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Abstract: Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases with probably
differential underlying physiopathology. Despite the revolutionary era of biologics, some patients
remain difficult to treat because of disease severity, drug adverse events, drug allergy or association
with severe comorbidities, i.e., uveitis, interstitial lung disease and macrophagic activation syndrome.
Janus Kinase (JAK) inhibitors are small molecules that target JAK/Signal Transducers and Activators
of Transcription (STAT) pathways, which could then prevent the activity of several proinflammatory
cytokines. They may provide a useful alternative in these cases of JIA or in patients actually affected
by Mendelian disorders mimicking JIA, such as type I interferonopathies with joint involvement, and
might be the bridge for haematopoietic stem cell transplantation in these disabling conditions. As
these treatments may have side effects that should not be ignored, ongoing and further controlled
studies are still needed to provide data underlying long-term safety considerations in children and
delineate subsets of JIA patients that will benefit from these promising treatments.
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1. Introduction

Juvenile idiopathic arthritis (JIA) is a heterogeneous group of chronic diseases of
unknown origin that affect the joints, with onset before the age of 16 years [1]. Among them,
systemic juvenile idiopathic arthritis (sJIA), classified as an autoinflammatory syndrome,
and polyarticular JIA (pJIA), including initial polyarticular JIA (affecting five joints or more)
or extended oligoarticular JIA (oJIA), are usually the most complicated to treat. The different
subtypes of JIA have multifactorial and diverging proposed pathophysiology mechanisms,
involving innate and adaptive immune dysfunction, auto-antibody production and immune
cell population dysregulation, such as T cells and monocytes [2]. Of note, cytokines such as
IL-1ß, IL-6, TNFα, IL-18 and S100 protein have been implicated in (s)JIA pathology [3–5].

Targeted therapies have therefore been developed to specifically antagonise a single
cytokine with recombinant monoclonal antibodies or recombinant proteins. Among them,
biological therapeutics or biologics are purified treatments from large-scale cell cultures,
including vaccines, growth factors, immune modulators, and monoclonal antibodies. Etan-
ercept, which is a circulating-TNFα competitive inhibitor to its cell surface receptors, was
the first biologic approved for clinical use in 1999 [6]. Tocilizumab (a recombinant antibody
against IL-6), Canakinumab (a recombinant monoclonal IL-1ß antibody) and Anakinra (a
recombinant IL-1ß receptor antagonist) were subsequently developed and then approved
by the European Medicine Agency (EMA) and/or the US Food and Drug Administration
(FDA) in sJIA, respectively, in 2011, 2013 and 2018 [7]. Tocilizumab has also been approved
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by EMA and FDA for pJIA in 2013 [7]. Finally, secukinumab was recently approved by
EMA and FDA for enthesitis-associated JIA and psoriatic arthritis-associated JIA.

Since their first approval in the early 2000s, biologics have revolutionised medical care
and prognosis for young patients affected by such chronic and disabling conditions. Never-
theless, despite the therapeutical progress over the last two decades, around one-fourth of
patients with JIA remain resistant to those treatments and develop chronic disease courses,
with adverse events of long-term steroids, joint impairment and disability, especially in
pJIA and sJIA [8]. Moreover, associated conditions to JIA, i.e., uveitis, macrophagic activa-
tion syndrome (MAS) or lung features, may constitute serious complications and increase
therapeutic challenges for these young patients. Thus, there are still unmet needs for novel
drugs to be developed for such conditions.

Studies over the past years have revealed that JAK (Janus kinase)/STAT (signal trans-
ducer and activator of transcription) signalling pathways are central to the pathogenesis
of several immune-mediated inflammatory conditions, as mirrored in the inborn errors
of immunity affecting key molecules in these pathways [9]. JAK/STAT are proteins that
transduce intracellular signals of numerous ligands, including cytokines (among them,
IL-2, IL-6 and IL-10 family members, as long as type I and II interferons -IFN I and IFN
II), growth factors and hormones [10–12]. JAK inhibitors are small molecules targeting
and specifically inhibiting JAK protein families. Initially developed for myeloproliferative
diseases and large granular leukaemia, respectively, for somatic JAK2 and STAT3 gain of
function (GOF) mutations, those treatments have been subsequently approved based on the
results of clinical trials in the context of inflammatory or auto-immune diseases [12], e.g.,
rheumatoid arthritis and psoriasis in adult patients. JAK inhibitors are now an important
class of targeted synthetic DMARDs [12] (tsDMARDs) with the goal of preventing joint
damage. Moreover, patients with monogenic type I interferonopathies, i.e., Mendelian
diseases driven by inappropriate IFN I pathway, have been treated using JAK inhibitors
with promising results [13].

Here, we provide a comprehensive review of the use of JAK inhibitors in JIA, encom-
passing pJIA and sJIA, i.e., Still disease, and rare Mendelian disorders predisposing to
juvenile arthritis.

2. What Are JAK Inhibitors?

The JAK family is constituted by four intracellular tyrosine kinases JAK1, JAK2,
JAK3 and Tyk2. JAKs are members of the tyrosine kinase family and represent essential
signalling mediators downstream of cytokine receptors. Cytokine binding to its receptor
induces phosphorylation of respective JAKs, which then turn into their activated state,
subsequently leading to recruitment and activation through phosphorylation of associated
STATs (Figure 1). The STAT family includes seven members in mammals: STAT1, STAT2,
STAT3, STAT4, STAT5A, STAT5B and STAT6 [14]. After being activated, the STAT complex
translocates into the nucleus and induces factor transcription. According to the intracellular
interaction between JAKs/Tyk2 and STATs and their specific cytokine receptor, subsequent
different downstream signalling will occur. Two types of cytokine families have been
individualised. The type I cytokine family includes a total of 29 cytokines, which signal
through haemopoietin or type I cytokine receptors, transmembrane molecules that have
conserved amino acid motifs (WSXWS), including IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9,
IL-11, IL-12, IL-13, IL-15, IL-21, IL-23, IL-27, IL-31 and IL-35, and also growth hormone
(GH), prolactin (PRL), erythropoietin (EPO), thrombopoietin (TPO), G-CSF, GM-CSF, leptin,
leukaemia inhibitory factor, oncostatin M (OSM), ciliary neutrophilic factor, cardiotropin-1
(CT1) cardiotropin-like cytokine factor 1 (also referred to as neurotrophin-1 or NNT-1) and
thymic stromal lymphopoietin [11]. The type II cytokine family regroups 28 cytokines,
which signal through IFN receptors and IL-10 receptors, both of which lack the WSXWS
motifs: IFN I, IFN II, IFN III and IL-10 cytokines (IL-10, IL-19, IL-20, IL-22, IL-24 and
IL-26) [11].
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Figure 1. Schematic representation showing JAK-STAT pathways. The ligand (e.g., a cytokine) binds
to its specific receptor that recruits two JAK molecules (either the same or two different JAKs), which
in turn recruit and activate two STAT molecules through phosphorylation. The STAT complex then
translocates into the nucleus and binds to a specific promoter of transcription factors to induce gene
expression. JAK: Janus kinase; STAT: signal transducer and activator of transcription. Figure done
with Biorender.

JAK inhibitors (JAKis) differentiate themselves from biologic DMARDs (bDMARD,
i.e., large molecules that must be administered parenterally) as they are orally available.
They are referred to tsDMARDs, i.e., small molecules that enter the cytoplasm and directly
inhibit kinases or phosphodiesterases. Thus, they affect the regulation of a diverse range of
intracellular signalling pathways (Figure 2) [12]. JAKis induce a selective interference in the
ATP-binding site of JAKs or prevent phosphorylation of STATs and, hence, downregulate
downstream signalling pathways. Thus, their immunomodulatory effect has been used
for a broad range of diseases including inflammatory and auto-immune diseases, such
as psoriasis or rheumatoid arthritis in adults [15–17]. Six JAKis are currently approved
for different conditions: ruxolitinib, tofacitinib, baricitinib, peficitinib, upadacitinib and
filgotinib (Table 1). They variably inhibit JAK1, JAK2 or JAK3, hence inducing variable
downregulation of downstream cytokine effects. For instance, although it was initially
thought to selectively block JAK3, tofacitinib variably inhibits JAK1, JAK3 and to a lesser
extent, JAK2, both in vitro and in vivo. Tofacitinib was also reported to antagonise, in the
same way as baricitinib, the JAK-STAT-mediated differentiation of plasmablasts, T helper
1 (Th1) and T helper 17 (Th17) cells and T cell stimulation by dendritic cells in cell-based
assays [12,18,19]. One study showed that filgotinib was more JAK1-inhibitory-specific than
upadacitinib, tofacitinib and baricitinib [20] and might, therefore, induce fewer side effects,
in particular herpes zoster zona and thrombo-embolic events [21]. Moreover, a pan JAK
effect can be expected when using a high dose of JAKis. Nevertheless, future comparison
studies are needed to expand our partial knowledge of in vivo downstream-specific JAKi
effects. Of note, such effects may partially depend on JAK and STAT isoforms and specific
tissue drug penetrance [12].
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Figure 2. Schematic representation showing signalling pathways through JAKs. EPO: erythropoietin;
GM-CSF: granulocyte–macrophage colony-stimulating factor; JAK: Janus kinase; IFN: interferon;
IL-: interleukin, LIF: leukaemia inhibitory factor; OSM: oncostatin M; STAT: signal transducer and
activator of transcription; TPO: thrombopoietin. Figure done with Biorender.

Table 1. Currently approved marketed JAK inhibitors (1 July 2023).

Name Specificity Elimination FDA
Approved Indications

EMA
Approved Indications

Baricitinib JAK1, JAK2 Urine excretion RA, hospitalised adults
with COVID-19 RA

Fedratinib JAK2, FLT3 Metabolism by cytochrome
P450 complex

Intermediate-2 or high-risk
primary or secondary
(post-polycythemia

vera or post-essential
thrombocythemia) MF

Myeloproliferative
disorders, primary MF

Filgotinib JAK1 Urine excretion None RA

Peficitinib pan-JAK Metabolism independent of
cytochrome P450 complex None None

Ruxolitinib JAK1, JAK2 Metabolism by cytochrome
P450 complex

Topical treatment of AD
and vitiligo

Topical treatment of
vitiligo

Tofacitinib JAK1, JAK3 (JAK2) Metabolism by cytochrome
P450 complex

RA, SPA, PsoA, moderate
to severe UC, pJIA RA

Upadacitinib JAK1 Metabolism by cytochrome
P450 complex

RA, SPA, PsoA, moderate
to severe UC and CD, AD RA

Abbreviations: AD: atopic dermatitis; CD: Crohn’s disease; COVID-19: coronavirus disease 2019; JAK: Janus
kinase; pJIA: with polyarticular course juvenile idiopathic arthritis; FLT3: Fms-like tyrosine kinase 3; MF:
myelofibrosis; PsoA: psoriatic arthritis; RA: rheumatoid arthritis; SPA: spondyloarthritis; UC: ulcerative colitis.

3. JAK Inhibition in Adult Arthritis and Beyond

Initially indicated for myeloproliferative diseases secondary to somatic JAK2 gain of
function mutations, JAKis were then developed for many diseases in adulthood, especially
rheumatic diseases, and have been used this last decade. Indeed, JAKis were approved by
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the FDA and EMA (baricitinib, tofacitinib and upadacitinib, but not filgotinib) for rheuma-
toid arthritis (RA). They have proved to be at least non-inferior to adalimumab (baricitinib
and upadacitinib were more effective, but filgotinib was non-inferior) or abatacept (upadac-
itinib was superior) [16,22–24]. JAK inhibition was also approved by the FDA and EMA
for spondyloarthritis (tofacitinib in combination with non-biologic DMARDs and upadaci-
tinib), and phase III trials showed at least similarity to TNF inhibitors [25,26]. In addition,
psoriatic arthritis has specific indications for some JAKis (tofacitinib, upadacitinib).

Although inflammatory bowel diseases have distinct pathophysiology from rheumatic
diseases, JAK inhibition may target cytokines involved in Crohn’s disease (IFNγ, IL-6 and
IL7, with a predominant TH1 and TH17 cell immune response) and ulcerative colitis (IL-5,
IL-13, IL-15 and IL-33 TH2 cell associated response). Tofacitinib and upadacitinib were
approved for moderate to severe ulcerative colitis after phase III studies and tofacitinib
showed efficacy for refractory ulcerative colitis. Studies are currently ongoing for Crohn’s
disease, but upadacitinib has already been approved by the FDA in that indication.

Topical ruxolitinib and upadacitinib were approved for atopic dermatitis and non-
segmental vitiligo, the latter having shown superiority to dupilumab (monoclonal antibody
targeting IL-4 and IL-13), albeit associated with a higher frequency of serious adverse infec-
tions, including one fatal course due to influenza [27]. Alopecia areata and palmoplantar
pustulosis are other dermatological conditions for which JAK inhibition has proven some
efficacy [12,28].

Finally, JAK inhibition is currently being assessed for other autoimmune diseases,
such as systemic lupus erythematosous, giant cell arteritis, systemic sclerosis and dermato-
myositis [12,29,30].

4. JAK Inhibition in Oligoarticular, Polyarticular, Enthesitis-Related and Systemic JIA

Paediatric rheumatology patients differ from adults affected by rheumatic diseases.
Indeed, the pathophysiology is usually not specifically the same, especially in genetic
conditions, which account for more juvenile forms. Moreover, pharmacokinetics differs
in young patients and may need specific future studies. Several case reports and case
series paved the way for randomised trials on pJIA and SoJIA, with JAKis used in off-label
indications [31–41]. To date, 45 patients have been reported to be at least partially efficiently
treated with tofacitinib, 4 pJIA patients with baricitinib and 1 sJIA patient with ruxolitinib
(Table A1) [31–41]. Among them, two patients with JIA were efficiently treated during
adulthood, respectively, with tofacitinib for microscopic colitis (and arthritis) and with
ruxolitinib for EBV-related MAS in previously controlled sJIA [37,41]. Treatment failure
has rarely been reported (two non-responders in the single-centre retrospective study by
Kostik et al.) [38]. Nevertheless, controlled studies are still needed to confirm if JAKis
would constitute promising treatment for refractory JIA or for children who do not tolerate
methotrexate (because of hepatitis liver enzymes abnormality or nausea and vomiting) or
biologic subcutaneous injections/intravenous infusion.

Tables 2 and 3 summarise all completed, current and future clinical trials assessing
JAKis in the context of JIA. Ruperto et al. were the first to report the results of a double-blind,
placebo-controlled, withdrawal phase 3 randomised trial (ClinicalTrials.gov, NCT02592434)
on tofacitinib for polyarticular course JIA (extended oJIA, rheumatoid factor (RF) positive
or negative pJIA or sJIA without active systemic features) [42]. Between 2016 and 2019,
225 patients aged from 2 years to younger than 18 years were included from 64 PRINTO
centres in 14 countries. Among them, 82% had polyarticular course JIA, 9% psoriatic JIA
and 9% enthesitis-related arthritis (ERA). Both last groups were included as exploratory
endpoints. After the first open-label phase, where all 184 patients with a polyarticular
course of JIA received tofacitinib, half of them were assigned to continue tofacitinib, and
the rest of them received a placebo. In the tofacitinib arm, more patients achieved the
primary endpoint, i.e., lower flare rate (respectively 29% vs. 53%; hazard ratio 0.46, 95% CI
0.27–0.79, p = 0.0031) and a significantly longer time to JIA flare than in the placebo group
(71% patients remained flare-free in the tofacitinib group). Safety was similar, with mild
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or moderate adverse events monitored in both groups (77% in the tofacitinib group and
74% in the placebo group). Severe adverse events were reported during the first part of
the study in five patients (2%), and three were reported in the placebo group (4%) during
the second part. Of note, the authors reported adverse events of special interest in the
tofacitinib arm: mild and moderate liver enzyme elevation (respectively, n = 2 and n = 1),
serious infections in three patients (one pneumonia, one epidural empyema and sinusitis
in a patient with previous medical history of craniostenosis repair and one appendicitis)
and mild monodermatomal non-serious herpes zoster occurred in two patients (1%). No
death, malignancies, opportunistic infection, or thrombotic events were observed during
the study period.

Table 2. Completed randomised controlled studies on JIA patients treated with JAK inhibitors (April
2023).

Drug Study (Phase) Dose Study
Time Population N Age

Criteria
Primary

Outcome
Main

Conclusion

Tofacitinib
(Xeljanz®)

A3921104,
NCT02592434

(Phase 3)
2–5 mg BID 44 ERA, pJIA,

PsoJIA 225 2–17 years Disease
flare Effective

Baricitinib
(Olumiant®)

JUVE-BASIS,
NCT03773978

(Phase 3)

4 mg
(9–18 years)

2 mg (<9 years)
44

pJIA,
extended oJIA,
ERA, PsoJIA

220 2–18 years Disease
flare Effective

Abbreviations: ERA, enthesitis-related juvenile idiopathic arthritis; oJIA, oligoarticular juvenile idiopathic arthritis;
pJIA, polyarticular juvenile idiopathic arthritis; PsoJIA: psoriatic juvenile idiopathic arthritis; sJIA, systemic
juvenile idiopathic arthritis.

Table 3. Ongoing, recruiting, and future studies on JIA patients treated with JAK inhibitors (April
2023).

Drug Study Sponsor Population Region Study Duration Primary
Outcome

Baricitinib
(Olumiant®)

JUVE-BALM,
NCT04088396 Eli Lilly sJIA

1–18 years Global 2/2020–4/2023 Phase 3
Disease flare

Baricitinib
(Olumiant®)

JUVE-X,
NCT03773965 Eli Lilly

JIA (pJIA, oJIA,
PsoJIA, ERA, sJIA)

1–18 years
Global 4/2019–12/2030

Phase 3
Long term

safety

Baricitinib
(Olumiant®)

vs.
Adalimumab

JUVE-
BRIGHT,

NCT04088409
Eli Lilly

JIA uveitis, chronic
anterior ANA+

uveitis
Europe 9/2019–6/2022

Phase 3
Clinical

response and
safety

Tofacitinib
(Xeljanz®)

A3921165,
NCT03000439 Pfizer sJIA Global 2/2018–8/2023 Phase 3

Disease flare

Tofacitinib
(Xeljanz®) NCT01500551 Pfizer JIA

2–18 years Global 3/2013–11/2025
Phase 3

Long term
safety

Tofacitinib
(Xeljanz®) NCT05754710 Pfizer pJIA and PsoJIA

2–18 years Korea 8/2023–1/2027
Phase 3

Long term
safety

Upadacitinib
(Rinvoq®)

ABT494,
NCT03725007 AbbVie pJIA

2–18 years Global 6/2019–8/2027
Phase 1

PK, safety,
tolerability

Upadacitinib
(Rinvoq®)

vs.
Tocilizumab

NCT05609630 AbbVie sJIA
1–18years Global 3/2023–12/2028

Phase 3
Clinical

response

Abbreviations: ERA, enthesitis-related juvenile idiopathic arthritis; oJIA, oligoarticular juvenile idiopathic arthritis;
pJIA, polyarticular juvenile idiopathic arthritis; PK, pharmacokinetics; PsoJIA, psoriatic juvenile idiopathic
arthritis; sJIA, systemic juvenile idiopathic arthritis.
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Thus, only tofacitinib (Xeljanz®) is currently approved in the USA by the Food and
Drug Administration (FDA) and the European Medicine Agency (EMA) in the context of
pJIA in children older than 2 years as a second-line treatment, after failure of methotrexate,
along with methotrexate or alone. The recommended FDA/EMA dosages for pJIA and
psoriatic JIA are indicated in Table 4. Other studies were conducted (baricitinib for pJIA,
with reported efficacy; this study is awaiting publication) or are still ongoing or planned
(baricitinib, tofacitinib or upadacitinib for pJIA or sJIA) to complete the initial results
obtained in the context of joint features in JIA (Table 4). Nevertheless, JIA patients may
develop severe refractory-associated comorbidities, and JAKis may constitute a promising
therapeutic approach for these disorders.

Table 4. Recommended tofacitinib administration.

Body Weight (BW) Dosage

10 kg ≤ BW < 20 kg 3.2 mg (3.2 mL oral solution) twice daily
20 kg ≤ BW < 40 kg 4 mg (4 mL oral solution) twice daily
BW ≥ 40 kg 5 mg (one 5 mg tablet or 5 mL oral solution) twice daily

5. JAK Inhibition in Uveitis, Alopecia Areata, Lung Disease and MAS Associated
with JIA

In JIA, uveitis is one of the extra-articular-associated conditions with high morbidity
(synechiae, cataract) and risk of blindness in extreme cases if not promptly diagnosed or
treated properly [43,44]. TNFα antagonists, such as adalimumab and infliximab, have
proven their efficacy in refractory cases upon methotrexate treatment and are currently
recommended internationally [45,46]. Nevertheless, some refractory cases are reported
upon adalimumab or infliximab treatment, with or without evidence of biologic-specific
autoantibodies, and may need alternative treatments. Five cases of JIA-related uveitis
efficiently treated with JAKis (baricitinib, n = 3; tofacitinib, n = 1; upadacitinib, n = 1)
have been reported to date after failure of several biological treatments including TNFα
antagonists [47,48]. One patient treated with upadacitinib achieved clinical joint and oph-
thalmological remission after tofacitinib failure. Two other patients with JIA-associated
uveitis were treated with JAKis, but no information was provided about the treatment effi-
cacy [38]. With the aim of properly answering the question of JAKis efficacy for JIA-related
uveitis, an open-label, adalimumab active-controlled, phase 3 clinical multicentre trial
(JUVE-BRIGHT) is currently ongoing (Table 3) [49]. Its purpose is to compare adalimumab,
a current reference treatment for JIA-uveitis, and baricitinib in children aged 2 to 18 years
old. The primary endpoint is the proportion of patients with a response at week 24, and
the results may improve treatments offered for JIA-related uveitis.

Of note, three cases of JIA-associated total alopecia areata were reported to be effi-
ciently treated with tofacitinib [38]. The association between alopecia and JIA is scarce,
and these patients may have underlying or associated specific auto-immune conditions,
which might explain the good efficacy of JAK inhibition in all three cases. In addition,
JAKis are approved for alopecia areata in adult patients. Nevertheless, alopecia is not
a life-threatening condition, and one might consider infectious risk balance versus the
well-being of the child.

A recently reported complication in JIA is drug reaction with eosinophilia and systemic
symptoms (DRESS)-like and rapidly progressive interstitial lung disease (ILD) characterised
by lymphocytic interstitial inflammation and alveolar proteinosis [2,50]. In addition to
being associated with HLA DRB1*15, this severe condition presents with very high levels of
IL-18, and one case was reported to be efficiently treated with MAS-825, a drug combining
canakinumab and anti-IL-18 [51–53]. However, ILD cases have been observed in biologics
targeting IL-1ß and IL-6. In addition, it has been hypothesised that IL-1ß inhibition may
induce increased levels of IFN I because of a cross-regulation between both cytokines,
as observed in subgroups of sJIA patients [54,55]. Such hypersecretion of IFN I could
subsequently lead to an IL-18 increase, thus enabling IFNγ-mediated hyperinflammation
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and paving the way for MAS and ILD [2,56]. Thus, a long-term assessment and, at best, a
randomised-controlled trial, would be necessary to become more confident in prescribing
this new combined anti-IL1 and IL-18 therapy.

An alternative option would be JAKis, as three cases were separately reported with
efficient control of lung disease (tofacitinib, n = 2; ruxolitinib, n = 1) [38,40,57]. IL-18 is not
supposed to be specifically antagonised by JAKis. However, these patients were reported
associated with MAS, which is known to be linked to IFNγ, and JAK1/2 inhibition should
be efficient to control such a trigger (Figure 2) [52]. Indeed, a specific group of cytokines
that signal through the JAK/STAT pathway are the interferons (IFNs), which regroup three
families. Type I IFNs (IFN I) mainly include 13 subtypes of IFNα and bind to the specific
IFNα receptor (IFNAR) heterodimer (IFNAR1/2), which signals downstream through
JAK1 and Tyk2 (Figures 1 and 2). Type II IFN (IFN II) or IFNγ binds to the IFNγ receptor
(IFNGR) heterodimer (IFNGR1/2), which signals downstream through JAK1 and JAK2
(Figures 1 and 2) [58]. Type III IFNs (IFN III) include four IFNλ (1–4) and signal through
a heterodimeric receptor comprising IL-10 receptor ß and IFNλ receptor 1 (IFNLR1) [59].
IFN I and IFN II are not commonly associated with JIA. Nevertheless, some patient subsets
have been reported to harbour elevated levels of IFN I [54,55] and might be included at
some point in already individualised or non-classified genetic type I interferonopathies.

6. JAK Inhibition in Mendelian Conditions Mimicking JIA
6.1. JAK Inhibition in Type I Interferonopathies

Type I interferonopathies are a group of Mendelian auto-inflammatory diseases char-
acterised by constitutive signalling of IFN I [60] and include more than 30 monogenic
disorders. Increased production of IFN I or defective retro-regulation drives the consti-
tutive expression of IFN-stimulated genes (ISGs) (also called IFN signature) through the
engagement of a common receptor (IFNAR) that subsequently activates JAK1 and Tyk2.
The concept of type I interferonopathies was raised in 2011 [61] by Yanick J Crow and
supports the hypothesis that the features seen in these syndromes are driven—at least in
part—by the excessive or dysregulated IFN I production and should be alleviated using
a therapeutic strategy with drugs specifically targeting this pathway [60]. The clinical
phenotype of type I interferonopathies extended along with the description of case re-
ports and patient cohorts [60,62]. Of note, it has become clear that a subset of patients
present with articular involvement, often with an early onset, a positivity for the RF and a
severe presentation [63,64]. Clinical aspects include arthralgia, polyarthritis, Jaccoud-like
arthropathy and very few cases of osteonecrosis. In particular, COPA syndrome, due to
heterozygous mutations in COPA, is associated with joint involvement in around 70% of
patients [65]. Interestingly, an ‘isolated’ RF-pJIA can underly such Mendelian interferonopa-
thy, as reported by Bader-Meunier et al. [66]. STING-associated vasculopathy with onset
in infancy (SAVI), a severe type I interferonopathy due to gain of function mutations in
STING1, can also present with joint involvement [64]. However, most of these patients also
have at least one of the core features seen in SAVI, i.e., severe skin vasculopathy, systemic
inflammation, and interstitial lung disease. Finally, Singleton–Merten syndrome (SMS) is
a rare type I interferonopathy caused by heterozygous GOF mutations in IFIH1 [67], and
patients variably present with abnormal calcification of the aorta and cardiac valves, dental
caries and early tooth loss, osteoporosis, psoriasis and muscular weakness. Of note, SMS
patients can also have Jaccoud-like arthropathy [68], a feature reminiscent of SAVI and
COPA syndrome.

In the last 10 years, JAKis have been trialled in type I interferonopathies that are
usually poorly responsive to conventional immunosuppressive drugs [13]. When present
in these severe conditions, inflammatory joint involvement/arthritis usually responds well
to JAKis [64,69,70]. However, the use of JAKis in these rare inherited diseases deserves
additional reporting to conclude the efficacy of these drugs on these exceptional ‘JIA’
features. Of interest, a resolution of acro-osteolysis was reported in one SMS patient treated
with ruxolitinib [71].
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6.2. JAK Inhibition in JIA Associated with LACC1 Deficiency

In addition to type I interferonopathies, autosomal recessive mutations in LACC1 have
been described as the first cause of Mendelian JIA [72,73]. LACC1 encodes the enzyme
laccase domain-containing 1, and the recent work by Omarjee et al. suggested that LACC1
deficiency is associated with impaired autophagy in macrophages [74]. This peculiar sJIA
or pJIA, with often systemic inflammation, induces progressive joint damage with poor
response to aggressive treatment [73]. Two LACC1-deficient patients were treated with
baricitinib at the time of publication [74] with partial clinical efficacy (data not published).
More cases and/or clinical studies are needed to assess JAKis efficacy and indication in
LACC1 deficiency.

7. Safety

All new therapeutic strategies should aim for safety (i.e., avoiding drug toxicity and
complications, especially infections or malignancies) and efficacy (i.e., control of systemic
and joint inflammation, prevention of relapse, avoidance of disease comorbidities and
structural damage, normal growth and improving quality of life) on the short and long term.

7.1. Infections

The majority of JAKi side effects are infectious. In particular, herpes zoster (VZV reac-
tivation) is the most frequent infection reported in adults treated with these drugs [75–77].
This viral reactivation was also reported in children treated with JAKi for different con-
ditions, including JIA [42] and monogenic type I interferonopathies [64,69]. BK virus
reactivation was also observed and could progress to severe nephropathy [69]. Other
opportunistic or severe infections (toxoplasmosis, tuberculosis, pneumococcal infection)
have been documented [69,78], and John Cunningham (JC) virus-mediated progressive
multifocal leukoencephalopathy was reported in one adult patient treated with ruxolin-
itib [79]. It is therefore important to assess infectious diseases before starting JAKi treatment
and to monitor replication using repeated polymerase chain reaction (PCR), especially if
they are prescribed with other immunosuppressive treatments, such as steroids (Table 5,
summarising our daily practice).

7.2. Cytopenia

The erythropoietin and thromboietin signalling pathways are affected by JAK2 inhi-
bition, which can lead to cytopenia in a dose-dependent manner [80]. Lymphopenia and
a decreased number of NK cells can be observed with tofacitinib, depending on the dose,
likely due to the inhibition of JAK3-dependent T-cell functions.

7.3. Thombo-Embolic Events

A warning signal for increased risk of thromboembolic complications (i.e., deep
vein thrombosis and pulmonary embolism) and major adverse cardiovascular events
was raised by post-marketing safety studies on tofacitinib, ruxolitinib and baricitinib,
especially in patients carrying other risk factors for such complications (e.g., positivity for
antiphospholipid antibodies) [81–83]. To our knowledge, these complications have not
been reported in children treated with JAKi.

7.4. Metabolic Events

Dyslipidemia can be observed upon JAKi treatment as well as weight gain [84,85].
This is likely due to the reduction in leptin signalling through JAK2 inhibition, resulting in
hyperphagia contributing to weight gain, as reported in mice [84].
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Table 5. Practical prescription and follow-up advice.

What to think of before prescribing JAKi

Infectious contraindication

Carry out a complete clinical examination and the following investigations before the introduction of
these treatments to eliminate:
• An active infection, in particular, viral: viral serologies (HIV, HBV, HCV, VZV) and viral PCR

(BK virus blood). These can be monitored after treatment initiation. If features are evocative of
an infectious condition: a chest X-ray or bacterial urine analysis may be performed.

• Tuberculosis: interferon-gamma release assays (IGRAs) or a tuberculin skin test (TST).
In patients who have not had chickenpox before JAKi initiation, anti-VZV vaccination can be
discussed if it is not contraindicated (e.g., live attenuated vaccine is contraindicated in the event of
immunosuppressive treatment). Treatment with JAKi will then only be started one month later.

Thrombo-embolic risk This should be looked for using, for example, antiphospholipid test.
Dyslipidaemia: complete lipid profile.

Treatment association Pay specific attention to associated treatments, especially treatments with cytochrome p450 inhibitors
(except filgotinib and baricitinib, see Table 1).

Kidney function Adapt dosage of medication to kidney function (filgotinib and baricitinib).
What to monitor after prescribing JAKi

Type Investigation(s)/Management Frequency

Infectious monitoring

VZV
• In a VZV seronegative patient: short

prophylaxis is recommended in the event of
suspected contagion.

• Depending on the level of
immunosuppression, prophylaxis with
anti-VZV Ig can be discussed.

• Curative treatment is prescribed in the case
of suspected infection or reactivation of
VZV (chickenpox or zoster) orally or with
IV depending on the severity.

BK virus
• JAKi can cause BK virus reactivation, as

reported in [69].
• Monitor BK viral load in the blood (PCR) as

well as kidney function.

Clinical follow-up for infectious side effects.

• To start on day 7 of suspected contagion for
15 days.

• Within 96 h after infection.

Before initiation of JAKi, at the start of treatment,
and then regularly (initially monthly for the first
3 months, then every 3–6 months)
Each visit.

Growth and weight gain Clinical follow-up: height and weight.
Each visit: Before initiation of JAKi, at the start of
treatment, and then regularly (initially monthly
for the first 3 months, then every 3–6 months).

Haematology follow-up Laboratory monitoring: red and white
blood count.

Before initiation of JAKi, at the start of treatment,
and then regularly (initially monthly for the first
3 months, then every 3–6 months).Liver follow-up Laboratory monitoring: liver enzymes.

Lipid profile follow-up Laboratory monitoring: lipid profile.

7.5. Neoplasic Risk

Type I IFNs are known to be involved in anti-tumoral surveillance. A higher risk of
solid tumours or malignant hemopathies was not observed in clinical trials/meta-analyses
in adult patients with different immune-related and/or rheumatic diseases treated with
JAKi. However, a post-market study on tofacitinib treatment in more than 4000 RA patients
(50 years and older) suggested a higher risk of cancer [86]. To our knowledge, these major
side effects have not been reported in children treated with JAKi, but post-market studies
and surveillance are needed to address this important point.

7.6. Others

Shibata et al. reported palmoplantar pustulosis-like eruption upon tofacitinib treat-
ment in one adult patient with pJIA [87].
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7.7. Drug Interactions

Most of the marketed JAKis are eliminated by metabolism via the cytochrome P450
enzymatic complex, thereby potentially leading to drug–drug interactions, which need to
be taken into consideration for multiple drug prescriptions [88]. In contrast, baricitinib and
filgotinib are mainly cleared by renal elimination, and drug dosing should be adapted to
renal function when using these two JAKis [89].

7.8. Withdrawal Syndrome

Discontinuation syndrome was first and mainly reported in patients treated with
ruxolitinib for myelofibrosis [90]. It is defined as a life-threatening hyperinflammation
syndrome after sudden JAKi interruption, with acute disease symptoms that may occur
24 h to 3 days after drug cessation and may mimic septic shock syndrome [91]. A likely
explanation is that ruxolitinib blocks the dephosphorylation and ubiquitin degradation of
JAK1 and JAK2, which accumulates and can lead to a notable activation of downstream
signalling when ruxolitinib is stopped [92]. Discontinuation syndrome has been also
observed with ruxolitinib in the context of monogenic type I interferonopathies [64]. In
baricitinib phase 3 trials on RA patients, a brief interruption of baricitinib was associated
with a minor increase in RA symptoms [93]. The risk of discontinuation syndrome is likely
to vary depending on the underlying condition, the inflammatory status of the patient (i.e.,
implicated cytokines) and the JAKi being used, but it should not be ignored. This also
indicates the need for careful tapering of the drug when JAKi is discontinued.

7.9. Long-Term Considerations

The long-term effects of JAKi are currently unknown, especially in children, and this
emphasises the need to carefully evaluate the benefit/risk balance before initiating such
treatments. Given the wide range of signalling pathways affected by JAKis, concerns about
growth, pubertal development and bone metabolism were also raised, particularly in the
paediatric population. Indeed, growth hormone signal through JAK2 and the JAK-STAT
pathway is also involved in both bone-protective and bone-degrading properties through
diverse cytokines. Of note, using mice models, tofacitinib and baricitinib displayed a
bone-sparing effect at steady states and in inflammatory conditions [94]. Teratogen risk
is also uncertain. Overall, long-term and prospective follow-up studies are required to
better assess such complications in adults and children, as well as infectious, neoplastic and
thrombo-embolic events. Nevertheless, the assessment of whether patients with JIA should
be treated with JAKis has been largely facilitated using the large randomised controlled
trials that have been and are being carried out.

8. Perspectives

The use of JAKis for almost one decade in human diseases has brought promising
therapeutic effects for numerous indications, among them, the field of rheumatology.

Specifically, in paediatric inflammatory arthritis, the emerging use of JAKis has not
replaced conventional therapeutic strategies, even if they are administered orally, which is
different from biologics. Nevertheless, they provide a useful alternative for some patients
with severe, complicated and refractory sJIA, and may be the bridge for haematopoietic
stem-cell transplantation (HSCT) in these disabling conditions [95]. Unmet needs remain,
in particular (i) the long-term safety of such drugs administered to young developing
children, (ii) accurate biomarkers to monitor drug efficacy and (iii) pharmacokinetics and
drug-dosage efficacy in children. In the future, it is possible to expect the development of
novel targeted drugs, more specifically, inhibiting one JAK or other relevant components of
the type I or type II IFN pathway. However, their use in the context of JIA would have to
be evaluated since the type I IFN pathway is not the centre of the pathophysiology in these
diseases. Beyond IFNs and JAK-STAT pathways, it is possible to envision the expansion
of so-called ‘precision medicine’ for patient care with the use of cutting-edge technologies
such as single-cell transcriptomics [96].
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Appendix A

Table A1. JAK inhibitors reported in JIA in the literature before April 2023.

Paper
(First Author) Drug JIA Subtype Associated

Complications
Number of

Patients
Associated

Drugs Efficacy

Zhang [31] Tofacitinib 2.5 mg BID sJIA - 1 Tocilizumab Yes

Gillard [32] sJIA - 2 - Yes

Pin [33] Tofacitinib 5 mg BID pJIA - 1 Methotrexate Yes

Rahman [34] Tofacitinib
Refractory JIA

(37% ERA, pJIA
RF+, sJIA)

27 Yes

Vukić [35] Tofacitinib pJIA - 1 Yes

Huang [36] Tofacitinib 2.5 mg BID sJIA 1 Yes

Tseng [37] Tofacitinib 5 mg BID pJIA
Microscopic
colitis (at 58
years old)

1 Yes

Kostik [38] Tofacitinib
0.15–0.5 mg/kg/day

Moderate to
severe JIA (9 pJIA
1 oJIA + alopecia

1 ERA
4 sJIA)

Alopecia areata
(1/15) 15

CR: 7/15
2 NR

(1 pJIA/1 sJIA)

Maccora [39] Baricitinib 4 mg/day pJIA 4 Yes

Bader-Meunier
[40]

Ruxolitinib
1 mg/kg/day sJIA ILD 1 Yes

Macaraeg [41] Ruxolitinib sJIA
MAS in

adulthood after
EBV exposition

1 Yes

Abbreviations: BID: bis in die, twice a day; CR: complete remission; ERA, enthesitis-related juvenile idiopathic
arthritis; ILD: interstitial lung disease; MAS: macrophagic activation syndrome: NR: non-responders; oJIA,
oligoarticular juvenile idiopathic arthritis; pJIA, polyarticular juvenile idiopathic arthritis; PK, pharmacokinetics;
psJIA, psoriatic juvenile idiopathic arthritis; sJIA, systemic juvenile idiopathic arthritis.
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