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Abstract: The present study aimed to determine a multimodal brain empowerment (MBE) program
to mitigate the modifiable risk factors in mild cognitive impairment (MCI), and its therapeutic effects
are unknown. MBE encompassing (1) tDCS, light therapy, computerized cognitive therapy (TLC) and
(2) robot-assisted gait training, music therapy, and core exercise (REM) interventions were randomly
assigned to 20 healthy young adults and 20 older adults with MCI. The electroencephalography (EEG)
power spectrum and topographic event-related synchronization (ERS) analysis were used to assess
intervention-related changes in neural activity during the MBE program. Outcome: The EEG results
demonstrated that both multimodal TLC and REM decreased delta waves and increased theta, alpha,
and beta waves (p < 0.001). ERS showed increased neural activation in the frontal, temporal, and
parietal lobes during TLC and REM. Such enhanced neural activity in the region of interest supports
potential clinical benefits in empowering cognitive function in both young adults and older adults
with MCI.

Keywords: mild cognitive impairment; multimodal; EEG; robotic-assisted gait training; transcranial
direct current stimulation; music therapy; computerized cognitive therapy; light therapy; core
breathing exercises

1. Introduction

A 2020 report by the Lancet Commission on Dementia Prevention, Intervention,
and Care stated that the age-related incidence of dementia has decreased because of
improvements in potentially modifiable risk factors, such as education, hypertension,
hearing impairment, smoking, obesity, depression, physical inactivity, diabetes, and low
social contact [1]. Growing evidence on dementia prevention, intervention, and care
suggests that, among these modifiable risk factors, physical exercise with or without
robotic systems, social participation empowerment, light, computerized cognitive training,
robot-assisted gait training (RAGT), music, computerized cognitive therapy, transcranial
direct current stimulation (tDCS), light, and core breathing exercises, either alone or in
combination, can prevent the progression of dementia in patients with mild cognitive
impairment (MCI) [2]. Furthermore, a recent clinical trial [3] showed promising results
regarding the efficacy of multimodal therapy, including personalized cognitive stimulation,
neurofeedback training, and brain coaching/counseling, for eating a Mediterranean diet
and consuming omega-3 supplements. The combination of different modalities produces
beneficial functional (cognitive) and EEG neurophysiological assessment changes (e.g.,
increased alpha and beta waves) in the fronto-temporal lobe, supporting the importance of
multimodal approaches to reverse or regenerate neural substrates in MCI [4]. In fact, there
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is growing EEG neurophysiological evidence that a combination of different modalities
(e.g., combined computerized physical and cognitive training) helps empower cognitive
brain function in MCI, which is manifested by increased beta waves in the fronto-temporal
brain area [5].

Based on collective and effective neuroscientific evidence, we developed a multimodal
brain empowerment (MBE) program that encompasses systematic physical resistance
exercise with RAGT, music therapy, computerized cognitive therapy, tDCS, light therapy,
and core breathing exercises [6–14]. The multimodal brain enhancement approach utilizes
different sensory systems to target brain areas affected by dementia and aims to improve
brain function through sensory stimulation and related cognitive activities. However, the
immediate efficacy of this approach and its underlying neural mechanisms remain to be
determined [15]. Hence, the present study aimed to determine the immediate effectiveness
of the multimodal brain empowerment approach on EEG patterns and to ascertain the
underlying neural mechanisms between the individual modality and combination therapies
(a combination of tDCS, light therapy, and computerized cognitive therapy (TLC), and
robot-assisted gait training, music therapy, and core exercise (REM)) in both young healthy
adults and older adults with MCI. The basic premise is that both combinations would have
similar effects on EEG patterns in young, healthy adults and older adults with MCI or those
at a high risk of MCI.

2. Materials and Methods
2.1. Design

This study used a two-group pre-test–post-test design. The participants participated in
the MBE program at the Yonsei Good Wellness Center in Wonju, Republic of Korea, between
January 2022 and June 2022. To assess the baseline and post-intervention effects on the
participants, a baseline test was conducted without any intervention with the eyes closed,
followed by the sequential application of six different interventions and two randomly
assigned combinations. Subsequently, the post-test was administered individually for each
intervention or combination.

2.2. Participants

Forty participants, twenty older adults with MCI (mean ± standard deviation:
79 ± 8.25 years; 10 women) and twenty healthy adults (mean ± standard deviation:
25.2 ± 3.19 years; 11 women), were recruited from residents of Wonju, Gangwon-do, and
signed an informed consent form. The recruitment method involved introducing the exper-
iment directly to the local community in Wonju City and posting recruitment notices on
community bulletin boards to encourage the voluntary participation of eligible individuals.
The experimental protocol was approved by the Yonsei Institutional Review Board (IRB)
and Ethics Committee (approval no. 1041849-202202-BM-033-02). The inclusion criteria
were as follows: (a) age > 65 years; (b) a score between 20 and 23 points on the Korean
version of the Mini-Mental State Examination (MMSE); (c) self-reported subjective decline
in cognitive function, which was also confirmed by a family member; and (d) age-matched
cognitive deficits (less than at least 1.5 standard deviation) in one or more formal cognitive
tests, including the CIST and the MMSE [3]. The inclusion criterion for young adults was
an age range of 18–35 years [16]. The exclusion criteria included: (a) currently diagnosed
dementia; (b) specific abnormalities in the brain, such as focal brain lesions, as detected
by head MRI or CT; (c) a history of mental illness or substance abuse before the onset of
dementia; (d) complications of other neurological diseases or illnesses; and (e) the use of
antipsychotics, antidepressants, or anxiolytic drugs [17].

2.3. Intervention—MBE Program

The MBE program included six different interventional modalities and two randomly
administered combinations. The six different interventional modalities entailed (1) the
application of 1 to 2 mA of transcranial direct current stimulation (tDCS), (2) exposure
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to 10,000 lx of light, (3) engagement in a medium-difficulty game targeting memory and
attention through computerized cognitive therapy, (4) 20% body weight support during
comfortable-speed robotic-assisted gait training (RAGT), and (5) during core breathing
exercises, which involve respiration, the diaphragm descends to enhance intra-abdominal
pressure (IAP). This in turn exerts outward pressure on the lower abdomen, thereby
facilitating sufficient expansion. When exhaling, it is crucial to slightly retract the navel
while maintaining this IAP. This ensures controlled exhalation at a consistent rate of
8–10 cycles per minute, promoting effective breathing techniques. Finally, (6) listening
to relaxing music at a frequency of 40 Hz [2]. Except for RAGT, all other interventional
modalities were performed in a comfortable sitting position. The RAGT, on the other hand,
was conducted in a standing position (Figure 1).
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Figure 1. Six different interventional modalities. (a) tDCS; (b) light; (c) computerized cognitive
therapy; (d) RAGT; (e) core breathing exercise; (f) music. Abbreviations: RAGT, robot-assisted
gait training.

One combination involves simultaneous application of 1 to 2 mA of transcranial
direct current stimulation (tDCS) and exposure to 10,000 lx of light while engaging in a
medium-difficulty game targeting memory and attention through computerized cognitive
therapy, all in a comfortable seated position. The other combination involves performing
20% body weight support during comfortable-speed robotic-assisted gait training (RAGT),
core breathing exercises at a fixed rate of 8–10 cycles per minute, and listening to relaxing
music at a frequency of 40 Hz while standing [2] (Figure 2).
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The intervention dosage was standardized for six different interventional modalities
and combinational interventional modalities, 60 s stimulation, followed by immediate EEG
assessment (90 s) and a washout period (60 s), accounting for 210 s.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW  4  of  13 
 

 

 

Figure 2. Two combinations of modalities. (a) TLC; (b) REM. Abbreviations: TLC, tDCS +  light + 

computerized cognitive training; REM, RAGT + vore breathing exercise + music. 

The intervention dosage was standardized for six different interventional modalities 

and  combinational  interventional modalities,  60  s  stimulation,  followed by  immediate 

EEG assessment (90 s) and a washout period (60 s), accounting for 210 s. 

2.4. Clinical Outcome Measures 

2.4.1. EEG 

A wireless 24-channel EEG measurement unit (g.Nautilus, g.tec Medical Engineering 

GmbH, Schiedlberg, Austria) with active electrodes on the cap was used to determine in-

tervention-related synchronization (ERS) changes in the regions of interest (ROI). 

During the MBE program, all participants underwent EEG measurements to evaluate 

changes in neural activity resulting from the intervention. The 32 active EEG electrodes 

were positioned on the scalp using a 10–20 system. The 24 EEG channels included Fp1, 

Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC6, T7, T8, Cz, C1, C2, C3, C4, C5, CP1, CP2, P2, P3, Pz, 

and POz, with a sampling rate of 500 Hz. The ground electrode was placed in the AFz 

region of the brain, and the reference electrode was placed in the right earlobe. An elec-

trode gel was used for each electrode, and the resistance between the skin and the elec-

trode was reduced to below 50 kΩ for each channel [18]. For the brain wave bands, fre-

quencies, and functions, see Table 1. 

Table 1. The brain wave bands, frequency, and functions. 

Brainwaves  Frequency (Hz)  Functions 

Delta  2–4 Hz  Deep sleep, dreaming, and coma 

Theta  4–8 Hz  Drowsy, meditation, and mental imagery 

Alpha  8–12 Hz  Relaxed, calm, and lucid 

Beta  12–30 Hz 
Concentration, awake, alert, thinking, and mental activ-

ity 

   

Figure 2. Two combinations of modalities. (a) TLC; (b) REM. Abbreviations: TLC, tDCS + light +
computerized cognitive training; REM, RAGT + vore breathing exercise + music.

2.4. Clinical Outcome Measures
2.4.1. EEG

A wireless 24-channel EEG measurement unit (g.Nautilus, g.tec Medical Engineering
GmbH, Schiedlberg, Austria) with active electrodes on the cap was used to determine
intervention-related synchronization (ERS) changes in the regions of interest (ROI).

During the MBE program, all participants underwent EEG measurements to evaluate
changes in neural activity resulting from the intervention. The 32 active EEG electrodes
were positioned on the scalp using a 10–20 system. The 24 EEG channels included Fp1, Fp2,
Fz, F3, F4, F7, F8, FC1, FC2, FC6, T7, T8, Cz, C1, C2, C3, C4, C5, CP1, CP2, P2, P3, Pz, and
POz, with a sampling rate of 500 Hz. The ground electrode was placed in the AFz region of
the brain, and the reference electrode was placed in the right earlobe. An electrode gel was
used for each electrode, and the resistance between the skin and the electrode was reduced
to below 50 kΩ for each channel [18]. For the brain wave bands, frequencies, and functions,
see Table 1.
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Table 1. The brain wave bands, frequency, and functions.

Brainwaves Frequency (Hz) Functions

Delta 2–4 Hz Deep sleep, dreaming, and coma
Theta 4–8 Hz Drowsy, meditation, and mental imagery
Alpha 8–12 Hz Relaxed, calm, and lucid
Beta 12–30 Hz Concentration, awake, alert, thinking, and mental activity

2.4.2. EEG Analysis

EEG processing was performed using the EEGLAB Toolbox [19]. To eliminate high-
amplitude artifacts such as eye blinks and muscle bursts, we applied artifact subspace
reconstruction (ASR) to the 24 channels that were bandpass filtered between 1 and 60 Hz.
ASR implements principal component analysis on EEG data in sliding windows and detects
channels that differ considerably from the baseline data containing minimal movement
artifacts. An independent component analysis (ICA) was employed to separate the chan-
nels [20]. Finally, topographic mapping and ERD/ERS pattern analyses were performed.

2.5. Statistical Analysis

The results are presented as the mean and standard deviation. The sample size
required for the study was determined using G* Power software (version 3.1; Düsseldorf,
Germany). An effect size of 0.5 and a significance level (α) of 0.05 were utilized in the
calculations. The results indicated that in order to achieve a statistical power of 0.8, a total of
40 subjects were required for the study [21]. All continuous variables were analyzed using
the Kolmogorov–Smirnov test, and the assumption of normal distribution was satisfied. A
paired t-test was used to analyze the EEG time–frequency power of each frequency band
between the baseline condition and each respective condition. Demographic homogeneity
was assessed using independent t-tests. SPSS for Windows (version 25.0, SPSS, Chicago, IL,
USA) was used for statistical analyses. The alpha level was set at 0.05.

3. Results

Forty participants took part in the study, including twenty older adults with MCI
(mean ± standard deviation: 79 ± 8.25 years; 10 women) and twenty young adults
(mean ± standard deviation: 25.2 ± 3.19 years; 11 women). The average baseline MMSE
scores for the older and young adults were 23 and 26, respectively (Table 2).

Table 2. Demographic characteristics (N = 40).

Characteristics Older Adults with
MCI (n = 20)

Young Adults
(n = 20) p-Value

Age (years) 79 ± 8.25 25.2 ± 3.19 0.006 *
Height (cm) 157.25 ± 8.45 169.65 ± 9.37 0.717
Weight (kg) 59.4 ± 7.3 67.7 ± 13.83 0.002 *

MMSE 21 26 0.000 *
Gender (M/F) 10/10 9/11 0.664

The values are presented as the mean ± standard deviation. Abbreviations: MMSE, Mini-Mental State Examina-
tion; * p-value obtained by an independent t-test.

3.1. Delta Band

Young and older adults showed significant differences in time-frequency power be-
tween baseline and the eight interventions. In young adults, the mean delta power value
was significantly lower in all interventions than in the baseline condition. In particular,
tDCS, REM, and RAGT had the lowest mean delta frequencies compared to the other
interventions. In older adults, the mean delta power value was significantly lower after
TLC, computerized cognitive therapy, light, music, REM, tDCS, and RAGT. TLC, music,
and computerized cognitive therapy showed the lowest mean value of delta compared
with the other interventions (Table 3a,b).



J. Clin. Med. 2023, 12, 4895 6 of 13

Table 3. (a) Time–frequency power spectrum of EEG—young adults. (b) Time–frequency power
spectrum of EEG—older adults.

(a)

Young Adults p-Value

Delta, 2–4 Baseline Conditions

Core breathing exercise 2.64 ± 0.32 2.36 ± 0.20 0.000 **
Computerized cognitive therapy 2.64 ± 0.32 1.46 ± 0.70 0.000 **

Light 2.64 ± 0.32 1.50 ± 0.21 0.000 **
Music 2.64 ± 0.32 1.79 ± 0.64 0.000 **
REM 2.64 ± 0.32 1.22 ± 0.47 0.000 **
tDCS 2.64 ± 0.32 1.22 ± 0.14 0.000 **
TLC 2.64 ± 0.32 1.45 ± 0.33 0.000 **

RAGT 2.64 ± 0.32 1.17 ± 0.33 0.000 **

Theta, 4–8 Baseline Conditions

Core breathing exercise 0.41 ± 0.37 1.07 ± 0.59 0.000 **
Computerized cognitive therapy 0.41 ± 0.37 0.48 ± 0.14 0.876

Light 0.41 ± 0.37 0.81 ± 0.48 0.000 **
Music 0.41 ± 0.37 0.91 ± 0.24 0.000 **
REM 0.41 ± 0.37 1.10 ± 0.31 0.000 **
tDCS 0.41 ± 0.37 1.29 ± 0.18 0.000 **
TLC 0.41 ± 0.37 1.28 ± 0.27 0.000 **

RAGT 0.41 ± 0.37 0.74 ± 0.36 0.000 **

Alpha, 8–12 Baseline Conditions

Core breathing exercise −0.51 ± 0.41 −0.45 ± 0.51 0.376
Computerized cognitive therapy −0.51 ± 0.41 −0.37 ± 0.25 0.060

Light −0.51 ± 0.41 −0.13 ± 0.22 0.000 **
Music −0.51 ± 0.41 −0.38 ± 0.40 0.053
REM −0.51 ± 0.41 0.52 ± 0.26 0.000 **
tDCS −0.51 ± 0.41 0.16 ± 0.37 0.000 **
TLC −0.51 ± 0.41 0.77 ± 0.21 0.000 **

RAGT −0.51 ± 0.41 −0.28 ± 0.22 0.001 **

Beta, 12–30 Baseline Conditions

Core breathing exercise −0.56 ± 0.30 −0.23 ± 0.28 0.000 **
Computerized cognitive therapy −0.56 ± 0.30 −0.11 ± 0.31 0.000 **

Light −0.56 ± 0.30 −0.17 ± 0.21 0.000 **
Music −0.56 ± 0.30 −0.03 ± 0.26 0.000 **
REM −0.56 ± 0.30 0.09 ± 0.20 0.000 **
tDCS −0.56 ± 0.30 −0.012 ± 0.27 0.000 **
TLC −0.56 ± 0.30 0.12 ± 0.18 0.000 **

RAGT −0.56 ± 0.30 −0.2 ± 0.23 0.000 **

(b)

Older Adults p-Value

Delta, 2–4 Baseline Conditions

Core breathing exercise 2.62 ± 0.27 2.81 ± 0.31 0.000 **
Computerized cognitive therapy 2.62 ± 0.27 1.05 ± 0.29 0.000 **

Light 2.62 ± 0.27 1.86 ± 0.11 0.000 **
Music 2.62 ± 0.27 1.06 ± 0.53 0.000 **
REM 2.62 ± 0.27 1.55 ± 0.44 0.000 **
tDCS 2.62 ± 0.27 1.47 ± 0.23 0.000 **
TLC 2.62 ± 0.27 1.13 ± 0.41 0.000 **

RAGT 2.62 ± 0.27 2.22 ± 0.72 0.000 **
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Table 3. Cont.

(b)

Older Adults p-Value

Theta, 4–8 Baseline Conditions

Core breathing exercise 0.39 ± 0.45 1.14 ± 0.13 0.000 **
Computerized cognitive therapy 0.39 ± 0.45 1.04 ± 0.17 0.000 **

Light 0.39 ± 0.45 0.87 ± 0.36 0.000 **
Music 0.39 ± 0.45 1.15 ± 0.61 0.000 **
REM 0.39 ± 0.45 1.43 ± 0.37 0.000 **
tDCS 0.39 ± 0.45 0.55 ± 0.52 0.326
TLC 0.39 ± 0.45 0.73 ± 0.54 0.000 **

RAGT 0.39 ± 0.45 0.56 ± 0.49 0.031 *

Alpha, 8–12 Baseline Conditions

Core breathing exercise −0.67 ± 0.19 −0.60 ± 0.31 0.268
Computerized cognitive therapy −0.67 ± 0.19 0.16 ± 0.12 0.000 **

Light −0.67 ± 0.19 −0.46 ± 0.38 0.016 *
Music −0.67 ± 0.19 −0.12 ± 0.62 0.000 **
REM −0.67 ± 0.19 0.32 ± 0.51 0.000 **
tDCS −0.67 ± 0.19 −0.43 ± 0.55 0.003 **
TLC −0.67 ± 0.19 0.23 ± 0.54 0.000 **

RAGT −0.67 ± 0.19 −0.23 ± 0.28 0.001 **

Beta, 12–30 Baseline Conditions

Core breathing exercise −0.41 ± 0.21 −0.30 ± 0.25 0.007 **
Computerized cognitive therapy −0.41 ± 0.21 0.04 ± 0.32 0.000 **

Light −0.41 ± 0.21 −0.33 ± 0.14 0.022 *
Music −0.41 ± 0.21 −0.23 ± 0.27 0.000 **
REM −0.41 ± 0.21 0.08 ± 0.33 0.000 **
tDCS −0.41 ± 0.21 −0.26 ± 0.24 0.003 **
TLC −0.41 ± 0.21 0.09 ± 0.27 0.000 **

RAGT −0.41 ± 0.21 −0.28 ± 0.41 0.001 **
Data are presented as mean the ± standard deviation. Abbreviations: tDCS, transcranial direct current stimulation;
RAGT, robot-assisted gait training; TLC, tDCS + light + computerized cognitive training; REM, RAGT + core
breathing exercise + music; p-value obtained using a paired t-test; * p < 0.05. ** p < 0.01.

3.2. Theta Band

In young adults, significant changes in time–frequency power were observed between
baseline and all interventions, excluding CCT. In older adults, significant changes were
observed with all interventions except for tDCS. The mean theta power value was sig-
nificantly higher for all interventions in both young and older adults. In young adults,
tDCS and TLC revealed the highest theta values compared with the other interventions. In
older adults, theta power was the highest in REM, music, and core breathing exercises and
showed the highest theta compared to other interventions (Table 3a,b).

3.3. Alpha Band

In young adults, significant changes in time–frequency power were observed between
baseline and all interventions, except for core breathing exercises, CCT, and music. In older
adults, significant changes were observed in all interventions, except for the core breathing
exercises. In both young and older adults, the mean alpha power was significantly higher
for all interventions. TLC and REM revealed the highest alpha values compared with the
other interventions (Table 3a,b).

3.4. Beta Band

Both young and old adults revealed significant differences in time-frequency power
between baseline and the eight interventions. In both young and older adults, the mean
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delta power was significantly higher for all interventions. In particular, TLC and REM
revealed the highest beta values compared with the other interventions (Table 3a,b).

3.5. Topographic Maps

Using computerized cognitive therapy, young adults exhibit event-related synchro-
nization (ERS) in the frontal region, which controls cognitive and memory functions [22].
In contrast, older adults demonstrate ERS activation in the frontal, temporal (primary
functions include memory and understanding), and parietal (responsible for sensing and
perception) regions [23,24]. During light therapy, young adults show ERS in the parietal
region, whereas older adults show ERS in the occipital region (which serves as the center
for processing visual stimuli) [25]. In music therapy, young adults demonstrate ERS in the
frontal, parietal, and temporal regions, whereas older adults exhibit ERS in parietal areas.
Young and older adults exhibit ERS in the frontal and parietal regions during REM. In TLC,
young and older adults exhibit ERS in the frontal, temporal, and parietal regions of the
brain. In tDCS, young and older adults exhibit ERS in both temporal and parietal regions.
In the RAGT, young adults displayed ERS in the frontal, temporal, and parietal regions,
whereas older adults showed ERS in the frontal, parietal, temporal, and occipital regions
(Figure 3a,b).
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spectral power (µV2/Hz) of alpha demonstrated a significant decrease in the central regions, and the
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ERD/ERS: event-related desynchronization/synchronization.
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4. Discussion

This study investigated the immediate effectiveness of an MBE program on qualitative
(QL-EEG) and quantitative (QN_EEG) EEG patterns to ascertain the underlying neural
mechanisms of six individual physical resistance exercises with RAGT, music therapy,
computerized cognitive therapy, tDCS, light therapy, and core breathing exercise inter-
vention modes, as well as two sets of combined intervention modes (TLC and REM), in
healthy young adults and older adults with MCI. As hypothesized, the QN_EEG analysis
suggested that both young and older adults with MCI showed more normalized EEG
power spectrum patterns, as evidenced by a substantial decrease in delta values during
the respective TLC and REM conditions, as well as more EEG power increases in theta,
alpha, and beta values during all individual intervention modes compared to the baseline
condition. The QL_EEG analysis indicated that both young and older adults with MCI
showed more normalized ERS activation in the neural substrates representing the frontal,
temporal, and parietal lobes during the individual intervention modes (RAGT, music ther-
apy, computerized cognitive therapy, tDCS, light therapy, and core breathing exercises) and
the TLC and REM combination modes. Most importantly, both the QL-EEG and QN_EEG
results demonstrated promising effects of the individual MBE intervention mode, and
more so with the combination mode. This was the first clinical trial to examine multimodal
interventions for MCI, making it difficult to compare with the current literature.

The QN_EEG power spectrum analysis related to TLC indicated an increase in theta,
alpha, and beta values in young adults and a decrease in delta values along with an
increase in alpha and beta values in older adults. This finding is consistent with those of
previous studies. Westwood et al. (2022) reported that a combination of tDCS and cognitive
training resulted in a 0.81% increase in theta and a 2.35% increase in alpha brainwaves in
23 young participants, whereas beta brainwaves remained stable [26]. Andrade et al. (2022)
found that multisite anodal transcranial direct current stimulation combined with cognitive
stimulation induced changes in EEG spectral power at high (alpha and beta) and low (delta)
frequencies in 36 older adults with Alzheimer’s disease [27]. The QL-EEG power spectrum
analysis revealed that young and older adults primarily exhibited ERS in the frontal,
temporal, and parietal regions. This result is consistent with those of previous studies.
Dong et al. (2020) reported that a combination of tDCS and working memory training
resulted in ERS in the frontal and parietal lobes in 34 young adults [28]. Münch et al. (2014)
demonstrated that exposure to bright light resulted in ERS in the frontal lobes of 16 healthy
adults [29]. A possible rationale for these results is that the combination of tDCS, light,
and cognitive training may have synergistic effects on neural activity [30,31]. tDCS may
enhance cortical excitability, light may modulate circadian rhythms and/or activate neural
circuits involved in cognitive processing, and cognitive training may promote learning and
memory consolidation. These factors may lead to the creation of a new cortical organization
by increasing the activity of the frontotemporal and parietal lobes [32].

Analysis of the QN_EEG power spectrum in relation to REM showed a decrease in
delta and an increase in alpha and beta values in young adults and an increase in theta,
alpha, and beta values in older adults. This finding is consistent with previous evidence.
Possti and colleagues (2020) found that dual-task walking decreased delta power by 45.83%
and increased alpha power by 125% compared to single-task walking in a sample of 10
healthy adults [33]. Additionally, in 10 older adults, dual-task walking increased alpha
power by 53.85% and beta power by 25% compared to single-task walking. The QL-EEG
power spectrum analysis revealed that young and older adults exhibited ERS in the frontal
and parietal regions. These data are consistent with those reported in previous studies.
Breitling et al. (1987) reported that music activated brain mapping in the frontal lobes in
22 young adults [34]. Formaggio et al. (2017) observed ERS in the frontal and parietal
lobes of 21 middle-aged adults during robot-assisted foot movements [35]. Patnaik et al.
(2022) demonstrated that breathing exercises activated the frontal region using topographic
maps of 14 young adults [36]. Ferrarelli et al. (2013) demonstrated that mindful breathing
meditation led to ERS in the parietal regions of 29 middle-aged adults [37]. A possible
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rationale for these results is that the combination of RAGT, music, and breathing exercises
may have a cooperative effect on neural activity [30]. Music and breathing exercises
may enhance attention and relaxation, respectively, whereas RAGT may require attention
and cognitive effort. These factors may increase the activity of the frontal and parietal
lobes, thereby stimulating neural activity and contributing to increased cortical network
activation [38].

Some limitations of this study should be considered for future studies. One limita-
tion is that this preliminary clinical study examined the effects of individual and MBE
intervention modes on neurophysiological phenomena using both QEEGs. However, fur-
ther investigation of the structural and functional cortical changes in the involved neural
substrates with advanced functional MRI imaging in a long-term cohort interventional
study is warranted to validate the long-term effects of MBE. Another limitation is that this
preliminary experiment only measured the immediate effects of brief interventions and
had a brief washout period based on the participants’ tolerance and safety.

5. Conclusions

This clinical study demonstrated that both the young and old groups showed a
decrease in delta waves during TLC and REM, along with an increase in theta, alpha, and
beta waves. Topographic maps also revealed significant event-related synchronization
(ERS) in the frontal, temporal, and parietal lobes of the brain during TLC and REM. These
findings offer clinical evidence-based insights into the use of TLC and REM, which not
only enhance cognitive function but also activate the frontal, temporal, and parietal lobes
in both young adults and individuals with MCI.
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