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A.; Lis, Ł.; Frosztęga, W.; Brzozowska,

P.; Ciszewska, A.; Rydzyńska, K.;
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Abstract: The majority of recently published studies indicate a greater incidence and mortality due to
Clostridioides difficile infection (CDI) in patients with chronic kidney disease (CKD). Hospitalization,
older age, the use of antibiotics, immunosuppression, proton pump inhibitors (PPI), and chronic
diseases such as CKD are responsible for the increased prevalence of infections. The aim of the study
is to identify clinical indicators allowing, in combination with artificial intelligence (AI) techniques,
the most accurate assessment of the patients being at elevated risk of CDI.

Keywords: artificial intelligence; machine learning; Clostridioides difficile; chronic kidney disease

1. Introduction

Numerous publications indicate an increased number of complications, prolonged
hospitalization time, mortality, and treatment costs due to Clostridioides difficile infection
(CDI) in patients with chronic kidney disease (CKD).

In CDI the etiological factors are toxins A and/or toxin B and binary toxin produced
by toxicogenic strains of Clostridioides difficile (CD), developing in the intestine mainly as a
result of intestinal microbiota disorders, which accompanies the use of antibiotics during
long hospitalization. The main symptoms of CDI are fever, abdominal pain and watery
diarrhea of varying severity, which in itself exposes the patient to water and electrolyte
disturbances [1], but the spectrum also includes pseudomembranous colitis, which is
associated with the most severe form of diarrhea associated with antibiotic therapy.

Machine learning allows one to imitate a simple decision-making process and performs
data classification based on previously calculated dependencies. These dependencies come
from supervised learning (i.e., a person gives the correct labels for existing and available
data, and the role of the program is to match the so-called hyperparameters to show the
greatest possible discriminatory ability on the various input data that will be used to
evaluate the models). Overcomplicating the model risks overfitting the model to the data
and completely ineffective prediction on new data. Too little fit or too little complexity
makes the model comparable to, or even worse than, the random classifier.

The aim of our work was to construct an effective predictive model with machine
learning in order to determine whether a patient is at risk of developing Clostridioides difficile
infection during hospitalization lasting more than 72 h. The main objective was to classify
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the patient, at some point, into a risk group and give him special care and a special
examination to investigate complications.

The technique used allowed us to build predictive models that may be used in risk
stratification by classification, screening testing, or predicting the course of the disease in
patients with various diseases. It is crucial to provide an appropriate database, containing
the parameters measured for all patients. It is also necessary to supervise the model learning
process by properly labeling records (i.e., assigning a class, for example “no infection” and
“infection”). This is how we implemented supervised machine learning methods.

Artificial intelligence is a flexible tool that may be implemented in various clinical
applications. One is to assess the risk of Clostridioides difficile infection at the time of
admission. This has therapeutic and economic implications. Similar models can be widely
used in various issues in the field of medicine.

2. Materials and Methods
2.1. Data Collection

The study was focused on the CDI risk prediction in 252 patients with CKD. admitted
to two nephrological departments between 1 January 2016 and 31 December 2020. Techni-
cally, the classifier was based on artificial intelligence techniques, in particular the random
forest classifier. Initially, a set of parameters was selected to evaluate different predictive
models and choose the one with the higher predictive value, considering the different input
fields. The database of 252 patients was randomly divided into two subsets: training and
testing in a ratio of 80:20, with 201 and 51 patients, respectively (Table 1).

Table 1. Patients’ baseline characteristic.

Variable Mean ± SD (Min–Max)

Age 65.57 ± 16.47 (22–96)

LOS [days] 14.93 ± 14.66 (3–105)

HD treatment 20 (7.9%)

CDK Stage 1 26 (10.3%)

CDK Stage 2 35 (13.9%)

CDK Stage 3 64 (25.4%)

CDK Stage 4 60 (23.8%)

CDK Stage 5 67 (26.6%)

Serum creatinine concentration at admission [mg/dL] 2.88 ± 2.70 (0.46–23.28)

Serum urea concentration at admission [mg/dL] 100.02 ± 73.34 (9–450)

Serum Albumin concentration at admission [g/dL] 3.42 ± 0.69 (1.5–5.72)

Tumor presence 24 (9.5%)

Number of antibiotics used before CDI-0 143 (56.7%)

Number of antibiotics used before CDI-1 49 (19.4%)

Number of antibiotics used before CDI-2 43 (17.1%)

Number of antibiotics used before CDI-3 11 (4.4%)

Number of antibiotics used before CDI-4 4 (1.6%)

Number of antibiotics used before CDI-5 2 (0.8%)

Length of antibiotics use before CD [days] 5.60 ± 8.42 (0–60)

PPI use 121 (48.0%)

Probiotics use 47 (18.7%)

Statins use 75 (29.8%)
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Table 1. Cont.

Variable Mean ± SD (Min–Max)

Immunosuppression 86 (34.1%)

Diabetes 72 (28.6%)

The Padua prediction score-0 51 (20.2%)

The Padua prediction score-1 81 (32.1%)

The Padua prediction score-2 29 (11.5%)

The Padua prediction score-3 14 (5.6%)

The Padua prediction score-4 17 (6.7%)

The Padua prediction score-5 31 (12.3%)

The Padua prediction score-6 15 (6.0%)

The Padua prediction score-7 9 (3.6%)

The Padua prediction score-8 3 (1.2%)

The Padua prediction score-9 2 (0.8%)

Gender 0 122 (48.4%)

ER stay before admission 128 (50.8%)

Norton scale 16.54 ± 3.49 (5–20)

Care class-1 99 (39.3%)

Care class-2 95 (37.7%)

Care class-3 58 (23.0%)

BMI 25.98 ± 5.48 (17–47)

Presence of AKI at admission 1 56 (22.2%)

CDI 72 (28.6%)
Abbreviations: LOS—length of stay; HD—hemodialysis; CKD—chronic kidney disease; CDI—Clostridioides difficile
infection; ER—emergency department; AKI—acute kidney injury; PPI—proton pump inhibitor; BMI—body
mass index.

2.2. Patient Qualification Criteria

The inclusion criteria were the presence of diarrhea, with more than three stools per
day, and abdominal pain or fever, which developed more than 72 h after admission, among
adult patients [1]. In all patients, a rapid enzyme cassette immunoassay was performed,
detecting the antigens of toxins A and B of CD in stool (TOX A/B QUIK CHEK®; Techlab,
Blackburg, VA, USA).

The patients were assessed in Norton Scale (ANSS) and classified as care class on a
scale of 1 to 4, where 1 indicates a self-care patient, 2 a partial care patient, 3 a complete
care patient, and 4 a critical care patient.

The exclusion criteria were missing medical history, length of stay less than three
days and transfer from another hospital. None of the patients included in the study used
laxatives or tube feeding.

2.3. Statistical Scoring

Several descriptive statistics are used to evaluate the binary classifier, which is the
random forest classifier. Using too few statistics runs the risk of overestimating the classifier
and being overly optimistic. To demonstrate the effectiveness of our model and to guarantee
genuine practical application, we used several statistics to describe the performance. The
model with the best statistics was finally saved and evaluated in detail. For the statistical
description of the model, the following parameters were used:

Accuracy is the ratio of correct matches or classifications to all predictions made, which
is the degree to which the model’s predictions are close to the true value. Accuracy is a
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value that is sensitive to the balance of the set. If there is a predominance of one type in
a dataset, there is a risk that accuracy will not be a reliable parameter. It is then required
to use additional parameters that will guarantee reliable performance of the predictive
model. Accuracy is a parameter that is very intuitive and easy to interpret and compare
classifiers. If the set contains more elements of one class, the classifier can achieve high
accuracy even though it will randomly classify the elements. This case is prevented, apart
from other measures, by the use of the area under the receiver-operator curve, which is
0.5 for the random classifier. Our dataset is definitely unbalanced, so we expected to use
several statistics. However, the dataset contains enough minority class elements to ensure
diversity and efficiency as measured by the other statistics described below.

The area under the receiver-operator curve (AUROC) is a basic parameter that de-
termines the discriminating ability of a binary classification model. The area under the
receiver-operator curve takes values from 0.0 to 1.0, where the value 0.5 applies to the
random classifier. In other words, a model with an area under the ROC of less than 0.5 is a
worse predictor than a coin toss.

Precision is the computer science equivalent of a positive predictive value and is
defined as the ratio of true hits to all positive calls.

Precision =
TP

TN + FP

Recall is equivalent to sensitivity and is the ratio of true positives to the sum of true
positives and false negatives.

Recall =
TP

TP + FN

The F1 result is the harmonic mean of precision and memory. F1-score is a stat
especially useful in unbalanced sets due to classes. However, it has a limitation that can
be circumvented by using a broader and more complex statistic, such as the Matthews
correlation coefficient. F1 score takes values from 0.0 to 1.0. If the model misclassifies all
positive samples, the F1 score is 0.0. In contrast, 1.0 is achieved for a perfect classification
with no false positives or false negatives.

F1 Score =
2

Precision−1 + Recall−1 =
2TP

2TP + FP + FN

Abbreviations: TP—true positives, FP—false positives, TN—true negatives, and FN—
false negatives.

The Matthews correlation coefficient (MCC) is a parameter that reaches a high value
if the model performs well enough in all four fields of the confusion matrix [2]. The use
of all statistics increases the evaluation time of many models but strengthens the proof of
the effectiveness of the predictive model. MCC is an indicator whose value is high with
appropriately correct classification, both positive and negative, in contrast to the previously
quoted statistical measures. The MCC value ranges from −1 to +1, with extreme values
being reached for perfect misclassification and perfect classification, respectively. MCC = 0
corresponds to a random classifier.

In the case of our database, three statistical measures are sufficient: accuracy, F1-score,
and MCC [2].

2.4. Random Forest Classifier

A single decision tree classifies a patient data record on the basis of multiple divisions
and selecting the lower node due to the fulfillment of the condition contained in the higher
node. A random forest classifier is a classifier composed of multiple decision trees trained
on randomly different subsets of the training set with an aim to reduce variance. A random
forest classifier divides the training set into bootstraps, which are used to build decision
trees. When we query such a classifier, the individual decision trees return their results,
which are ultimately averaged based on the majority of occurrences.
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A single decision tree node splits a set, based on a condition contained in that node.
In our case, it is a minority relation. If any of the splits leads to a set of elements with
one type of label, we say that there is zero impurity and no more splits are made at that
point. We expect to achieve less class impurity with each node. The randomness of a
decision tree means that a random set of variables is selected from the input variables to
generate a single tree. In this way, the amount of data encoded in the tree is reduced and
overfitting to the training data and insensitivity to the testing data are avoided. The use of
a set of decision trees allows for covering the training set and better performance. RFC is
a classifier insensitive to the scaling of input variables. In addition, RFC is characterized
by greater stability in relation to the number of input variables, which means that, for
example, a redundant input variable does not have to interfere with the generation of
a forest with good performance. It can then be easily eliminated, and the entire model
optimized for clinical use. Gini feature importance is the sum of average impurity declines
in the whole tree. The greater the Gini feature importance, the greater the contribution of a
given variable to the clarification of sets and the greater the number of significant divisions.

2.5. Algorithm

From the original database, containing 23 parameters, tables containing selected
columns were selected recursively. In this way, subsets of input variables were obtained,
on which the developed program built a random forest classifier model, then optimized it
and saved statistical scoring (5-cross validation by MCC) in logfile. Eventually, we selected
the best set of input variables and the model that guaranteed the best performance in
predicting the occurrence of CDI. The minimum size of the input data was 3 parameters,
at which the program recursively goes to a new subset of the input data. We obtained the
optimal execution of the program by parallelizing the calculations.

2.6. Feature Importances

An additional statistic describing the contribution of individual input variables to the
final predictive ability is typical for random forest and is called Gini feature importance
which value directly describes feature relevance. Gini feature importance is the higher for a
given parameter, the greater the share of the given parameter in the prediction. In other
words, if in a given model feature has high Gini importance, then the model without this
variable will have significantly worse performance. In case of random forest, Gini feature
importance also means that the given parameter is responsible for quite a lot of important
splits of the input data into the final classes.

3. Results

This was a retrospective study based on data of 252 patients, with both clinical signs
and proved CDI, randomly divided into two sets (i.e., training and testing) (Table 2). Based
on training data, we built models that we evaluated in five-cross validation for MCC.

Table 2. Patients’ baseline characteristic after dividing into two sets.

Variable

Training Set
N = 201

Testing Set
N = 51

Mean ± SD (Min–Max) Mean ± SD (Min–Max)

Age 65.12 ± 16.87 (22–96) 67.35 ± 14.84 (36–94)

LOS [days] 14.82 ± 14.95 (3–105) 15.35 ± 13.59 (3–59)

Hemodialysis treatment 15 (7.5%) 5 (9.8%)

CDK Stage 1 23 (11.4%) 3 (5.9%)

CDK Stage 2 26 (12.9%) 9 (17.6%)

CDK Stage 3 53 (26.4%) 11 (21.6%)
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Table 2. Cont.

Variable

Training Set
N = 201

Testing Set
N = 51

Mean ± SD (Min–Max) Mean ± SD (Min–Max)

CDK Stage 4 43 (21.4%) 17 (33.3%)

CDK Stage 5 56 (27.9%) 11 (21.6%)

Serum creatinine concentration at admission [mg/dL] 2.93 ± 2.86 (0.46–23.28) 2.68 ± 1.94 (0.5–9.63)

Serum urea concentration at admission [mg/dL] 97.78 ± 72.14 (9–450) 108.86 ± 78.02 (22–429)

Serum Albumin concentration at admission [g/dL] 3.4 ± 0.73 (1.5–5.72) 3.49 ± 0.52 (2.2–4.5)

Tumor presence 21 (10.4%) 3 (5.9%)

Number of antibiotics used before CDI-0 114 (56.7%) 29 (56.9%)

Number of antibiotics used before CDI-1 41 (20.4%) 8 (15.7%)

Number of antibiotics used before CD-2 33 (16.4%) 10 (19.6%)

Number of antibiotics used before CD-3 8 (4.0%) 3 (5.9%)

Number of antibiotics used before CD-4 3 (1.5%) 1 (2.0%)

Number of antibiotics used before CD-5 2 (1.0%) 0 (0.0%)

Length of antibiotics use before CDI [days] 5.39 ± 8.37 (0–60) 6.43 ± 8.65 (0–30)

PPI use 99 (49.3%) 22 (43.1%)

Probiotics use 39 (19.4%) 8 (15.7%)

Statins use 62 (30.8%) 13 (25.5%)

Immunosuppression 68 (33.8%) 18 (35.3%)

Diabetes 58 (28.9%) 14 (27.5%)

The Padua prediction score-0 39 (19.4%) 12 (23.5%)

The Padua prediction score-1 69 (34.3%) 12 (23.5%)

The Padua prediction score-2 24 (11.9%) 5 (9.8%)

The Padua prediction score-3 12 (6.0%) 2 (3.9%)

The Padua prediction score-4 10 (5.0%) 7 (13.7%)

The Padua prediction score-5 24 (11.9%) 7 (13.7%)

The Padua prediction score-6 13 (6.5%) 2 (3.9%)

The Padua prediction score-7 6 (3.0%) 3 (5.9%)

The Padua prediction score-8 2 (1.0%) 1 (2.0%)

The Padua prediction score-9 2 (1.0%) 0 (0.0%)

Gender 0 101 (50.2%) 21 (41.2%)

ER stay before admission 97 (48.3%) 31 (60.8%)

Norton scale 16.54 ± 3.56 (5–20) 16.55 ± 3.25 (7–20)

Care class-1 79 (39.3%) 20 (39.2%)

Care class-2 78 (38.8%) 17 (33.3%)

Care class-3 44 (21.9%) 14 (27.5%)

BMI 25.88 ± 5.69 (17–47) 26.33 ± 4.62 (17–35)

Presence of AKI at admission 43 (21.4%) 13 (25.5%)

CDI 58 (28.9%) 14 (27.5%)

The top random forest model made it possible to assess the risk of CDI in patients
from testing set hospitalized for more than three days with very high accuracy (98.04%),
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precision (0.9809) and recall (0.9804). The area under the receiver-operator curve (AUROC)
achieved 0.9545 (95% CI 0.8665-1.0) and MCC 0.94 (Figure 1). These statistics refer to
the testing set. The AUROC value of 0.9545 suggests that the model is close to the ideal
classifier, thus indicating a very clear discrimination power. Additionally, the MCC at the
level of 0.94 should be interpreted as a very good measure of the classifier, which turned
out to perform very well in each of the four fields of the confusion matrix. The variables
were selected on the basis of the training set. Parameters considered, at the time of hospital
admission, were the length of antibiotics use before CDI in days, status of ER stay before
admission, Norton scale, care class, BMI with importance of 46.99%, 8.55%, 23.28%, 8.13%,
and 13.05%, respectively. This means that the length of antibiotics use as a determinant
variable occurred in almost half of the conditions in the nodes and thus accounts for almost
half of all divisions of the input set in relation to the final class “no infection” or “infection”.
Secondly, in the prediction and separation of the input set, the Norton scale and then the
body mass index (BMI) are important.
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Figure 1. Random forest classifier with given input variables: length of antibiotics used before CDI,
in days, status of ER stay before admission, Norton scale, care class, BMI showed very good ability to
discriminate patients who developed CDI.

In each class, the model achieved a precision of 0.98 and 1.00 for non-CDI and CDI
class, respectively, recall of 1.00 and 0.91 and F1-score of 0.99 for no-CDI and 0.95 for CDI
class (Table 3). In the table we show the results of the precision, recall and F1 score statistics
for the individual classes “no-CDI” and “CDI” regarding the absence of infection with
Clostridioides difficile or infection, respectively.

Table 3. Performance statistics for individual classes: non-CDI and CDI.

Precision Recall F1-Score

Non-CDI 0.98 1.00 0.99

CDI 1.00 0.91 0.95

Accuracy 0.98

Macro average 0.99 0.95 0.97

Weighted average 0.98 0.98 0.98

The macro average is the arithmetic average of the respective precision, recall, F1-
score values for both “no-CDI” and “CDI” classes. The weighted average is the weighted



J. Clin. Med. 2023, 12, 4751 8 of 10

average of the respective precision, recall, and F1-score values, considering the number
in both classes. The model has excellent sensitivity in rejecting CDI infection during
hospitalization. It also has perfect positive predictive power in predicting CDI infection.
Our model detects true positives slightly more often for the no-CDI class, which results
from the higher F1-score for this class. Nevertheless, the remaining statistical measures
remain at a high level, indicating the effectiveness of the model developed by us. Detailed
leave-one-out cross validation was performed on the test set and showed an average AUC
of 0.94 (Figure 2).
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Figure 2. Due to the risk of bias due to the small number of samples, a leave-one-out cross validation
analysis was performed which resulted in an averaged AUC of 0.9370.

4. Discussion

To the best of ourknowledge, this is the first study using artificial neural network as a
diagnostic tool to establish risk factors of CDI, among patients with CKD.

In the study by Lis et al. the length of antibiotic therapy and the Norton class were
among the key parameters associated with the risk of CDI [3]. In our experience, these
factors also turned out to be the most important, which in a way indicates the convergence
of traditional statistical analysis with modeling based on machine learning.

Normal intestinal microbiota practically protects against CDI, while disorders resulting
from the extensive use of antibiotics may lead to overgrowth of CD strains, producing toxins
responsible for diarrhea, including pseudo-bloc enteritis. Different groups of antibiotics are
significantly associated with the development of CDI and the risk varies depending on the
antibiotic or chemotherapeutic agent and the duration of its use, which in our model is the
most important input parameter [4].

Also, ER stay before admission as risk factor has been considered by other authors as
an independent factor, especially regarding infections among patients who did not used
antibiotics or medical care, apart from their stay at the ER [5–8]. Those data correlate with
our present results.

The Norton scale combines five parameters: general physical condition, mental state,
physical activity, mobility and abstinence. A lower score is associated with less activity and
greater dependence on the environment and greater exposure to pathogenic factors [9]. It
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is considered as a predictor for in-hospital mortality on internal medicine departments [10].
The present study revealed increased CDI among patients with lower Norton scale score.

Greater dependence of patients on outside help applies to patients particularly exposed
to broad antibiotic therapy, elderly patients, and the chronically or seriously ill. Care class
is a fairly widely interpreted and used indicator that can, however, determine whether a
patient is at risk of CDI [11].

In some studies, weight disorders in the form of being underweight or having extreme
obesity, with a BMI over 35, are associated with an increased risk of CDI [12,13]. However,
according to recent metanalysis BMI was found to have negative correlation with CDI [14].
Our study results indicate BMI as a relevant risk factor for CDI development. This topic
needs the further investigation in order to establish possible relation.

With the help of machine learning, we can effectively predict whether a patient hospital-
ized in the ward is likely to develop CDI. The assessment is possible on the basis of simple
indicators, assessed at the time of admission, and they do not require costly tests or analyses.

Ranking based on the MCC is conducive to finding a model that is reliable in all
four fields of the confusion matrix. However, if we were looking for a model whose task
would only be to accurately exclude or confirm a disease, it is possible that a model with
a worse MCC would be more advantageous, especially when it depends more on the
sensitivity or specificity of the classifier.

Our study had several strengths. It is remarkable that no study before has investigated
role of artificial neural network in CD development among patients with CKD. In addi-
tion, relatively large study group (N = 252) underwent artificial intelligence-based neural
network investigation.

A limitation of our study was the two-center study population, which could be
expanded in the future and the introduction of a CDI risk assessment upon adoption as
common practice could be considered. The currently used scales allow to identify risk
groups, while the model compiled from various relationships between variables allows for
precise indication to which group the patient belongs. The larger the group of patients, the
more reliable the model will be.

5. Conclusions

The study supports the usefulness of AI in a reliable prediction of CDI risk. In our
study, length of antibiotic use before CDI, ER stay before admission, Norton scale score,
care class, and BMI were considered as risk factors for CDI development. AI allows
for the identification of patients at risk, who should be carefully monitored for possible
complications and implementation of treatment preventing the occurrence of CDI. The
two-center machine learning study to assess the risk of Clostridioides difficile infection may
be extended in the future to include new patient data from other centers as well. Artificial
intelligence techniques are scalable solutions that can be used in various fields of medicine
which we have shown in our previous publications on this subject [15–17].

Similar machine learning models used to predict the risk of Clostridioides difficile
infection can be used in conjunction with other models based on the same technique to
comprehensively manage patient therapy and optimize hospitalization both in terms of
treatment effectiveness and minimizing generated costs.
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