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Abstract: Intraoperative cell salvage reduces the need for allogeneic blood transfusion in complex
cancer surgery, but concerns about the possibility of it re-infusing cancer cells have hindered its
application in oncology. We monitored the presence of cancer cells on patient-salvaged blood by
means of flow cytometry; next, we simulated cell salvage, followed by leucodepletion and irradiation
on blood contaminated with a known amount of EpCAM-expressing cancer cells, assessing also
residual cancer cell proliferation as well as the quality of salvaged red blood cell concentrates
(RBCs). We observed a significant reduction of EpCAM-positive cells in both cancer patients and
contaminated blood, which was comparable to the negative control after leucodepletion. The washing,
leucodepletion and leucodepletion plus irradiation steps of cell salvage were shown to preserve the
quality of RBCs in terms of haemolysis, membrane integrity and osmotic resistance. Finally, cancer
cells isolated from salvaged blood lose their ability to proliferate. Our results confirm that cell salvage
does not concentrate proliferating cancer cells, and that leucodepletion allows for the reduction of
residual nucleated cells, making irradiation unnecessary. Our study gathers pieces of evidence on the
feasibility of this procedure in complex cancer surgery. Nevertheless, it highlights the necessity of
finding a definitive consensus through prospective trials.
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1. Introduction

Allogeneic blood transfusion is potentially life-saving for bleeding patients, but it is
not totally risk-free [1]. Intraoperative cell salvage, also known as autotransfusion, is a
strategy designed to reduce the need for allogeneic transfusions. This procedure involves
the collection of patient blood from the surgical field, which is usually centrifugally washed
to remove non-cellular matter and re-infused back into the same person. Red blood cells
washing devices provide high-quality blood components with negligible side effects [2].
Cell salvage is widely used in major orthopaedics and vascular surgery to reduce or prevent
allogeneic transfusion and perfectly fits in the scenario of Patient Blood Management (PBM)
programs [3]. However, cell salvage is often not used in cancer surgery due to concerns
dating back to the 1970s, when a case report on a lung cancer patient described the presence
of residual cancer cells in salvaged blood [4]. Since then, many case reports, editorials and
in vitro studies have focused on warnings about using this technique on cancer patients,
reporting the results of several experiments that evidenced the presence of residual cancer
cells in salvaged blood (and sometimes even more concentrated than those present in
patient peripheral blood) [5,6]. The main concern, therefore, regarded the possibility of
re-infusing to the patient cancer cells that might have eventually spilled out from the tumor
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site, thereby contributing to the risk of metastasis [7–9]. Despite the concerns, growing
literature on both in vitro and clinical studies support the use of cell salvage in cancer
surgery [10–14].

Based on the recommendations of national and international scientific societies, cell
salvage can be applied to cancer surgery, taking into account local protocols, patient
characteristics and medical team expertise. Salvaged blood could theoretically be re-
infused as it is, but guidelines worldwide usually encourage its use in combination with
leucodepletion filters [15], which, according to the most precautionary approaches [16],
should also be followed by irradiation before reinfusion. Compared to the less efficient
leucoreduction filters [17,18], leucocyte depletion filters have been successfully used to
deplete cancer cells from salvaged blood [19–21] and are highly compatible with an intra-
operative setting. On the other hand, irradiation implies some organizational criticisms
that hinder the intraoperative recovery and washing of patient blood.

Given these premises, we tested the ability of a cell salvage system to reduce cancer
cells that are eventually released to the surgical field, to the suction reservoir and into the
autologous blood product during surgery. First, we assessed the efficiency of cancer cell
reduction from the autologous blood product obtained from cancer patients undergoing
partial haepatectomy upon cell salvage followed by leucodepletion (without subsequent
reinfusion). Next, we simulated cell salvage followed by leucodepletion and irradiation
of whole blood units from healthy donors, which were inoculated with a known amount
of cancer cells expressing the epithelial cell adhesion molecule (EpCAM) (HCT116 and
CaCo-2 cell lines). We monitored cancer cell distribution step-by-step during the whole
procedure, also assessing the proliferation capacity and overall quality of salvaged red
blood cells.

The data collected were discussed in light of the recent scientific literature on cell
salvage in cancer, with a specific focus on filtered and/or irradiated salvaged blood, in
order to understand the real usefulness of these steps on cancer patient salvaged blood.

2. Materials and Methods
2.1. Study Population

This study was conducted at the Azienda USL-IRCCS di Reggio Emilia (Italy). Blood
was collected from cancer patients to perform cell salvage after partial hepatectomy, without
subsequent reinfusion, after the approval by the local Ethics Committee in December 2015
(protocol number 2015/29613). In total, 12 cancer patients undergoing partial hepatectomy
for primary hepatocarcinoma (HCC, n = 8) or colorectal cancer liver metastasis (n = 4)
were recruited between July and December 2016. Salvaged blood was not re-infused and
was used for research only. Details on patients’ demographic and surgery characteristics
are summarized in Table 1. The collection of whole blood from 20 healthy donors for
the in vitro cell salvage study was approved by the local Ethical Committee in July 2017
(protocol number 2017/0066269). All volunteer donors and patients recruited provided
informed consent according to the Declaration of Helsinki.

Table 1. Patient demographic and characteristics of the cell salvage simulation.

Patient Population

N (males, females) 12 (4, 8)
Age (mean ± SD) 70.4 ± 10.1

Primary diagnosis

Colorectal cancer (N) 4
Hepatocarcinoma (N) 8

Presence of diffused metastases (N/total) 5/12
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Table 1. Cont.

Surgery

Type of surgery Partial hepatectomy
Duration (mean ± SD) hours 2.2 ± 0.9

Whole blood recovered (mean ± SD) mL 1021 ± 519
Washed RBCs (mean ± SD) mL 115 ± 80
Filtered RBCs (mean ± SD) mL 70 ± 50

2.2. Cell Salvage on Cancer Patients

Partial hepatectomy was chosen as the surgical model for cell salvage simulation
since, within our institution, it is among the cancer surgeries with the highest transfusion
risk, with an anticipated blood loss of 1000 mL. Patient blood samples were collected
between July and December 2016 to simulate cell salvage without subsequent reinfusion.
For the 12 cancer patients recruited, blood that had spilled out from the operative field was
collected with a suction line connected to a continuous autotransfusion system (C.A.T.S.,
Fresenius HemoCare Italia S.r.l, Mirandola, Italy). The “High Quality program” was set for
performing the cell salvage according to manufacturer’s instructions. Two independent
blood aliquots (5 mL each in EDTA-containing vacuum tubes) were collected for each of the
following time points (Figure 1B): device reservoir (Reservoir); blood unit after centrifugal
washing (Washed); blood unit after leucodepletion (BIO-R flex Fresenius HemoCare Italia
S.r.l.) (Leucodepleted, LD); blood unit after irradiation at 35Gy (Raycell X-ray Blood
Irradiator, MDS Nordion, Ottawa, ON, Canada) (Leucodepleted + Irradiated, LD + IRR).
All samples were analyzed immediately after collection.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 3 of 12 
 

 

Presence of diffused metastases (N/total) 5/12 

Surgery 

Type of surgery Partial hepatectomy 

Duration (mean ± SD) hours 2.2 ± 0.9 

Whole blood recovered (mean ± SD) mL 1021 ± 519 

Washed RBCs (mean ± SD) mL 115 ± 80 

Filtered RBCs (mean ± SD) mL 70 ± 50 

2.2. Cell Salvage on Cancer Patients 

Partial hepatectomy was chosen as the surgical model for cell salvage simulation 

since, within our institution, it is among the cancer surgeries with the highest transfusion 

risk, with an anticipated blood loss of 1000 mL. Patient blood samples were collected 

between July and December 2016 to simulate cell salvage without subsequent reinfusion. 

For the 12 cancer patients recruited, blood that had spilled out from the operative field 

was collected with a suction line connected to a continuous autotransfusion system 

(C.A.T.S., Fresenius Hemocare, Italia S.r.l.). The “High Quality program” was set for 

performing the cell salvage according to manufacturer’s instructions. Two independent 

blood aliquots (5 mL each in EDTA-containing vacuum tubes) were collected for each of 

the following time points (Figure 1B): device reservoir (Reservoir); blood unit after cen-

trifugal washing (Washed); blood unit after leucodepletion (BIO-R flex Fresenius He-

moCare Italia S.r.l.) (Leucodepleted, LD); blood unit after irradiation at 35Gy (Raycell 

X-ray Blood Irradiator, MDS Nordion, Canada) (Leucodepleted + Irradiated, LD + IRR). 

All samples were analyzed immediately after collection.  

 

Figure 1. (A) Workflow of the study; (B) Scheme of the ex vivo and in vitro cell salvage steps from 

blood recovered from the surgical field of cancer patients (A. Cancer patient), and from healthy 

donors (B. Healthy donor). 

2.3. Cell Culture 

The HCT116 colon cancer cell line was cultured in an IMDM GlutaMAX medium 

(GIBCO, ThermoFisher Scientific, Monza, Italy), while the CaCo-2 colon cancer cell line 

was cultured in DMEM High glucose (Euroclone SpA, Milan, Italy) supplemented with 

1% L-glutamine, 10% FCS, 100 U/mL penicillin and 100 μg/mL streptomycin (GIBCO, 

ThermoFisher Scientific, Monza, Italy). Cultures were maintained in a humidified at-

mosphere with 5% CO2 at 37 °C. Prior to inoculation in whole blood units, cells were 

trypsinized, resuspended in complete medium and a small aliquot was mixed with Try-

pan blue solution (0.14% in HBSS). The method for distinguishing the viable from dead 

cells is based on the principle that live (viable) cells do not take up certain dyes, whereas 

dead (non-viable) cells do. Colored and dye-negative cells were counted on an automated 

cell counter (Countess, Invitrogen). 

Figure 1. (A) Workflow of the study; (B) Scheme of the ex vivo and in vitro cell salvage steps from
blood recovered from the surgical field of cancer patients (A. Cancer patient), and from healthy
donors (B. Healthy donor).

2.3. Cell Culture

The HCT116 colon cancer cell line was cultured in an IMDM GlutaMAX medium
(GIBCO, ThermoFisher Scientific, Monza, Italy), while the CaCo-2 colon cancer cell line
was cultured in DMEM High glucose (Euroclone SpA, Milan, Italy) supplemented with 1%
L-glutamine, 10% FCS, 100 U/mL penicillin and 100 µg/mL streptomycin (GIBCO, Ther-
moFisher Scientific, Monza, Italy). Cultures were maintained in a humidified atmosphere
with 5% CO2 at 37 ◦C. Prior to inoculation in whole blood units, cells were trypsinized,
resuspended in complete medium and a small aliquot was mixed with Trypan blue solu-
tion (0.14% in HBSS). The method for distinguishing the viable from dead cells is based
on the principle that live (viable) cells do not take up certain dyes, whereas dead (non-
viable) cells do. Colored and dye-negative cells were counted on an automated cell counter
(Countess, Invitrogen).
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2.4. Cell Salvage In Vitro Simulation

Whole blood units from 20 healthy donors were collected in CPD solution (Citrate,
Phosphate and Dextrose). A blood count was performed on 1 mL aliquots (negative control)
using a Sysmex XS-1000i Hematology Analyzer (Dasit S.p.A., Milan, Italy) before cancer cell
inoculation. HCT116 and CaCo-2 cells were inoculated, at known concentration, into each
blood unit to match a high patient amount of circulating tumor cells [10]. Inoculated blood
samples were sucked and collected within the reservoir of the C.A.T.S. automated system
to simulate the suction occurring at the surgical field. Blood aliquots in EDTA-containing
vacuum tubes were collected as follows (Figure 1B): inoculated whole blood before suction
(Inoculation—10 mL); blood unit after cell salvage washing (Washed—10 mL); blood unit
after leucodepletion (LD—10 mL); blood unit after irradiation at 35Gy (LD + IRR—10 mL).
Collected samples were immediately assessed for further analyses.

2.5. Flow Cytometric Assessment of Circulating Tumor Cells (CTCs)

The cancer cell count was assessed by evaluating the EpCAM-associated fluorescence
signal, as previously reported [21]. Staining was carried out on 100 µL aliquots with the
antibodies 5 µL anti-EpCAM-PE (CD326, clone HEA-125, Miltenyi Biotec, Bologna, Italy)
and 5 µL anti-CD45-FITC-conjugated antibody (Beckman Coulter) for 10 min in the dark at
room temperature in order to exclude white blood cells. Before acquisition, each sample
was treated with 2 mL of lysing solution (Stem-Kit Reagents, Beckman Coulter, Milan,
Italy) to avoid erythrocytes interference. To perform an absolute count of EpCAM-positive
(EpCAM+) cells, 100 µL of calibration beads (LeukoSure Fluorospherers, Beckman Coulter,
Milan, Italy) were added immediately before acquisition (FC 500 flow cytometer, Beckman
Coulter, Milan, Italy). Negative control samples were treated as described, without adding
monoclonal fluorescent antibodies.

2.6. Cancer Cell Isolation and Proliferation Assay

CaCo-2 cells were isolated from the inoculation, washed, leucodepleted and irradiated
as steps of the cell salvage simulation with the Ficoll Paque® PLUS density gradient
centrifugation. For each step, 10 mL samples were diluted 1:1 with sterile PBS; next, the
blood/PBS mixture was carefully deposited with a serological pipet over 10 mL Ficoll
Paque® PLUS in 50 mL conical tubes. Samples were centrifuged at 400× g for 30 min at
room temperature, without a break. Cancer cell-containing discs of mononuclear cells were
collected, and EpCAM+ cells were counted by means of flow cytometry on a small aliquot
as described earlier. EpCAM+ isolated cells were seeded at 20,000 cells/cm2 in a complete
medium on 24-well plates. After a 24 h seeding, cells were washed twice in PBS and a fresh
complete medium was added. At day 7 from culture, cells were trypsinized, resuspended
in 100 µL PBS + 100 µL calibration beads and then counted by means of flow cytometry.

2.7. Blood Count, Haemolysis and Erythrocyte Osmotic Resistance

The red blood cell (RBC) count, haemoglobin (Hb, g/dL), haematocrit (HCT, %),
platelets (PLTs) and white blood cell (WBC) count were measured on 1 mL aliquots from
patient and donor whole blood and on salvaged samples. Analyses were carried out using a
CELL-DYN Ruby Hematology Analyzer (Abbott Laboratories). Haemolysis was estimated
following the Harboe direct spectrophotometric method, as already published [22]. Briefly,
free haemoglobin (HbO2) absorbance was measured at 415 nm (ε = 512 mM−1 cm−1); the
percentage of haemolysis was derived using the free Hb concentration in the supernatants,
the total Hb and the HCT. Erythrocyte fragility was determined by means of the osmotic
resistance test in duplicates as follows: 5 µL of blood sample was mixed with 95 µL of
NaCl solution at decreasing osmolarity (from 300 mOsm—corresponding to 0.9% NaCl—to
0 mOsm—corresponding to pure water); then, samples were centrifuged at 2500× g for
1 min. Hb absorbance in the supernatants was measured at 560 nm in a 96-well plate
(GloMax plate reader, Promega Corp., Milan, Italy). Results were plotted and fitted using a
sigmoidal function as previously described [23].



J. Clin. Med. 2023, 12, 4088 5 of 12

2.8. Data Management and Statistical Analysis

Data are expressed as mean ± standard deviation (SD). A one-way ANOVA with
a multi-comparison test was carried out for statistical comparisons. Differences with a
p < 0.05 were considered statistically significant. Data analyses were developed on Graph-
Pad Prism 7.0 (GraphPad Software Inc., Boston, MA, USA) and Excel 2010 (Microsoft).

3. Results
3.1. Cell Salvage in Cancer Patients

We collected and analyzed blood samples from 12 cancer patients undergoing par-
tial hepatectomy, simulating cell salvage followed by leucodepletion. Of the 12 patients
recruited, 8 were primarily diagnosed with hepatocarcinoma, while 4 were operated on
for hepatic metastases of colorectal cancer (Table 1). For each patient, we assessed samples
from the following steps: blood recovered from the surgical field and collected within the
autotransfusion system reservoir (also indicated as Reservoir); red blood cells collected
after cell salvage procedure (Washed); red blood cells collected after further leucodepletion
(LD). Mean blood volume recovery from the surgical field was 1021 mL, which allowed the
recovery of around 115 mL RBCs after washing (Table 1).

Flow cytometric analysis revealed that CD45−/EpCAM+ cells were present in all
patient blood samples recovered from the operative filed (Reservoir), although the concen-
tration was extremely variable (13.6 ± 10.2 mean cells/µL). For one of the patients recruited
in particular, we found 41.3 ± 12.1 CD45−/EpCAM+ cells in the Reservoir, while for two
other subjects the CD45−/EpCAM+ cells were less than 1 per µL (Figure 2 and Table 2).
As shown in Figure 2, the simple centrifugal washing was already effective in eliminating
most of the circulating EpCAM+ cells (7.5 ± 6.7 mean cells/µL), while leucodepletion
guaranteed significant reduction in all the samples (1.7 ± 1.5 mean cells/µL after LD).
Negative control samples (i.e., without anti-EpCAM-PE monoclonal antibody staining)
showed a background fluorescence in the PE channel (4.5 ± 3.8 mean cells/µL) possibly
attributable to the autofluorescence of the recovered blood; the non-specific bond of the
antibody and the presence of solvents or disinfectants in the surgical field could have
contributed to influencing flow cytometric acquisition. Nevertheless, PE fluorescence was
always decreased after leucodepletion.
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Figure 2. Flow cytometric count of CD45−/CD326+ (EpCAM+) cells (CD326+) in cancer patients’
blood samples recovered after the main steps of cell salvage simulation. Gating on CD45− cells was
performed in order to exclude WBCs. Data are expressed as mean ± SD. Significant differences
among samples were assessed by one-way ANOVA; * p < 0.05, ** p < 0.01.



J. Clin. Med. 2023, 12, 4088 6 of 12

Table 2. CD45−/EpCAM+ cell counts measured in cancer patients. Data were collected at least in
duplicate and are shown as mean cells/µL ± SD.

Patient ID
Negative Control Reservoir Washed LD

Mean SD Mean SD Mean SD Mean SD

1 n.d. n.d. 10.51 2.19 0.53 0.2 0.28 0.04
2 0.91 0.1 26.35 0.35 4.87 0.01 1 0.01
3 2.47 0.13 25.76 4.33 12.49 1.22 0.91 0.11
4 3.62 0.12 4.4 0.11 2.12 0.46 1.41 0.03
5 n.d. n.d. 7.27 1.1 16.35 4.67 n.d. n.d.
6 0.33 0.11 3.29 0.71 1.79 0.16 n.d. n.d.
7 21.3 2.11 63.75 11.58 32.4 10.95 1.58 0.58
8 9.16 0.71 12.25 0.1 7.02 0.34 3.68 0.02

n.d. = not defined.

3.2. Cell Salvage In Vitro Simulation

Cell salvage was also simulated by taking advantage of EpCAM-expressing cancer
cell lines (CaCo-2 and HCT116 colorectal cancer cell lines), which were inoculated at a
known amount (40–50 cells/µL) on whole blood collected from healthy blood donors. As
detailed in the Section 2, we simulated the centrifugal washing, followed by leucodepletion
and subsequent γ-irradiation at 35 Gy (as indicated by Italian recommendations) [16].
Blood samples collected from these steps were first assessed by flow cytometry to monitor
residual cancer cells (Figure 3A). Our results evidenced that the centrifugal washing performed
by the autotransfusion system significantly reduced the concentration of inoculated cancer
cells (Washed sample; CaCo-2 = 2.7 ± 2.1 cells/µL; HCT116 = 2.0 ± 1.1 cells/µL). After
leucodepletion (LD sample; CaCo-2 = 0.3 ± 0.2 cells/µL; HCT116 = 0.3 ± 0.3 cells/µL), the cell
counts were in the range of the negative control; these data were confirmed after irradiation
(LD + IRR sample; CaCo-2 = 0.0 ± 0.0 cells/µL; HCT116 = 0.1 ± 0.1 cells/µL) for both the
cell lines considered (Figure 3A). By the time of cell salvage simulation (T0, i.e., immediately
after isolation) we were never able to detect EpCAM+ cells in LD and LD + IRR samples,
while residual cells were always evident in samples from the Inoculation and Washed steps
(Figure 3A).
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Figure 3. (A) Cancer cell counts measured by flow cytometry at each step of the cell salvage in vitro
simulation. Data are expressed as mean ± SD of 10 simulations with CaCo-2 cell line (left panel)
and 10 simulations with HCT116 cell line (right panel); (B) Cancer cell isolation and proliferation
assessment by flow cytometry. T0 refers to the concentration of cells cultured immediately after
isolation, while T7 refers to the concentration of cells found after 7 days of culture. Data are expressed
as mean ± SD of five simulations with CaCo-2 cell line. Significant differences among samples were
assessed by one-way ANOVA; *** p < 0.001.
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3.3. Cancer Cell Isolation and Proliferation Assay

Aliquots of blood samples collected from the steps of the in vitro simulation with
CaCo-2 cells were further processed to isolate and culture residual cancer cells. CaCo-2
were selected for this assay due to the high expression levels of EpCAM, which makes
them more suitable for detecting very low amounts of residual cells. After density gradient
stratification, mononuclear cells were collected and EpCAM+ cells were counted by means
of flow cytometry (Figure 3B).

To assess proliferation, we cultured separated CaCo-2 cells at a concentration of
20,000 cells/cm2 in 24-well plates as described in the Section 2. Since no EpCAM+ cell was
detectable on samples from LD and LD + IRR blood, we cultured the whole monolayer col-
lected from stratification. After 7 days, cells were collected and counted by flow cytometry:
results shown in Figure 3B indicate that, while cells recovered from the inoculation step
kept on proliferating, washed cells did not proliferate. From both the LD and LD + IRR
samples no EpCAM+ cell was recovered after 7 days of culture.

3.4. Blood Count, Haemolysis and Erythrocyte Osmotic Resistance

Finally, blood samples collected from Washed, LD and LD+IRR steps of the cell salvage
in vitro simulation were evaluated for the overall quality of RBCs. According to the blood
count, haematocrit (HCT) and PLTs, all RBCs samples were in the range of blood bank
allogeneic products. As expected, almost no WBCs were found in LD and LD + IRR-
salvaged RBCs (see Supplementary Table S3 for details on blood count). Haemolysis
was quite variable after the washing step due to the turbulence generated in the suction
line during blood collection, although it was still in the range of normality (Figure 4A).
Leucodepletion and irradiation did not significantly affect haemolysis. Despite the fact that
RBCs during cell salvage undergo turbulence during suction, centrifugal washing, filtration
and irradiation, erythrocyte resistance to haemolysis was comparable to pre-salvage whole
blood, as evidenced by the erythrocyte osmotic resistance test shown on Figure 4B.
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Figure 4. (A) Percentage of hemolysis of salvaged blood samples. Each value was collected in
triplicate for n = 6 samples and expressed as mean ± SD; (B) Erythrocytes (RBCs) osmotic resistance
test. Each value was collected in triplicate for n = 6 samples and expressed as mean ± SD. Points
were fitted using a sigmoidal function.

4. Discussion

Anemia is an independent risk factor for negative outcomes for cancer patients [24],
and PBM programs for the whole perioperative period for oncological patients are be-
coming urgent [25]. In this context, any strategy aimed at preserving patients’ own blood
and avoiding the risk of allogeneic transfusion [1,26] deserves particular consideration.
Cell salvage has already demonstrated its potential in preserving patients’ own blood and
in reducing the need of allogeneic transfusions, but its use in cancer surgery has long
been limited due to physician concerns about reintroducing cancer cells that might have
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spilled out from the tumor site. To our knowledge, however, no study published since
1995 has contraindicated cell salvage use in cancer surgery, and the recent diffusion of
leucodepletion filters has contributed to ensuring high quality products that encourage a
timid use of auto-transfusion systems in cancer surgery [27].

With our study, we evidenced that washed samples showed a significant reduction
of EpCAM+ cells, which was more evident after leucodepletion. Leucodepletion filters’
effectiveness in reducing residual cancer cells was already suggested by our ex vivo assay
on cancer patients’ blood (Figure 2). The highly variable amount of EpCAM+ cells found in
patient blood was expected, since even in metastatic patients circulating tumor cells can
be quite rare and heterogeneous in terms of EpCAM expression (which can be gained and
lost, especially during HCC cancer progression) [28]. Unfortunately, to date no unique
marker has been developed to effectively quantify circulating cancer cells and, despite the
fact that EpCAM is still considered a valuable tool, its limitations should be taken into
account. CTC detection methods based on EpCAM+ cell quantification in cancer patients
could miss those cells that, in preserving metastatic potential, lose this marker (or simply
do not express it). Even when EpCAM+ cells are detected, the exact cancer cell count can be
hindered by the complexity of blood recovered from patients with widespread metastases.
In these patients, the heterogeneity of circulating cells might hamper the detection due
to non-specific fluorescence signals, as we experienced for some patients recruited in the
present study (see Table 2).

Given the known difficulties in detecting and isolating circulating cancer cells from
peripheral blood, researchers have developed many techniques based on different prin-
ciples (i.e., size exclusion, microfluidics-based cell sorting, antibody-linked functional-
ized nanomaterials and so on) [29]; however, all of them have pros and cons, and fu-
ture detection of circulating cancer cells should involve the combination of multiple
strategies simultaneously.

To overcome the limitations of detecting cancer cells from cancer patients’ blood, we
moved towards an in vitro model, taking advantage of our already published method on
in vitro cell salvage simulation [21]. Our data showed that cancer cells are efficiently re-
duced by leucodepletion filters (Figure 3A), and that this reduction persists in subsequently
irradiated samples. It is noteworthy to underline that cancer cells found in the Washed
steps lose their proliferation ability (Figure 3B). We hypothesize that the latter is mainly
attributable to cell damage induced by a mechanical stress due the turbulence generated
during blood suction and the subsequent centrifugal washing (Figure 3B). Intriguingly,
damage to cancer cells is highly selective: indeed, red blood cells do not undergo cell
membrane damage at any of the re-infusible steps of cell salvage (i.e., Washed, LD and
LD + IRR), as evidenced by the evaluation of hemolysis and osmotic resistance (Figure 4).
Cell salvage, therefore, preserves red blood cell quality, which shows similar characteristics
as bank components even when coupled with filtration and irradiation (with the advantage
of being autologous).

To our knowledge, this is the first in vitro study demonstrating the reduced prolifera-
tion ability of cancer cells after simulating cell salvage plus leucodepletion and irradiation.
In 2016, Kumar and colleagues [30] tried to culture cancer cells recovered from the salvaged
blood of metastatic spine tumor patients to investigate their viability before and after
leucodepletion. Counting the cancer cell-containing samples, they observed that none
of the washed and filtered samples generated clusters after culture, thereby suggesting
the absence of cancer cell viability after auto-transfusion. Despite the intriguing results,
the study had some limitations, as the detection method was not able to find cell cluster
development for all the pre-salvage blood samples considered. Since flow cytometry is
highly sensitive in detecting very low amounts of EpCAM-expressing cells [19], we believe
that the results shown here represent a valuable proof in support of the hypothesis of
a loss of viability of cancer cells, which occurs already after washing (Figure 3B). Fur-
thermore, the use of a cell line with a well-established doubling time allowed us to be
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sure that the lower amount of cells found in the washed samples resulted from a loss of
proliferation activity.

Besides in vitro analyses, it is a fact that almost no clinical study published since the
1990s has registered a negative effect from cell salvage on survival or disease progres-
sion. Most of the literature focuses on the effectiveness of cell salvage alone; however,
following the worldwide diffusion of leucodepletion filters, several guidelines have rec-
ommended the use of leucodepletion filters [16,31], and some even encourage subsequent
irradiation [1]. We performed a bibliographic search of the recent studies on cancer cell
savage that included a leucodepletion and/or irradiation step, excluding those that did
not assess at least one of these steps (see Supplementary Information for details on the
string used and results obtained). Actually, the full-text original articles published since
2013 on cell salvage in combination with leucodepletion or with irradiation strategies are
few and are mostly aimed at evidencing the safety of salvaged blood on in vitro models
(Supplementary Table S1). Despite the fact that residual cancer cells are often recovered
after centrifugal washing of both cancer patient and in vitro-contaminated blood, leucode-
pletion has always demonstrated its effectiveness in removing nucleated cells, thereby
suggesting significant safety in clinical settings.

Studies on the effect of irradiation after cell salvage are actually rare [32,33]. In 2015,
Gong M et al. detected the optimal dose to allow the complete inhibition of the viability and
proliferation of cancer cells from irradiated salvaged blood by irradiating several cancer
cell lines previously mixed with erythrocytes from healthy donors [31]. Nevertheless, they
assessed irradiation alone and counted residual cancer cells by means of colony formation
assays, which are known to be less sensitive than flow cytometry [34] or other, more recent
microfluidic technologies [35] in assessing very low amounts of cells from blood samples.

The majority of clinical studies compared medium-to-long-term outcomes of cancer
patients that received leucodepleted salvaged blood with control groups of patients that did
not undergo cell salvage. All of them reported that leucodepleted salvaged blood is non-
inferior to allogeneic transfusion in terms of mortality and recurrence rate, while it has been
shown to reduce the need for postoperative allogeneic transfusion in a retrospective study
on 176 metastatic spine surgery patients [36]. We found a few clinical studies comparing
the outcomes after reinfusion of salvaged blood upon leucodepletion and/or irradiation;
of these, only one was conducted examining the recurrence rate after autotransfusion of
irradiated salvaged blood [37]. Weller and colleagues compared the tumor recurrence of
HCC patients undergoing liver transplantation but, due to the small population size, they
could not investigate the efficacy and safety of irradiation compared to washing or filtering.

Finally, of all the reviews published since 2012 on this topic (Supplementary Table S2),
we found only one meta-analysis published in 2022, which investigated the safety of cell
salvage in cancer surgery in general [27]. The authors found only observational studies,
most of which compare patients that received unfiltered or filtered salvaged blood with
those who did not undergo cell salvage. Despite the fact that patients who received au-
tologous salvaged blood with or without leucodepletion filters showed a reduced risk
of cancer recurrence compared to control groups, the observational nature of these stud-
ies forced the authors to underline the low strength of evidence. They conclude by un-
derlining the urgency of multi-center randomized controlled trials comparing mortality
and cancer recurrence rates of cell salvage with or without filtration versus allogeneic
blood transfusion.

5. Conclusions

According to national and international medical guidelines (i.e., the SIMTI, EDQM and
NICE guidelines) [1,16,38], cell salvage can be applied to cancer surgery, taking into account
patient characteristics and local protocols. In many countries, leucodepletion of salvaged
blood is not required and autologous blood could theoretically be re-infused immediately
after washing. Nevertheless, several guidelines recommend the use of leucodepletion filters,
as for instance in the European Union and the UK [15,31,38], while the Italian guidelines
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are among the most precautionary, recommending also the subsequent irradiation [16].
In this context, our in vitro investigation represents a proof-of-concept study confirming
that cell salvage reduces the number of cancer cells as well as affects proliferation capacity.
Further clinical studies must be conducted to verify the safety of washed blood in terms of
the risk of reinfusion of cancer cells.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jcm12124088/s1, Figure S1: PRISMA flow diagram of
the literature revision; Table S1: Clinical and in vitro/ex vivo studies on cell salvage plus filtration
and/or irradiation in cancer surgery published since 2013 [14,17,18,20,30,32–37,39–47]; Table S2:
Reviews, systematic reviews and meta-analyses on cell salvage plus filtration and/or irradiation
in cancer surgery published since 2013 [27,48–51]; Table S3: Blood count parameters collected
from in vitro cell salvage steps; Table S4. EpCAM-positive cells counts assessed by means of
flow cytometry.
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