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Metabolic flexibility can be defined as the ability of the skeletal muscle to adjust
its utilization of substrate pathways [1]. Timing this metabolic shift to available energy
substrates is imperative to transition from the fasted to fed states and from rest to exercise
states to meet energy needs. Thus, an inability to rapidly adjust energy substrate utilization
has been termed metabolic inflexibility and has recently been associated with obesity,
sarcopenia, insulin resistance, type 2 diabetes, and other metabolic chronic conditions [1–3].
Metabolic flexibility is typically measured in response to nutritional and exercise challenges
with indirect calorimetry to determine energy expenditure from carbohydrates (CHO) and
fat utilization [4]. These measurements, along with biomarkers of glucose and insulin, can
provide a full picture of metabolic responses to nutritional and exercise stimuli in a variety
of populations. Skeletal muscle is necessary for movement and exercise; however, it also
has an important role in metabolism, as skeletal muscle accounts for 60–80% of the response
of glucose to insulin [1,5]. Thus, to appropriately adjust substrate utilization in response to
nutritional and/or exercise stress (i.e., glucose mobilization via insulin), increasing skeletal
muscle quality and/or quality should be prioritized. Furthermore, substrate utilization and
fuel adaptability are positively associated with exercise performance [6], while numerous
dietary and training interventions have been explored to either quantify or manipulate
these outcome variables [7–10]. These assessments can provide a better understanding
of key factors related to metabolic flexibility, including physiological factors such as the
energy demands of exercise.

The alignment of metabolic inflexibility and disease conditions related to metabolism
seems to logically support using an “exercise as medicine” approach for disease improve-
ment. For example, older adults with sarcopenia have lower skeletal muscle mass, strength,
and function, and typically experience fat infiltration within skeletal muscle, leading to
metabolic impairments that may foundationally contribute to the development of metabolic
inflexibility. Recently, Shoemaker et al. examined differences in metabolic flexibility be-
tween sarcopenic and non-sarcopenic older adults. This study demonstrated that elderly
adults with sarcopenia had greater CHO utilization at rest and post-prandial, and a di-
minished response to a CHO meal compared to non-sarcopenic elderly adults. Addition-
ally, during aerobic exercise, fat oxidation was lower for the sarcopenic group than the
non-sarcopenic group, suggesting an impairment in fat utilization and, thus, metabolic
inflexibility, perhaps connected to mitochondrial dysfunction [2]. Conversely, in healthy
children, Gillen et al. demonstrated that consumption of a rapid-digesting carbohydrate
drink prior to exercise may promote greater exogenous carbohydrate utilization, demon-
strating the ability of healthy children to adjust substrate utilization pathways based on
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dietary intake to maintain endogenous carbohydrate and fat sources, prolonging exercise
during low-intensity bouts [11].

Both of these studies emphasize the importance of exercise for metabolic health
across the lifespan, which is echoed in recent studies examining the role exercise has in
metabolic-related chronic diseases [12–15]. A recent review highlighted the importance
of resistance training for improving outcomes in the early and late stages of frailty and
sarcopenia [15]. The conclusion of this review suggested that exercise may be a preventative
strategy for preserving skeletal muscle health while highlighting its interrelatedness with
chronic disease. Additionally, exercise training can promote metabolic responses, including
improved fatty acid oxidation, insulin sensitivity, and mitochondrial content, which likely
has corresponding benefits such as reducing insulin resistance, diabetes, cardiovascular
disease, and other chronic conditions. For example, in females across the lifespan (ages
20–60 years), a combination of aerobic and resistance training improved risk factors of
metabolic syndrome, including waist circumference, fasting blood glucose, blood pressure,
and blood lipid parameters [12]. Additionally, Methenitis et al. examined differences
in body composition, blood glucose, and lipid concentrations in sedentary compared to
endurance-trained middle-aged adults consuming a high-fat diet [14]. This study found that
training-induced energy expenditure is the main determinant of these metabolic parameters,
as well as positive metabolic adaptations that were more influenced by exercise training
rather than nutritional intake. The authors theorized that the training volume resulted in
improved mitochondrial density and oxidative capacity, leading to improved regulation of
CHO and fat metabolism, thus making endurance-trained individuals more metabolically
flexible than sedentary individuals [14]. Similarly, a study assessing functional fitness
abilities in individuals with and without metabolic syndrome reported that the fitness
level was lower in those with metabolic syndrome, independent of sex and age [13], and
individuals with type 2 diabetes and coronary artery disease had low aerobic exercise
capacity [16], further supporting the idea that exercise may be an important driver of
improving metabolic flexibility.

Across the lifespan, it seems that improvements in metabolic flexibility may also be
driven by improvements in lean body mass [17,18]. Oh et al. examined the association of
changes in predicted body composition and metabolic health with metabolic syndrome,
finding that greater muscle mass reduced the risk of metabolic syndrome in both males
and females [17]. Furthermore, it has been demonstrated that adults with low skeletal
muscle mass and high adiposity are at greater risk for high glucose, triglycerides, and other
biomarkers associated with metabolic health [18]. Since exercise can have a profound effect
on increasing lean body mass, even independent of nutritional interventions, it stands to
reason that exercise may be an important component of improving metabolic flexibility.

In conclusion, since metabolic flexibility can provide unique insight into metabolic and
overall health, it may be pertinent to prioritize specific interventions to affect this important
health-related outcome. Based on the current literature, exercise has the potential to act as
a “medicine” that may improve metabolic flexibility. In conjunction with appropriate nutri-
tional recommendations, an emphasis on improving muscle quality and quantity through
a well-balanced exercise regimen may help individuals improve metabolic flexibility, thus
reducing the potential for metabolic diseases and disorders.
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