline
imaging assessment to provide a pre-treatment assessment of LV systolic function with
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LVEF quantification [2]. This will establish not only a reference baseline to use in serial
re-evaluations but will also allow a cardiovascular (CV) risk assessment with identification
of any pre-existing cardiomyopathy. The assessment of diastolic parameters is also recom-
mended in this population. In fact, although conflicting results exist in the literature, recent
evidence demonstrated that de novo or worsening diastolic disfunction assessed by echocar-
diography are associated with a subsequent reduction in LVEF in patients treated with
anthracyclines/trastuzumab [3]. Three-dimensional (3D) transthoracic echocardiography
(TTE) should be the first-line imaging modality for LVEF assessment, with two-dimensional
(2D) TTE used when 3D-TTE is not available or feasible [1]. However, the LVEF assessment
should be carefully interpreted, taking into account loading conditions that can change
during surveillance. In approximately 20% of patients fulfilling the CTRCD diagnosis,
the reduction in LVEF was driven by a decrease in end-diastolic volumes associated with
volume depletion [4]. Cardiovascular magnetic resonance (CMR) can provide an accurate
assessment of LV systolic function and volumes when echocardiography is suboptimal or
inconclusive [5]. Strain measurements by speckle tracking echocardiography are recom-
mended at baseline and can predict cardiotoxicity early [6]. Similarly, myocardial strain by
fast-strain encoded CMR (SENC) has demonstrated excellent reproducibility and lower vari-
ability compared to other CMR strain techniques, with accurate detection of early cardiac
systolic dysfunction [7,8]. The unique advantage of CMR in this particular clinical contest
is the possibility to provide myocardial tissue characterization, namely T2-weighted/T2
mapping sequences for the detection of myocardial oedema and T1 mapping, late gadolin-
ium enhancement (LGE) sequences, and extracellular volume fraction (ECV) estimation for
fibrosis detection. Despite CMR representing the gold standard for ECV quantification, a
recent CT-derived ECV showed an excellent correlation with CMR-derived ECV values,
providing a promising alternative for patients with CMR contraindications [9]. Examples
of CMR sequences and their clinical application in cardio-oncology are summarized in
Figure 1.
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Figure 1. Examples of CMR sequences in cardio-oncology. Anatomical localizers and cine sequences
represent the core of CMR evaluation, allowing the detection of extra-cardiac abnormalities (white
arrows) and volumetric and function assessment (multi-colored regions of interest). This basic
protocol is also very quick (~20–30 min) and useful when dealing with uncompliant or sick patients
or in serial surveillance scans. CMR can also detect myocardial oedema (T2 weighted images) and
fibrosis (T1 mapping, ECV, EGE, and LGE). Information derived by tissue characterization has been
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demonstrated to be helpful in enhancing the sensitivity of cardiotoxicity diagnosis. In addition,
EGE sequences are particularly helpful in detecting intracardiac thrombi (red arrow). According
to clinical suspicion, the CMR protocol could be tailored to the patient and include additional
sequences such as stress perfusion imaging (to assess large and small vessel coronary disease), phase
contrast (for flows and valvular function evaluation), and strain sequences. CMR: cardiovascular
magnetic resonance. ECV = extracellular volume. EGE = early gadolinium enhancement. LGE = late
gadolinium enhancement.

Radionuclide techniques, particularly with positron emission tomography (PET) imag-
ing, have also become key in pre-clinical and clinical studies of CTRCD. For example,
myocardial perfusion imaging (MPI) with myocardial blood flow (MBF) quantification is
crucial for the investigation of derangements of the coronary circulation that may result
from cancer therapies, including radiation therapy. Moreover, cardiovascular molecular
imaging has evolved significantly over the past few decades due to the advent of PET
and radio-labeled imaging probes that can elucidate the biomolecular events that underlie
clinical phenotypes; thus, providing new insights into the pathophysiology, diagnosis,
management, and risk stratification of individuals with CTRCD.

2. Chemotherapy-Induced Cardiotoxicity

Anthracycline chemotherapy (AC) is currently prescribed for a wide range of ma-
lignancies and exhibits a well-known cumulative-dose cardiotoxicity [10,11]. The risk
of heart failure after AC is 5% at a cumulative dose of 400–450 mg/m2 up to 48% at
700 mg/m2 [10,11]. The therapeutic mechanisms of action involve direct interference with
DNA or RNA synthesis and transcription, inhibition of protein synthesis, mitochondrial
damage, and an increase in reactive oxygen species (ROS) with subsequent additional dam-
age to the DNA. Recently, it has also been postulated that anthracyclines could potentiate
anti-tumor activity by triggering direct tumor cell death, enhance immune effector cell
activation, and eliminate immunosuppressive myeloid-derived suppressor cells [12]. All
these mechanisms are not specific to cancer cells and also occur in cardiomyocytes, partic-
ularly rich in mitochondria and susceptible to AC damage [11]. The cardiac injury could
rarely manifest as acute toxic myocarditis with inflammatory infiltrates and myocardial
oedema, increased risk of life-threatening arrhythmias, and signs and symptoms of acute
heart failure [13]. Instead, vacuolization and fibrosis are the histopathological markers
of chronic AC-induced damage [11]. The risk of heart failure remains high after months
or years from the completion of treatment, with an overall mortality of 60% 2 years after
diagnosis [14]. Advanced imaging techniques are particularly useful in detecting subclin-
ical changes before the development of overt cardiac dysfunction, being of paramount
importance during surveillance.

2.1. Role of Cardiac Magnetic Resonance Imaging

A baseline assessment of LVEF and CV risk factors is mandatory to assess overall
suitability to AC therapy, stratify patients according to their CV risk, and plan a tailored
follow-up schedule [15]. As already mentioned, CMR can evaluate systolic function when
other techniques are inconclusive or discordant [15]. However, during surveillance, LVEF
impairment is usually a late marker of AC cardiotoxicity, occurring only when the my-
ocardial damage is quite extended and all the compensative mechanisms to maintain an
adequate systolic function are no longer sufficient [16]. CMR is particularly useful in
this context due to its unique property of tissue characterization. Increased native T1,
T2, and ECV have been observed after 6 weeks of treatment in a rat model treated with
doxorubicin [17]. Another pre-clinical study conducted in AC-treated pigs identified T2
relaxation-time as the earliest biomarker of anthracycline-induced cardiotoxicity [18]. This
parameter was significantly increased after only 6 weeks of treatment, when T1 mapping
and ECV were still completely normal and changed only at a later stage, concurrently with
the development of overt motion abnormalities [18]. The imaging data also pair with the
pathology findings of intra-cardiomyocyte oedema and vacuolization in the early phase,



J. Clin. Med. 2023, 12, 4945 4 of 20

without extracellular expansion. Therefore, T2 mapping seems to be the parameter able to
detect intracellular changes before the development of interstitial fibrosis and cardiomy-
ocyte loss. Of note, the observed vacuolization was reversible at this early stage with
regression of vacuolization and normalization of T2-relaxation-time after AC interruption,
emphasizing that early T2 prolongation occurs at a reversible disease stage [18]. These
findings demonstrate the clinical potential of this CMR imaging biomarker for tailored
anthracycline therapy [18]. Despite being interesting, these findings were not confirmed
in a clinical study enrolling 30 sarcoma patients undergoing serial CMR evaluation at
baseline, 48 h after the first AC dose and at completion of treatment [19]. In this study,
T2 mapping values failed to predict cardiotoxicity, whereas significantly lower T1 values
were observed in patients with subsequent cardiac dysfunction before and after AC ex-
posure (1002.0 ± 37.9 vs. 956.5 ± 29.2 ms, p < 0.01) [19]. Although a pathophysiological
explanation of these early changes was not clear, the authors raised the hypothesis that
the decreased native T1 times reflected the increase in lipid intracellular content related to
ROS production and lipid peroxidation [19]. Both T1 mapping and ECV have also been
associated with adverse remodeling, reduced LV mass, and reduced exercise capacity dur-
ing cardiopulmonary exercise testing in a cohort of survivor pediatric patients, even in the
presence of normal LVEF [20]. A significant increase in relative contrast enhancement has
been also observed only 3 days after AC administration and a >5-fold relative increase was
able to predict significant LVEF reduction at 28 days [21]. After the acute phase, interstitial
and/or replacement fibrosis seems to be the major determinant of LV dysfunction [22]. LGE
can accurately identify myocardial fibrosis with a pattern that usually correlates with the
underlying disease. However, overall, LGE seems to be a relatively uncommon finding in
AC-treated patients, described in less than 1 in 10 patients with reduced LVEF [23,24]. More
importantly, LGE had no association with major adverse cardiovascular events (MACE)
at follow-up. A significantly prognostic association was instead found with reduced LV
mass [23]. The right ventricle can also be involved in AC related cardiotoxicity with im-
paired RV function detected in approximately 1/3 cancer survivors [25]. A significant
increase in RV ECV has been also observed after AC and correlates with a decline in RV
mass-index [26]. However, tissue characterization remains challenging in daily clinical
practice in the RV due to its very thin walls. Cardiomyocyte death and diffuse fibrosis
eventually led to abnormal myocardial deformation that is accurately identified by a reduc-
tion in peak longitudinal strain and circumferential strain measured by CMR tagging with
higher sensitivity when compared to STE echocardiography [27]. Circumferential strain by
feature tracking also demonstrated an excellent correlation with subsequent LVEF decline
observed at 3 months of follow-up in AC-treated patients (r = −0.49; p < 0.0001) [28]. Com-
pared to tagging, feature tracking has the advantage of not requiring dedicated sequences
and providing much faster semi-automated analysis [8].

Anti-human epidermal growth factor receptor 2 (HER2) is a monoclonal antibody used
in HER2-positive breast cancer, causing cardiotoxicity in nearly 30% of patients, with an
even greater risk when used in combination with AC [29,30]. Anti-HER2-related cardiotox-
icity is usually reversible and mainly causes an impairment of contractility more than cell
death [31]. A transient increase in inflammatory biomarkers, such as growth differentiation
factor-15 (GDF-15) and matrix metallopeptidase-2 (MMP-2), has been observed, suggesting
that reversible oedema and inflammation could also play a role in HER-2 related toxic-
ity [32]. The reversibility of cardiac dysfunction, with the potential of full recovery after
drug interruption, reinforces the importance of imaging surveillance. Myocardial oedema
has been demonstrated by T2-weighted images early after Trastuzumab administration [32].
Subepicardial LGE has also been described by Fallah-Rad et al. in all patients experiencing
Trastuzumab cardiotoxicity [33]. However, data coming from another cohort show LGE in
only 10% of AC and/or trastuzumab patients with a wide range of patterns and localization,
including ischemic distribution in a considerable proportion (64.5%). The same study also
described LGE in cancer patients not undergoing AC or anti-HER2 therapy, suggesting
that LGE might not be directly related to cardiotoxicity but may represent an incidental
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finding [34]. In addition, a decrease in absolute values of CMR strain has been reported in
this context and predicts subsequent overt CTRCD [35,36].

2.2. Role of Radionuclide Imaging

Multigated acquisition (MUGA), or equilibrium radionuclide angiography (ERNA),
was the initial radionuclide technique used to monitor LV function in patients receiving
AC. However, this is now used less frequently than echocardiography or CMR, which do
not require radiation exposure and can provide additional information regarding cardiac
structure and function [37]. Current research focuses on the use of radionuclide molecular
imaging techniques for the (early) detection of treatment-related cardiac injury (Table 1).

Table 1. Summary of radiotracers, mechanisms of uptake, and targets for imaging cardiovascular
inflammation, injury, and healing response in cancer-related cardiotoxicity.

Tracer Mechanism of Uptake Cellular Target (s) Application

18F-FDG * Glucose transporters 1 and 3
Activated granulocytes

∫
and

mononuclear cells
∮

,
ischemic/hypoxic myocytes

Inflammation/injury

68Ga-Dotatate */Dotatoc
Somatostatin receptor

sub-type 2 Activated mononuclear cells
∮

Inflammation

18F-FLT Thymidine kinase 1 Proliferating granulocytes
∫

and
mononuclear cells

∮ Cellular proliferation
18F-FMISO Nitroreductase enzymes Hypoxic cardiomyocytes Hypoxia

18F-DHMT ** Reactive oxygen species
Activated macrophages,
cardiomyocytes under

oxidative stress
Cytotoxicity

18F-NOS Nitric oxide synthase
Activated macrophages,
cardiomyocytes under

oxidative stress
Inflammation

68Ga-pentixafor CXCR4
Active monocytes and

macrophages, cardiomyocytes
under stress

Inflammation

68Ga-DOTA-ECL1i ** CCR2 Activated monocytes
and macrophages Inflammation

Cu-ATSM Mitochondrial Electron
Transport System Hypoxic cardiomyocytes Hypoxia

68Ga-FAPI
Fibroblast activation

protein inhibitor Activated fibroblasts Fibrosis

123I-MIBG
Norepinephrine

transporter uptake Pre-synaptic neurons Sympathetic innervation
111In-antimyosin Exposed myosin Sarcolemmal damage Necrosis

123I-BMIPP α-oxidation and β-oxidation Metabolically active cells Fatty acid metabolism

* FDA-approved radiotracer for clinical use; ** pre-clinical phase. No published human data on cardiotoxicity.
∫

granulocyte cells = neutrophils, eosinophils, basophils, and mast cells.
∮

mononuclear cells = lymphocytes, mono-
cytes, and macrophages. FDG = fluorodeoxyglucose; FLT = fluorothymidine. MMP = matrix metalloproteinases;
BMIPP = beta-methyl-p-iodophenylpentadecanoic acid; MIBG = metaiodobenzylguanidine; HER2 = human
epidermal growth factor receptor 2.

18F-fluorodeoxygluocose (FDG) is a glucose analogue that enters the cells through
various types of glucose transporters (GLUT), and intracellular retention is dependent
upon the enzymatic activity of hexose-6-phosphate-dehydrogenase within the endoplasmic
reticulum [38–40]. FDG is taken up by metabolically active cells and is a sensitive molecular
target for the investigation of cancer-related cardiotoxicity since metabolic derangement,
tissue injury [41], inflammation [42], and hypoxia/ischemia [43] are potent stimuli for
GLUT 1 and GLUT 3 expression. In one study, doxorubicin dose-dependently increased
myocardial FDG uptake (after at least 6 h of fasting) in patients receiving treatment for
Hodgkin lymphoma, particularly in the presence of low baseline cardiac FDG uptake,
a finding that was also evident and reproducible in mice fed a standardized diet [44].
The same group also reported in a subsequent study an inverse association between
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myocardial FDG uptake and LVEF in patients receiving doxorubicin [45]. While the
underlying mechanisms of myocardial glucose upregulation induced by doxorubicin are
multifactorial and could not be fully elucidated, it is possible that, in part, they might be
related to a metabolic switch from the known cytotoxic effects of doxorubicin to inhibit fatty
acid oxidation and mitochondrial function [46], but also through the production of free
radicals and excessive oxidative stress [47]. These findings raise the question of whether
routine FDG-PET studies ordered for cancer surveillance could potentially also be used to
monitor for cardiotoxicity [48]. However, this strategy seems unlikely as pharmacologic
intervention (e.g., insulin administration) may be required prior to FDG administration in
order to standardize glucose uptake in the heart.

There are several other molecular imaging targets that have been evaluated in pre-
clinical studies, which may help identify subclinical myocardial injury. 99m-Technetium
(Tc)-annexin binds to phosphatidylserine, which is exposed in early apoptosis, and studies
in doxorubicin-treated rats have shown increased myocardial uptake of this marker prior to
the onset of ventricular dysfunction [49,50]. Increased expression of caspase 3, an enzyme
involved in apoptosis, has also been identified using 18F-CP18 (a caspase 3 substrate) in
rats treated with doxorubicin, suggesting that imaging of the apoptotic cascade may result
in earlier detection of chemotherapy-related myocardial injury [51].

123I-metaiodobenzylguanidine (MIBG), a marker of myocardial sympathetic inner-
vation, has been evaluated in patients treated with anthracyclines since damage to the
sympathetic nervous system is hypothesized to contribute to the pathophysiology of
patients with heart failure. Prior research has suggested that a reduction in 123I-MIBG
myocardial uptake may precede impairment in left ventricular function, and pre-clinical
data indicate that there may be an injury to sympathetic neurons in anthracycline-mediated
cardiotoxicity [52,53]. Studies have compared the ratio of uptake between the heart and
mediastinum and the washout rate [54]. While some studies found differences in these
parameters between control subjects and anthracycline-treated patients [55,56], a more
recent analysis did not show an association between 123I-MIBG myocardial uptake and
changes in LVEF [57], suggesting that more work is required prior to using this imaging
target in clinical practice. Other tracers under investigation for myocardial innervation
imaging include 18F-flubrobenguane [58] and 18F-dihydroxyphenylalanine [59].

Direct cardiomyocyte injury and sarcolemmal damage can be imaged using antimyosin
antibodies (111In-antimyosin), with prior studies demonstrating increased myocardial up-
take with increasing doses of doxorubicin, preceding myocardial dysfunction and correlat-
ing with a reduction in LVEF [60–62]. However, this technique is limited by the commercial
availability of this tracer [63]. The production of reactive oxygen species (ROS) and subse-
quent inflammation, injury, and myocyte apoptosis has also been proposed as a potential
etiology of doxorubicin-mediated cardiotoxicity [64]. In a rodent model, superoxide pro-
duction was detected using 18F-dihydroethidium (DHMT), and increased ROS production
was noted to be an early marker of LV dysfunction. Similar findings were subsequently
reported in a large animal model [65]. However, the translation of this molecular imaging
target to humans remains to be proven.

Administration of taxane-based chemotherapy results in derangements in fatty acid
metabolism due to impairment of microtubules [66]. 123I-15-(p-iodophenyl)-3-(R,S)-
methylpentadecanoic acid (123I-BMIPP), a fatty acid analogue, has been studied in pa-
tients with lung cancer treated with taxanes, and reduced uptake was associated with a
reduction in LV function, raising the possibility that this marker can be used to predict
and detect cardiotoxicity [67]. Finally, preliminary studies have used 68Ga-fibroblast ac-
tivation protein alpha inhibitor (68Ga-FAPI) to detect myocardial fibroblast activation in
patients undergoing surveillance PET scans for cancer staging [68,69]. Additional work is
required to understand how this tracer can be used to identify early myocardial fibrosis
and chemotherapy-related cardiotoxicity.
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3. Radiation-Induced Cardiotoxicity

Radiation therapy (RT) is the cornerstone of several haematological and solid malig-
nancies. Despite several attempts over the last few years to reduce its potentially harmful
effect, RT is still associated with an increased relative risk of cardiac mortality ranging
from 2.2 to 12.7% and an almost five-fold increased risk of heart failure [70,71]. A clear
dose–effect relationship has been described, with a linear increase in major coronary event
rate by 7.4% per Gray of exposure (95% confidence interval, 2.9 to 14.5; p < 0.001) and no
dose considered actually safe [72]. The CV adverse effects usually appear years or even
decades after irradiation, with a higher risk in the case of left-sided RT, concomitant CV
risk factors, or chemotherapy [73,74]. Radiation exposure induces endothelial damage
with increased vascular permeability, the release of inflammatory markers, and adhesion
molecules, leukocyte infiltration, and fibrin deposits [75]. The result is vessel obstruction,
dysfunction and, therefore, ischemia, particularly at the microvascular level. The pro-
inflammatory environment also stimulates collagen production through the transforming
growth factor-β (TGF-β) pathway promoting myocardial fibrosis and cardiac dysfunction,
with a further contribution to microvascular ischemia [75]. There is new evidence that RT
could be regarded as a trigger of the systemic anti-tumor immune response, inducing a
series of biological effects which are deemed to be systemic, immune-mediated, anti-tumor
effects [76]. Ionizing radiation can enhance tumor antigen release and presentation, promot-
ing activation of immune cells, increasing the density of tumor-infiltrating lymphocytes,
facilitating recognition of tumor cells by T cells, and augmenting the anti-tumor effect,
as well as leading to pro-inflammatory cytokine release [77]. Early recognition of these
mechanisms could potentially help in identifying patients at risk that may benefit from
closer surveillance.

3.1. Role of Cardiac Magnetic Resonance Imaging

All patients should undergo a thorough baseline assessment of CV risk factors and
LVEF before RT, using echocardiography as a first-line imaging modality [1,15,78,79]. Imag-
ing surveillance starts after 5 years in high-risk patients and instead of after 10 years in all
the others [78]. However, recent studies have demonstrated changes in diastolic function
parameters after 3 years, suggesting that an earlier evaluation may be considered [80].
Strain evaluation by CMR seems promising in this regard. In an animal model irradiated
with 24 Gy, the myocardial strain was early impaired at 10 weeks, despite a normal systolic
function [81]. Changes in circumferential strain were more substantial than longitudinal
and radial strain, with the greatest reduction observed in the lateral wall reflecting the
higher degree of vacuolization and necrosis found in this area compared to other myocar-
dial segments [81]. Takagi et al. reported elevated native T1 and ECV values at 6 months
in a group of 14 patients who underwent a combined chemotherapy–radiotherapy treat-
ment (1183 msec ± 46 vs. 1257 msec ± 35; 26% ± 3 vs. 32% ±3; adjusted p < 0.01) [82].
However, another study conducted in a larger sample (n = 28) of RT-treated patients found
no association between cardiac doses and native T1 values or LGE presence at a longer
follow-up (mean 46.4 months). Therefore, the authors suggest that the early changes ob-
served by Takagi’s group could have been influenced by concomitant chemotherapy [83].
Nevertheless, in another cohort a significant reduction in LV stroke volume index and
septal non-ischemic LGE have been described in 78% patients after RT at 1.5 years of follow-
up [82]. These data have been confirmed by Umezawa and colleagues, who described LGE
in the irradiated myocardial segments of approximately half of the patients at a median
follow-up of 23.5 months [84]. Interestingly, no LGE was found in the myocardial segments
outside the irradiation field. Van der Velde et al. investigated CMR changes in a cohort of
80 long-term survivors of Hodgkin lymphoma. At a mean of 20 ± 8 years of follow-up,
they found significantly reduced LVEF and longitudinal, radial, and circumferential strain
using the feature tracking technique. In addition, native T1 values were also significantly
higher compared to healthy controls, with LGE present in 11% of survivors [85]. The
results of the ongoing CareBest trial will provide further insights into the prognostic role
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of these CMR parameters [86]. The pericardium is also often affected by irradiation either
in the form of acute pericarditis or, chronically, as pericardial thickening and constriction.
CMR is particularly useful in distinguishing between the two conditions, as LGE of the
pericardium is usually associated with an active inflammatory process [87]. In addition,
real-time free-breathing cine images allow the assessment of ventricular interdependence
when constriction is suspected [88]. Valvular leaflets can also be damaged as a result of
radiation exposure, with possible valvular dysfunction [74]. Despite its lower temporal
resolution when compared with echocardiography, CMR can accurately assess valvular
function by cine images and phase-contrast sequences. A two- to seven-fold higher risk of
myocardial infarction and a four- to seven-fold higher risk of CAD has also been described
in patients treated with RT [89]. Stress CMR could not only accurately assess scarring
derived from established myocardial infarction but also identify underlying ischemia as
hypointense “darker” areas after gadolinium contrast injection during pharmacological hy-
peraemia [90,91]. This functional test outperforms SPECT in both sensitivity and specificity
(86.5/83.4% vs. 66.5/82.6%, respectively) and provides similar clinical outcomes when
compared to invasive fractional flow reserve (FFR) in guiding revascularization [92,93].
Moreover, a novel respiratory motion-corrected myocardial perfusion technique with au-
tomated in-line perfusion mapping allows the quantification of myocardial blood flow
during hyperaemia and at rest and the subsequent estimation of myocardial perfusion
reserve. Quantitative perfusion mapping increases the overall sensitivity of perfusion CMR,
particularly for the detection of microvascular ischemia, representing a promising tool for
the evaluation of RT sequelae [94,95] (Figure 2).
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Figure 2. Stress perfusion Cardiovascular Magnetic Resonance. Raw perfusion images showed a
diffuse hypointense «darker» area in all the coronary territories representing a myocardial perfusion
defect during drug-induced (adenosine) hyperemia. The diffuse subendocardial perfusion defect is
also highlighted in the colored perfusion maps, where hypoperfused areas are shown in blue. The
quantitative analysis showed significantly reduced myocardial blood flow (MBF) values, particularly
in the subendocardium (1.24 mL/min/g), and concomitant reduced subendocardial myocardial
perfusion reserve (MPR) values (1.36).

3.2. Role of Radionuclide Imaging

Myocardial perfusion imaging, particularly if coupled with MBF quantification, can
potentially provide important insights into the integrity and function of the coronary
circulation. In addition, it can also identify areas of interstitial and replacement fibrosis in
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the heart that can result in collateral damage from radiation therapy delivered to the thorax
and breast tissue (Figure 3).
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Figure 3. Radiation plan in a patient with left-sided breast cancer. Axial fused CT (A) and SPECT
(B) images, including visualization of isodoses. Please notice the proximity of the left ventricular
apical segments to the radiation field.

Prior studies (Table 2) using single photon emission computerized tomography (SPECT)
have observed a high incidence of new myocardial perfusion deficits (up to 60% in some
series) as early as 6 months in patients receiving left breast/chest wall RT compared to
pre-RT SPECT scans [96,97]. These perfusion deficits preferentially involve the anterior
wall and apex (Figure 4) [97] and remain relatively stable at 12- and 18-month follow-up
post-RT [97]. There is also a correlation between the development of perfusion deficits with
the volume of irradiated heart [98] and the onset of cardiovascular symptoms [99].
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From a mechanistic perspective, a recent mouse model of radiation-induced cardiotoxi-
city revealed that single radiation doses of 20, 40, or 60 Gy delivered to the LV apex resulted
in perfusion SPECT deficits in the area of radiotherapy 8 weeks later [100], providing
evidence for a significant vascular component to radiotherapy-induced cardiac injury, and
corroborated histologically by coronary vessel thickening and perivascular fibrosis [100].

In agreement, focal apical LV FDG uptake was observed in the irradiated field of
a dog model of radiation-induced injury after 3 months [41]. Ex-vivo evaluation of the
irradiated field lesions consisted of perivascular fibrosis, mild myocyte degeneration, and
mitochondria injury. Interestingly, no significant inflammatory cell infiltrate was detected,
indicating that FDG accumulation was most likely related to microvascular damage and
mitochondrial injury [41].

On the other hand, and despite the obvious technological advantages, the pre-clinical
and clinical experience with quantitative myocardial perfusion PET imaging is limited to a
small retrospective, cross-sectional study of 35 cancer survivors who underwent cardiac
pharmacologic stress PET/CT at a median of 4.3 years (IQR 2.1–9.7) following thoracic
irradiation [101]. The authors observed an inverse correlation between the mean cardiac
radiation dose and global coronary flow reserve (CFR) and CFR in the LAD territory,
even after adjustment for risk factors. Findings further support the possibility of coronary
microvascular dysfunction as one of the potential underlying mechanisms of radiation-
induced cardiotoxicity. However, this remains the subject of further investigation in future
clinical trials.

Table 2. Incidence and most common vascular distribution of radiation-induced myocardial perfusion
imaging abnormalities.

Author; Year N Imaging
Technique Stress? Months

Post-RT
Incidence

of PD
p Value vs.

Pre-RT
RT Dose

(Gy)
Defect

Location

Hardenbergh,
2001 [96] 20 SPECT No 6 60% N/A 46–50 N/A

Lind, 2003 [97] 69 SPECT No 6 N/A <0.001 46–50 LAD
Lind, 2003 [97] 41 SPECT No 12 N/A 0.07 46–50 LAD
Lind, 2003 [97] 16 SPECT No 18 N/A 0.004 46–50 LAD
Marks, 2005 [98] 114 SPECT No 6–24 32% N/A 46–50
Prosnitz,
2007 [102] 44 SPECT No 36–72 68% N/A 47.3 LAD

Chung, 2012 [103] 32 SPECT/CT Yes 12 16% 0.68 50–52.2 N/A
Zellars, 2013 [104] 43 SPECT/CT Yes 6 N/A * 0.01 40–49 LAD

RT = radiation therapy; PD = perfusion deficit; LAD = left anterior descending coronary artery; SPECT = single
photon emission computed tomography; CT = computed tomography. * p-value only significant for perfusion
deficits at the apical segments during resting myocardial perfusion.

4. Immune Checkpoint Inhibitors-Related Toxicity

Immune checkpoint inhibitors (ICI) are monoclonal antibodies targeting the host im-
mune negative regulation receptors, including cytotoxic T-lymphocyte–associated protein
4 (CTLA-4), programmed cell death receptor 1 (PD-1), and programmed cell death ligand
1 (PD-L1). These drugs can therefore modulate the immune system response and drive
an immune-mediated attack against cancer cells with a demonstrated benefit in terms of
overall prognosis and survival in a wide range of tumors [105]. However, the interaction
with the immune system could also trigger a rare form of myocarditis, reported in approxi-
mately 0.1 to 1% of patients [106]. Despite being very rare, ICI-related myocarditis could be
potentially lethal, with a mortality rate of up to 50%. This life-threatening complication
is frequently observed during the first three months of treatment, particularly in patients
undergoing combination therapy [107]. Although nonspecific ECG changes and elevated
troponin are frequently observed, LVEF remains normal in about half the cases [106].

CMR is extremely helpful in the diagnosis of myocarditis [108]. The revised Lake
Louise Criteria suggest the combined use of at least one T2-based (increased signal intensity
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in T2-weighted images or T2 mapping values) and one T1-based criterion (increased native
T1 values, ECV or LGE) to increase the diagnostic accuracy [108] (Figure 5). Myocardial
edema can be qualitatively detected as areas of increased signal intensity in STIR-T2 se-
quences [109]. This may be challenging in the case of global myocardial edema, where a
semi-quantitative (a signal intensity ratio myocardium/skeletal muscle of ≥2.0) or quanti-
tative (increased T2 mapping values) assessment should be necessary for diagnosis [109].
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Figure 5. CMR in myocarditis. CMR is particularly helpful in diagnosing immune check point related
myocarditis. The revised Lake Louise Criteria include at least one T2-based criterion (increase in
regional or global T2 relaxation time or increased signal intensity in T2-weighted images) and one
T1-based criterion (increased native T1 values, ECV or LGE). This patient showed increased signal
intensity in short tau inversion recovery (STIR) T2 images (red arrows), increased T2 mapping values
(black arrows), and increased T1 and ECV values in the lateral wall with mainly subepicardial LGE
in the same region (blue arrows). ECV = extracellular volume. LGE = late gadolinium enhancement.

An international registry of 103 patients with ICI-associated myocarditis described
LGE in approximately half of the patients, with predominant mid-wall (49%) and subepi-
cardial (26.5%) distribution [110] and, more rarely, a diffuse or subendocardial pattern. The
segments more frequently involved were the septum and the inferior and inferolateral
wall, with a higher prevalence of LGE when the CMR was performed after the fourth day
of admission [110] compared to within 4 days of admission. Increased signal intensity
in T2-weighted short tau inversion recovery (STIR) images was found in 28% of patients.
Only a subgroup underwent T1 mapping and ECV assessment with increased values
compared to healthy individuals (1167.2 ± 32.9 ms and 34.3 ± 2.1%, respectively). Of note,
56 patients underwent cardiac biopsy; LGE was present in only 35% of positive histology,
and an increased T2-weighted signal was present only in 26% of patients with lymphocytic
infiltration. These findings are warranted as a reliance on LGE and T2 imaging approaches
excludes ICI-induced myocarditis. Furthermore, nor the presence nor the pattern of LGE or
an increased STIR-T2 signal were associated with MACE at follow-up. Instead, a reduced
LVEF was associated with MACE (hazard ratio 2.07, 95% CI 1.10–3.93; p = 0.025) [110].
Increased native T1 mapping values demonstrated better association with myocardial
injury when compared to T2 mapping values and excellent prognostic value in another
study, being independently associated with subsequent MACE [111].
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Molecular MRI imaging of myocarditis is being investigated in animal models and has
not yet been translated into clinical practice. Maier et al. recently tested a new contrast agent
targeting activated platelets consisting of microparticles of iron oxide (MPIO) conjugated
to a single-chain antibody directed against ligand-induced binding sites (LIBS) of activated
glycoprotein IIb/IIIa (=LIBS − MPIO). Histology confirmed CD41-positive cases, indicating
platelet involvement in myocarditis in mice; quantification of the myocardial MRI signal
confirmed a signal decrease after LIBS-MPIO injection [112]. This study demonstrated that
platelets are activated in the inflammatory cascade in myocarditis and can be non-invasively
imaged with LIBS-MPIO by molecular MRI in an animal model [112].

Detection of ICI-related myocarditis with radionuclide molecular imaging techniques
is also possible and remains an area of ongoing investigation [113–117].

Preliminary reports suggest that FDG-PET can be utilized to diagnose active ICI-
related myocarditis, with one case report indicating that it can be helpful even in the
absence of abnormalities on CMR [113,114]. When both imaging modalities are available,
co-localization of FDG uptake on PET with T2 and/or LGE on CMR can further support
the diagnosis of active myocarditis (Figure 6). This was shown in a prospective study of
65 patients who underwent simultaneous cardiac PET-MR for the evaluation of myocarditis,
and the spatial agreement between FDG PET with T2 (kappa 0.75) and LGE (kappa 0.64)
was substantial [115]. Compared with CMR (LGE and/or T2) as the reference, the authors
estimated sensitivity and specificity for PET of 74% and 97% for the diagnosis of myocarditis,
respectively [115]. However, the clinical experience with PET for the detection of acute
or chronic (non-granulomatous) myocarditis remains limited, and consequently, its real
diagnostic performance remains largely unknown. From a pathobiology perspective, FDG
is a sensitive marker of cellular inflammation; thus, it is conceivable that FDG PET may
be as sensitive as CMR for the detection of myocarditis. The main issue with FDG PET is
the need for dietary preparation to induce a “metabolic switch” to suppress physiologic
myocardial glucose uptake, an inherent limitation which affects or reduces the specificity of
the test to differentiate between nonspecific and pathologic uptake. This metabolic switch
can be induced by strategies that increase fatty acid and/or ketones levels and, at the same
time, reduce insulin release, including prolonged fasting and a dietary switch to a lipid-
rich/carbohydrate-deprived (a.k.a. ketogenic) diet prior to the exam [116]. Retrospective
data from convenient cohorts suggest that myocardial FDG suppression is achieved in
81–84% of subjects following the ketogenic diet for at least 24 h [117,118], but higher
suppression rates (up to 95%) have been recently shown with longer periods of ketosis (e.g.,
72 h) [119,120]. Emergent data also suggest that beta-hydroxybutyrate levels, a marker of
ketosis, may assist in the identification of individuals who failed to make this metabolic
switch [121,122]. On the contrary, supplementary strategies intended to further raise fatty
acid and/or ketone levels, including a fatty load [117] and ketone ester drink [121], prior to
FDG injection, have actually shown discouraging results to suppress FDG uptake in the
heart in well-conducted randomized clinical trials.

However, the need for a dietary preparation to suppress physiologic myocardial
glucose uptake is an inherent limitation, which affects or reduces the specificity of the test
to differentiate between nonspecific and pathologic uptake.

Imaging of the somatostatin receptor using 68Ga-DOTATATE and 68Ga-DOTATOC
has also been studied in patients with suspected ICI myocarditis [123,124]. These scans do
not require dietary preparation, and one study suggested that 68Ga-DOTATOC uptake may
precede LGE and T2 elevation on CMR. Furthermore, one study found that myocardial
68Ga-FAPI uptake was higher in patients with suspected ICI myocarditis compared to
patients receiving ICI without evidence of cardiac involvement, suggesting that 68Ga-FAPI
should be studied more extensively in this patient population [113,125].
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Figure 6. Cardiac FDG PET, CMR, and fused PET/MR images of a patient with suspected checkpoint
inhibitor myocarditis. Myocardial FDG uptake matches the localization of late gadolinium enhance-
ment along the subepicardial aspect of the lateral wall, indicative of active myocarditis (arrows).

However, the future of molecular imaging is geared towards the development of more
disease-specific or targeted probes. In this sense, there is a significant interest in developing
and testing novel immunotherapeutic drugs, including PD-1 and PD-L1 PET probes (thus
imaging the targets of ICI) [48,53], radiopharmaceuticals targeting CD8+ T cells [126],
and T-cell activation markers (e.g., CD69) [127]. Most of these probes are currently in
the pre-clinical stage, and their cardiovascular translation remains uncertain, although
it is conceivable that imaging cardiomyocyte expression of PD1 and PD-L1, or imaging
activated CD8 cells in the heart, may lead to the identification of ICI myocarditis (Figure 7).
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Figure 7. Biodistribution of CD8 PET imaging with 89Zr-Df-IAB22M2C in a 71-year-old male with
metastatic melanoma on pembrolizumab for 28 days at the time of imaging. Maximal intensity
projection images (A) show multinodal CD8+ involvement in the neck, axilla, and mediastinum.
Please notice the low level of myocardial uptake on axial PET (B) and fused PET/CT (C) images
make this radiotracer suitable for detecting checkpoint inhibitor myocarditis. Images courtesy of Dr.
Michael Farwell from the University of Pennsylvania.
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5. Challenges and Future Perspectives

As anti-cancer treatments continue to evolve and survival from cancer improves,
the role of a multidisciplinary cardio-oncology team becomes of utmost importance in
the management of these complex patients through a more personalized approach, from
surveillance and early identification of cardiotoxicity to prevention and therapeutic manage-
ment of complications. Cardiovascular imaging has evolved as a key tool to this purpose,
allowing a non-invasive evaluation complementary to biomarkers and clinical assessment.
In this regard, advanced imaging techniques offer the advantage of tissue characterization
that, beyond LV function assessment, can provide early identification of cardiac injury
with possible impact on therapeutic management and prognosis. Although reliable, ac-
curate, and reproducible, a routinary use of these advanced techniques may be limited in
clinical practice by high costs, long acquisition time, and availability of the modality. The
application of rapid CMR protocols that are proven to provide high diagnostic accuracy
in an average scan time of approximately 15 min (12 ± 4 for a non-contrast study) may
increase the overall availability of the modality [128]. The most recent implementation of
machine learning for LVEF assessment, capable of significantly reducing the image anal-
ysis time (186× faster than human), is another promising strategy for this purpose [129].
Finally, novel CMR techniques capable of non-invasively providing information regarding
cardiac metabolism and energetics, although currently mainly used only in pre-clinical
and research contexts, may further change the clinical scenario in the future. Radionuclear
and molecular imaging enable precise examination of the underlying pathophysiology
and, thus, represent a unique component for personalized medicine in cardio-oncology
by facilitating detection and surveillance. A novel set of radiotracers capable of detecting
activated fibroblasts, macrophages, and ROS production have great potential to further
unravel cardiotoxicity mechanisms in the future.
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