The Prevalence of Responders and Non-Responders for Body Composition, Resting Blood Pressure, Musculoskeletal, and Cardiorespiratory Fitness after Ten Weeks of School-Based High-Intensity Interval Training in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurements
2.3.1. Anthropometry
2.3.2. Resting Blood Pressure
2.3.3. Cardiorespiratory Fitness-Fitness Index (FI)
2.3.4. Musculoskeletal Fitness (MSF)
2.4. Intervention
2.5. Prediction of Age at Peak Height Velocity (APHV)
2.6. Classification of Responders (Rs) and Non-Responders (NRs)
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. American Heart Association Young Hearts Athero, Hypertension and Obesity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Högström, G.; Nordström, A.; Nordström, P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: A Nationwide Cohort Study in Men. Eur. Heart J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A Powerful Marker of Health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U.; Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance Progress, Pitfalls, and Prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Charzewski, J.; Lewandowska, J.; Piechaczek, H.; Syta, A.; Łukaszewska, L. Kontrasty społeczne rozwoju somatycznego i aktywności fizycznej dzieci 13–15-letnich. Studia Monogr. AWF Warszawie 2003, 97, 117. (In Polish) [Google Scholar]
- Eddolls, W.; McNarry, M.A.; Stratton, G.; Winn, C.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Floody, P.; Latorre-Román, P.; Jerez-Mayorga, D.; Caamaño-Navarrete, F.; García-Pinillos, F. Feasibility of incorporating high-intensity interval training into physical education programs to improve body composition and cardiorespiratory capacity of overweight and obese children: A Systematic Review. J. Exerc. Sci. Fit. 2019, 17, 35–40. [Google Scholar] [CrossRef]
- Popowczak, M.; Rokita, A.; Koźlenia, D.; Domaradzki, J. The high-intensity interval training introduced in physical education lessons decrease systole in high blood pressure adolescents. Sci. Rep. 2022, 12, 1974. [Google Scholar] [CrossRef]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Cooper, S.M.; Shield, J.P.; Baker, J.S. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health 2013, 13, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunstan, D.W.; Daly, R.M.; Owen, N.; Jolley, D.; de Courten, M.; Shaw, J.; Zimmet, P. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 2002, 25, 1729–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domaradzki, J.; Rokita, A.; Koźlenia, D.; Popowczak, M. Optimal Values of Body Composition for the Lowest Risk of Failure in Tabata Training’s Effects in Adolescents: A Pilot Study. BioMed Res. Int. 2021, 2021, 6675416. [Google Scholar] [CrossRef] [PubMed]
- Cano-Montoya, J.; Ramírez-Campillo, R.; Martínez, C.; Sade-Calles, F.; Salas-Parada, A.; Álvarez, C. Interacción entre farmacoterapia hipotensiva y terapia con ejercicio físico requiere regulación farmacológica en pacientes hipertensos. Rev. Méd. Chile 2016, 144, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.; Ibanez, J.; HAkkinen, K.; Kraemer, W.J.; Larrion, J.L.; Gorostiaga, E.M. Once weekly combined resistance and cardiovascular training in healthy older men. Med. Sci. Sports Exerc. 2004, 36, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Batrakoulis, A. European Fitness Trends for 2020. ACSM’s Health Fit. J. 2019, 23, 28–35. [Google Scholar] [CrossRef]
- Kercher, V.M.; Kercher, K.; Levy, P.; Bennion, T.; Alexander, C.; Amaral, P.C.; Batrakoulis, A.; Chávez, L.F.J.G.; Cortés-Almanzar, P.; Haro, J.L.; et al. 2023 Fitness Trends from Around the Globe. ACSM’s Health Fit. J. 2023, 27, 19–30. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramirez-Campillo, R.; Ramírez-Velez, R.; Izquierdo, M. Prevalence of non-responders in glucose control markers after 10-weeks of high-intensity interval training in higher and lower insulin resistant adult women. Front. Physiol. 2017, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Bonafiglia, J.T.; Rotundo, M.P.; Whittall, J.P.; Scribbans, T.D.; Graham, R.B.; Gurd, B.J. Inter-individual variability in the adaptive responses to endurance and sprint interval training: A randomized crossover study. PLoS ONE 2016, 11, e0167790. [Google Scholar] [CrossRef] [Green Version]
- Astorino, T.A.; Schubert, M.M. Individual responses to completion of short-term and chronic interval training: A retrospective study. PLoS ONE 2014, 9, e97638. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C.; Blair, S.N.; Church, T.S.; Earnest, C.P.; Hagberg, J.M.; Häkkinen, K.; Jenkins, N.T.; Karavirta, L.; Kraus, W.E.; Leon, A.S.; et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS ONE 2012, 7, e37887. [Google Scholar] [CrossRef]
- Hecksteden, A.; Kraushaar, J.; Scharhag-Rosenberger, F.; Theisen, D.; Senn, S.; Meyer, T. Individual response to exercise training—A statistical perspective. J. Appl. Physiol. 2015, 118, 1450–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, G.; Williamson, P.; Batterham, A.M. Issues in the determination of “responders” and “non-responders” in physiological research. Exp. Physiol. 2019, 104, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Dankel, S.J.; Bell, Z.W.; Spitz, R.W.; Wong, V.; Viana, R.B.; Chatakondi, R.N.; Buckner, S.L.; Jessee, M.B.; Mattocks, K.T.; Mouser, J.G.; et al. Assessing differential responders and mean changes in muscle size, strength, and the crossover effect to 2 distinct resistance training protocols. Appl. Physiol. Nutr. Metab. 2020, 45, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Dankel, S.J.; Loenneke, J.P. A Method to Stop Analyzing Random Error and Start Analyzing Differential Responders to Exercise. Sports Med. 2020, 50, 231–238. [Google Scholar] [CrossRef]
- Álvarez, C.; Ramírez-Campillo, R.; Cristi-Montero, C.; Ramírez-Vélez, R.; Izquierdo, M. Prevalence of Non-Responders for Blood Pressure and Cardiometabolic Risk Factors among Prehypertensive Women after Long-Term High-Intensity Interval Training. Front. Physiol. 2018, 9, 1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moker, E.A.; Bateman, L.A.; Kraus, W.E.; Pescatello, L.S. The relationship between the blood pressure responses to exercise following training and detraining periods. PLoS ONE 2014, 9, e105755. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Tieland, M.; Verdijk, L.B.; Leenders, M.; Dirks, M.L.; de Groot, L.C.; van Loon, L.J.C. There are no nonresponders to resistance-type exercise training in older men and women. J. Am. Med. Dir. Assoc. 2015, 16, 400–411. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramírez-Campillo, R.; Ramírez-Vélez, R.; Izquierdo, M. Effects of 6-Weeks High-Intensity Interval Training in Schoolchildren with Insulin Resistance: Influence of Biological Maturation on Metabolic, Body Composition, Cardiovascular and Performance Non-Responses. Front. Physiol. 2017, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Domaradzki, J.; Koźlenia, D.; Popowczak, M. Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents. Biology 2022, 11, 424. [Google Scholar] [CrossRef]
- Steyn, H.S., Jr.; Ellis, S.M. Estimating an effect size in one-way multivariate analysis of variance (MANOVA). Multivar. Behav. Res. 2009, 44, 106–129. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, A.; Appadoo, S.; Bector, C.; Chandra, S. Measuring physical fitness and cardiovascular efficiency using harvard step test approach under fuzzy environment. Adm. Sci. Assoc. Can. 2008, 29, 129–143. [Google Scholar]
- Burnstein, B.D.; Steele, R.J.; Shrier, I. Reliability of fitness tests using methods and time periods common in sport and occupational management. J. Athl. Train. 2011, 46, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, C.; Klissouras, V.; Ravazzolo, M.; Renson, R.; Tuxworth, W. The Eurofit Test of European Physical Fitness Tests; Council of Europe: Strasbourg, France, 1988. [Google Scholar]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F.; Daniell, N.D.; Lewis, L.K.; Fitzgerald, J.S.; Lang, J.J.; Ortega, F.B. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afyon, Y.A.; Mülazimoğlu, O.; Altun, M. The effect of 6 weekly Tabata training on some physical and motor characteristics on female volleyball players. Eur. J. Phys. Educ. Sport Sci. 2018, 5, 223–229. [Google Scholar] [CrossRef]
- Logan, G.R.; Harris, N.; Duncan, S.; Plank, L.D.; Merien, F.; Schofield, G. Low-active male adolescents: A dose response to high-intensity interval training. Med. Sci. Sports Exerc. 2016, 48, 481–490. [Google Scholar] [CrossRef]
- Wilke, J.; Kaiser, S.; Niederer, D.; Kalo, K.; Engeroff, T.; Morath, C.; Vogt, L.; Banzer, W. Effects of high-intensity functional circuit training on motor function and sport motivation in healthy, inactive adults. Scand. J. Med. Sci. Sports 2018, 29, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.A.; Mckay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef]
- Swinton, P.A.; Hemingway, B.S.; Saunders, B.; Gualano, B.; Dolan, E. A statistical framework to interpret individual response to intervention: Paving the way for personalised nutrition and exercise prescription. Front. Nutr. 2018, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Bonafiglia, J.T.; Preobrazenski, N.; Gurd, B.J. A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Front. Physiol. 2021, 12, 665044. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation; Version 2.4.30; Rutgers Cooperative Extension: New Brunswick, NJ, USA, 2023; Available online: https://CRAN.R-project.org/package=rcompanion (accessed on 15 May 2023).
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.R.; Lubans, D.R. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Tang, Y.; Zou, Y. Integrating High-Intensity Interval Training into a School Setting Improve Body Composition, Cardiorespiratory Fitness and Physical Activity in Children with Obesity: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 5436. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Gandomani, E.E.; Reisi, J.; Vahabidelshad, R.; Suzuki, K.; Volpe, S.L.; Pérez-Gómez, J. Effects of 8 Weeks of High-Intensity Interval Training and Spirulina Supplementation on Immunoglobin Levels, Cardio-Respiratory Fitness, and Body Composition of Overweight and Obese Women. Biology 2022, 11, 196. [Google Scholar] [CrossRef]
- Bauer, N.; Sperlich, B.; Holmberg, H.C.; Engel, F.A. Effects of High-Intensity Interval Training in School on the Physical Performance and Health of Children and Adolescents: A Systematic Review with Meta-Analysis. Sports Med.-Open 2022, 8, 50. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef]
- Crozier, J.; Roig, M.; Eng, J.J.; MacKay-Lyons, M.; Fung, J.; Ploughman, M.; Bailey, D.M.; Sweet, S.N.; Giacomantonio, N.; Thiel, A.; et al. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity. Neurorehabilit. Neural Repair 2018, 32, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, N.; Fradj, M.K.B.; Bezrati, I.; Khammassi, M.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport 2017, 34, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Dong, S.Y.; Sun, X.N.; Xie, J.; Cui, Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz. J. Med. Biol. Res. 2012, 45, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Ito, S. High-intensity interval training for health benefits and care of cardiac diseases—The key to an efficient exercise protocol. World J. Cardiol. 2019, 11, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Baquet, G.; Guinhouya, C.; Dupont, G.; Nourry, C.; Berthoin, S. Effects of a short-term interval training program on physical fitness in prepubertal children. J. Strength Cond. Res. 2004, 18, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Kendall, B.J.; Siekirk, N.J.; Lai, Q. Acute high-intensity interval training improves motor skill acquisition. J. Sports Med. Phys. Fit. 2020, 60, 1065–1071. [Google Scholar] [CrossRef]
- Machado Rodrigues, A.M.; Coelho e Silva, M.J.; Mota, J.; Cumming, S.P.; Sherar, L.B.; Neville, H.; Malina, R.M. Confounding effect of biologic maturation on sex differences in physical activity and sedentary behavior in adolescents. Pediatr. Exerc. Sci. 2010, 22, 442–453. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, B.; Niehues, H.; Thorwesten, L.; Klose, A.; Krüger, M.; Brand, S.M. Sex Differences in High-Intensity Interval Training-Are HIIT Protocols Interchangeable between Females and Males? Front. Physiol. 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Ansdell, P.; Thomas, K.; Hicks, K.M.; Hunter, S.K.; Howatson, G.; Goodall, S. Physiological sex differences affect the integrative response to exercise: Acute and chronic implications. Exp. Physiol. 2020, 105, 2007–2021. [Google Scholar] [CrossRef] [PubMed]
- Werneck, A.O.; Silva, D.R.; Souza, M.F.; Christofaro, D.G.; Tomeleri, C.M.; Fernandes, R.A.; Ronque, E.R.; Coelho-E-Silva, M.J.; Sardinha, L.B.; Cyrino, E.S. Correlates of Blood Pressure According to Early, On Time, and Late Maturation in Adolescents. J. Clin. Hypertens. 2016, 18, 424–430. [Google Scholar] [CrossRef]
- Yapici, H.; Gulu, M.; Yagin, F.H.; Eken, O.; Gabrys, T.; Knappova, V. Exploring the Relationship between Biological Maturation Level, Muscle Strength, and Muscle Power in Adolescents. Biology 2022, 11, 1722. [Google Scholar] [CrossRef]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index with Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef]
- Batrakoulis, A.; Jamurtas, A.Z.; Metsios, G.S.; Perivoliotis, K.; Liguori, G.; Feito, Y.; Riebe, D.; Thompson, W.R.; Angelopoulos, T.J.; Krustrup, P.; et al. Comparative efficacy of five exercise types on cardiometabolic health in overweight and obese adults: A systematic review and network meta-analysis of randomized controlled trials. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008243. [Google Scholar] [CrossRef] [PubMed]
Variable | Males | Females | t | p | d | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | ||||||||
WHR | −0.01 | 0.03 | −0.02 | 0.00 | 0.00 | 0.02 | −0.01 | 0.00 | −1.36 | 0.179 | 0.311 |
Δ% | −1.34 | 3.73 | −2.71 | 0.02 | −0.36 | 2.73 | −1.20 | 0.49 | 1.31 | 0.194 | 0.303 |
BFP | −1.76 | 4.45 | −3.40 | −0.13 | −0.15 | 2.29 | −0.87 | 0.56 | −2.01 | 0.048 * | 0.455 |
Δ% | −8.24 | 21.69 | −16.19 | −0.28 | −0.46 | 8.98 | −3.26 | 2.34 | 2.10 | 0.040 * | 0.469 |
SMM | 0.72 | 0.75 | 0.45 | 1.00 | 0.34 | 0.99 | 0.03 | 0.65 | 1.82 | 0.073 | −0.440 |
Δ% | 3.38 | 3.64 | 2.04 | 4.72 | 1.06 | 3.40 | 0.00 | 2.12 | −2.80 | 0.007 * | −0.659 |
SBP | −8.19 | 8.77 | −11.41 | −4.98 | −4.93 | 8.23 | −7.49 | −2.36 | −1.63 | 0.108 | 0.384 |
Δ% | −6.15 | 6.32 | −8.47 | −3.84 | −3.94 | 6.78 | −6.05 | −1.82 | 1.42 | 0.160 | 0.338 |
DBP | −1.71 | 7.46 | −4.45 | 1.03 | −2.83 | 9.14 | −5.68 | 0.01 | 0.56 | 0.577 | −0.135 |
Δ% | −1.58 | 10.22 | −5.33 | 2.17 | −3.31 | 13.31 | −7.46 | 0.83 | −0.60 | 0.548 | −0.146 |
FI | 3.01 | 4.22 | 1.46 | 4.56 | 1.88 | 4.04 | 0.62 | 3.14 | 1.16 | 0.250 | −0.274 |
Δ% | 7.00 | 9.22 | 3.61 | 10.38 | 4.91 | 9.75 | 1.88 | 7.95 | −0.92 | 0.360 | −0.219 |
HS | 0.10 | 2.61 | −0.86 | 1.05 | 0.55 | 2.27 | −0.16 | 1.25 | −0.79 | 0.434 | 0.184 |
Δ% | 0.51 | 5.62 | −1.55 | 2.57 | 1.86 | 7.49 | −0.47 | 4.19 | 0.84 | 0.402 | 0.204 |
ABS | 1.29 | 3.79 | −0.10 | 2.68 | 3.98 | 3.33 | 2.94 | 5.01 | −3.21 | 0.002 * | 0.753 |
Δ% | 5.98 | 15.04 | 0.47 | 11.50 | 23.89 | 22.32 | 16.93 | 30.84 | 3.86 | 0.000 * | 0.941 |
FLEX | 1.71 | 3.08 | 0.58 | 2.84 | 1.60 | 2.90 | 0.69 | 2.50 | 0.16 | 0.871 | −0.034 |
Δ% | 12.68 | 38.39 | −1.40 | 26.76 | 6.71 | 12.77 | 2.73 | 10.68 | −0.94 | 0.349 | −0.209 |
AG | 0.17 | 0.54 | −0.02 | 0.37 | 0.14 | 0.57 | −0.03 | 0.32 | 0.23 | 0.815 | −0.056 |
Δ% | 1.72 | 5.31 | −0.23 | 3.67 | 1.41 | 4.95 | −0.13 | 2.96 | −0.25 | 0.801 | −0.060 |
VJ | −3.01 | 6.07 | −5.24 | −0.78 | 0.18 | 5.76 | −1.61 | 1.98 | −2.29 | 0.025 * | 0.540 |
Δ% | −4.36 | 10.99 | −8.40 | −0.33 | 1.38 | 13.90 | −2.96 | 5.71 | 1.90 | 0.061 | 0.458 |
Variable | NRs N (%) | Rs N (%) | χ2 | p | ω |
---|---|---|---|---|---|
WHR | 34 (46.57%) | 39 (53.43%) | 0.34 | 0.558 | 0.07 |
BFP | 28 (38.35%) | 45 (61.65%) | 3.93 | 0.047 * | 0.23 |
SMM | 28 (38.35%) | 45 (61.65%) | 3.93 | 0.047 * | 0.23 |
SBP | 12 (16.43%) | 61 (83.57%) | 32.89 | <0.001 * | 0.67 |
DBP | 24 (32.87%) | 49 (67.13%) | 8.56 | 0.003 * | 0.34 |
FI | 26 (35.61%) | 47 (64.39%) | 6.04 | 0.014 * | 0.29 |
HS | 49 (67.12%) | 24 (32.88%) | 8.56 | 0.003 * | 0.34 |
ABS | 26 (35.61%) | 47 (64.39%) | 6.04 | 0.014 * | 0.29 |
FLEX | 30 (41.09%) | 43 (58.91%) | 2.32 | 0.130 | 0.18 |
AG | 41 (56.16%) | 32 (43.84%) | 1.11 | 0.292 | 0.29 |
VJ | 48 (65.75%) | 25 (34.25%) | 7.25 | 0.007 * | 0.32 |
Variable | Boys | Girls | χ2 | p | Cramer’s V | OR (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NRs N (%) | Rs N (%) | NRs N (%) | Rs N (%) | |||||||||
WHR | 14 | 45.16% | 17 | 54.84% | 20 | 47.62% | 22 | 52.38% | 0.04 | 0.835 | 0.02 | 1.10 (0.04–2.80) |
BFP | 10 | 32.26% | 21 | 67.74% | 18 | 42.86% | 24 | 57.14% | 0.85 | 0.357 | 0.11 | 1.58 (0.60–4.15) |
SMM | 8 | 25.81% | 23 | 74.19% | 20 | 47.62% | 22 | 52.38% | 3.59 | 0.058 | 0.21 | 2.61 0.95–7.15 |
SBP | 5 | 16.13% | 26 | 83.87% | 7 | 16.67% | 35 | 83.33% | 0.01 | 0.951 | 0.01 | 1.04 0.29–3.64 |
DBP | 12 | 38.71% | 19 | 61.29% | 12 | 28.57% | 30 | 71.43% | 0.83 | 0.362 | 0.11 | 0.63 0.23–1.69 |
FI | 8 | 25.81% | 23 | 74.19% | 18 | 42.86% | 24 | 57.14% | 2.26 | 0.132 | 0.17 | 2.15 0.78–5.92 |
HS | 23 | 74.19% | 8 | 25.81% | 26 | 61.90% | 16 | 38.10% | 1.22 | 0.269 | 0.12 | 0.56 0.20–1.56 |
ABS | 15 | 48.39% | 16 | 51.61% | 11 | 26.19% | 31 | 73.81% | 3.83 | 0.050 * | 0.22 | 0.38 0.14–1.01 |
FLEX | 12 | 38.71% | 19 | 61.29% | 18 | 42.86% | 24 | 57.14% | 0.13 | 0.721 | 0.04 | 1.18 0.46–3.05 |
AG | 18 | 58.06% | 13 | 41.94% | 23 | 54.76% | 19 | 45.24% | 0.07 | 0.779 | 0.03 | 0.87 0.34–2.23 |
VJ | 23 | 74.19% | 8 | 25.81% | 25 | 59.52% | 17 | 40.48% | 1.70 | 0.192 | 0.15 | 0.51 0.18–1.41 |
Variable | BMI < 20 | BMI > 20 | χ2 | p | Cramer’s V | OR (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NRs N (%) | Rs N (%) | NRs N (%) | Rs N (%) | |||||||||
WHR | 15 | 46.88% | 17 | 53.13% | 19 | 46.34% | 22 | 53.66% | 0.01 | 0.964 | 0.01 | 1.02 0.40–2.58 |
BFP | 12 | 37.50% | 20 | 62.50% | 16 | 39.02% | 25 | 60.98% | 0.18 | 0.894 | 0.02 | 0.94 0.36–2.43 |
SMM | 12 | 37.50% | 20 | 62.50% | 16 | 39.02% | 25 | 60.98% | 0.18 | 0.894 | 0.02 | 0.94 0.36–2.43 |
SBP | 5 | 15.63% | 27 | 84.38% | 7 | 17.07% | 34 | 82.93% | 0.03 | 0.868 | 0.02 | 0.90 0.26–3.15 |
DBP | 7 | 21.88% | 25 | 78.13% | 17 | 41.46% | 24 | 58.54% | 3.12 | 0.080 | 0.20 | 0.40 0.14–1.12 |
FI | 11 | 34.38% | 21 | 65.63% | 15 | 36.59% | 26 | 63.41% | 0.04 | 0.845 | 0.02 | 0.91 0.35–2.39 |
HS | 20 | 62.50% | 12 | 37.50% | 29 | 70.73% | 12 | 29.27% | 0.55 | 0.46 | 0.09 | 0.69 0.26–1.84 |
ABS | 12 | 37.50% | 20 | 62.50% | 14 | 34.15% | 27 | 65.85% | 0.09 | 0.767 | 0.03 | 1.15 0.44–3.03 |
FLEX | 16 | 50.00% | 16 | 50.00% | 14 | 34.15% | 27 | 65.85% | 1.87 | 0.172 | 0.16 | 1.93 0.75–4.97 |
AG | 18 | 56.25% | 14 | 43.75% | 23 | 56.10% | 18 | 43.90% | 0.01 | 0.990 | 0.00 | 1.01 0.40–2.55 |
VJ | 21 | 65.63% | 11 | 34.38% | 27 | 65.85% | 14 | 34.15% | 0.01 | 0.984 | 0.00 | 0.99 0.37–2.62 |
Variable | BYA | BAA | χ2 | p | Cramer’s V | OR (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NRs N (%) | Rs N (%) | NRs N (%) | Rs N (%) | |||||||||
WHR | 25 | 48.08% | 27 | 51.92% | 9 | 42.86% | 12 | 57.14% | 0.16 | 0.686 | 0.05 | 1.23 0.44–3.43 |
BFP | 20 | 38.46% | 32 | 61.54% | 8 | 38.10% | 13 | 61.90% | 0.00 | 0.977 | 0.00 | 1.01 0.36–2.88 |
SMM | 16 | 30.77% | 36 | 69.23% | 12 | 57.14% | 9 | 42.86% | 4.40 | 0.036 * | 0.24 | 0.33 0.12–0.95 |
SBP | 12 | 23.08% | 40 | 76.92% | 0 | 0.00% | 21 | 100.00% | 5.78 | 0.016 * | 0.27 | - |
DBP | 20 | 38.46% | 32 | 61.54% | 4 | 19.05% | 17 | 80.95% | 2.55 | 0.110 | 0.18 | 2.66 0.78–9.03 |
FI | 16 | 30.77% | 36 | 69.23% | 10 | 47.62% | 11 | 52.38% | 1.85 | 0.174 | 0.16 | 0.49 0.17–1.38 |
HS | 36 | 69.23% | 16 | 30.77% | 13 | 61.90% | 8 | 38.10% | 0.36 | 0.546 | 0.07 | 1.38 0.480–3.99 |
ABS | 19 | 36.54% | 33 | 63.46% | 7 | 33.33% | 14 | 66.67% | 0.07 | 0.796 | 0.03 | 1.15 0.40–3.35 |
FLEX | 19 | 36.54% | 33 | 63.46% | 11 | 52.38% | 10 | 47.62% | 1.55 | 0.213 | 0.14 | 0.52 0.19–1.46 |
AG | 31 | 59.62% | 21 | 40.38% | 10 | 47.62% | 11 | 52.38% | 0.87 | 0.350 | 0.11 | 1.62 0.59–4.50 |
VJ | 34 | 65.38% | 18 | 34.62% | 14 | 66.67% | 7 | 33.33% | 0.1 | 0.920 | 0.01 | 0.94 0.32–2.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J.; Koźlenia, D.; Popowczak, M. The Prevalence of Responders and Non-Responders for Body Composition, Resting Blood Pressure, Musculoskeletal, and Cardiorespiratory Fitness after Ten Weeks of School-Based High-Intensity Interval Training in Adolescents. J. Clin. Med. 2023, 12, 4204. https://doi.org/10.3390/jcm12134204
Domaradzki J, Koźlenia D, Popowczak M. The Prevalence of Responders and Non-Responders for Body Composition, Resting Blood Pressure, Musculoskeletal, and Cardiorespiratory Fitness after Ten Weeks of School-Based High-Intensity Interval Training in Adolescents. Journal of Clinical Medicine. 2023; 12(13):4204. https://doi.org/10.3390/jcm12134204
Chicago/Turabian StyleDomaradzki, Jarosław, Dawid Koźlenia, and Marek Popowczak. 2023. "The Prevalence of Responders and Non-Responders for Body Composition, Resting Blood Pressure, Musculoskeletal, and Cardiorespiratory Fitness after Ten Weeks of School-Based High-Intensity Interval Training in Adolescents" Journal of Clinical Medicine 12, no. 13: 4204. https://doi.org/10.3390/jcm12134204
APA StyleDomaradzki, J., Koźlenia, D., & Popowczak, M. (2023). The Prevalence of Responders and Non-Responders for Body Composition, Resting Blood Pressure, Musculoskeletal, and Cardiorespiratory Fitness after Ten Weeks of School-Based High-Intensity Interval Training in Adolescents. Journal of Clinical Medicine, 12(13), 4204. https://doi.org/10.3390/jcm12134204