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Abstract: Pseudomyxoma peritonei (PMP) is a rare malignant growth characterized by the pro-
duction of mucin and the potential for peritoneal relapse. This study aimed to investigate the
immunohistochemical and biological characteristics of mucin in patients with cellular and acellular
PMP. We prospectively analyzed mucin specimens obtained from our patient cohort and described
the composition and type of mucin present in each sample. A metagenomic analysis of the samples
was performed to investigate the bacterial composition of the PMP microbiome. Secreted mucins 2
and 5AC and membrane-associated mucin-1 were the primary components of mucin in both cellular
and acellular tumor specimens. The metagenomic study revealed a predominance of the phylum
Proteobacteria and the genus Pseudomonas. Notably, Pseudomonas plecoglossicida, a species not pre-
viously reported in the human microbiome, was found to be the most abundant organism in the
mucin of pseudomyxoma peritonei. Our findings suggest that the presence of MUC-2 and mucin
colonization by Pseudomonas are characteristic features of both cellular and acellular disease. These
results may have significant implications for the diagnosis and treatment of this rare entity.

Keywords: pseudomyxoma peritonei; mucin; MUC-2; microbiome; pseudomonas

1. Introduction

Pseudomyxoma peritonei (PMP) is a rare syndrome characterized by the buildup
of mucin in the peritoneal cavity, often resulting from ruptured appendiceal mucinous
neoplasms. While ovarian involvement is common in this condition, it is usually metastatic
in nature [1]. Ovarian cystic teratoma is the only tumor of ovarian origin identified as a
likely cause of PMP. Although less common, gastrointestinal mucinous adenocarcinomas
and urachal cancer have also been identified as potential origins of PMP [2].

According to the Peritoneal Surface Oncology Group International (PSOGI) classifica-
tion, acellular mucin is characterized by an absence of tumor epithelial cells. In contrast,
PMP containing neoplastic epithelial cells in the mucin can be classified into three types
based on histopathologic features and the volume of tumor cells [3]:

• Low-grade mucinous carcinoma peritonei: characterized by low-grade cytology, few
mitoses, and scant mucinous tumor epithelium (<20% of tumor volume).

• High-grade mucinous carcinoma peritonei is characterized by the presence of at least
one of the following features: high-grade cytology, infiltration of adjacent tissues,
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invasion of vascular lymphatic vessels or surrounding nerves, cribriform growth, or
extensive mucinous tumor epithelium (>20% of tumor volume).

• High-grade mucinous carcinoma peritonei with signet ring cells: characterized by the
presence of neoplastic signet ring cells (signet ring cells ≥ 10%).

Furthermore, the Ki-67 proliferation index has recently been proposed as a tool for
stratifying high-grade PMP and predicting prognosis [4].

While the classification and prognosis of patients with PMP depends on the aforemen-
tioned histopathologic features, mucin itself has unique characteristics that warrant further
study. Despite the current treatment option of cytoreductive surgery and hyperthermic in-
traperitoneal chemotherapy (HIPEC) [3,5], tumor recurrence and progression are frequent,
with high mortality rates [5]. Therefore, identifying new therapeutic targets is crucial.

Our research aims to investigate the proteomic and biological characteristics of muci-
nous material in PMP as well as its metagenomic features (i.e., microbiome). We believe that
a fuller understanding of mucin may provide insight into the development and progression
of the disease, potentially leading to new treatment options for patients.

2. Materials and Methods

Patients: We obtained mucin samples from patients diagnosed with PMP who under-
went surgery at Fundación Jiménez Díaz University Hospital from April 2016 to July 2020.
All patients received information on the study and provided written consent to partici-
pate. The study protocol was approved by the Ethics Committee for Clinical Research
of Fundación Jiménez Díaz University Hospital (PIC 75/2016_FJD). The animal study
protocol was approved by the Committee on Animal Ethics and Welfare of the Fundación
Jiménez Díaz University Hospital Research Institute (PIC 63/2016_FJD). We proposed a
pilot study comprising a sample of nine patients who underwent surgical cytoreduction
combined with HIPEC. In eight cases, the origin of the PMP was a low-grade appendiceal
mucinous neoplasm (LAMN), while in one case a mucinous adenocarcinoma of the colon
was the source. Following the postoperative histopathologic study, five of the PMP cases
were diagnosed as acellular pseudomyxoma, and four were diagnosed as low-grade peri-
toneal mucinous carcinoma. In most of the patients included in our study, PMP originated
from a perforated LAMN. Patients who underwent successful complete cytoreduction
have remained alive without relapse. However, there was one patient who had incom-
plete cytoreduction. Unfortunately, this patient relapsed 6 months after the incomplete
cytoreduction and eventually died within 17 months (Table 1).

Table 1. Clinical and histological features.

Age Sex Primary
Tumor Perforated PMP

Classification
Preoperative

Chemotherapy
Cytoreduction

Score
Current
Status

Overall
Survival
(Months)

59 ♂ LAMN Yes Metachronous
LMCP (LMCP-1) No CC0 AWR 84

44 ♀ LAMN Yes Synchronous AM
(AM-1) No CC0 AWR 79

45 ♂ LAMN Yes Metachronous AM
(AM-2) No CC0 AWR 75

75 ♀ LAMN Yes Metachronous AM
(AM-3) No CC0 AWR 72

73 ♀ MCA No Metachronous
LMCP (LMCP-2) No CC0 AWR 54

80 ♀ LAMN No Synchronous
LMCP (LMCP-3) No CC1 DWR 17

Low-grade appendiceal mucinous neoplasm (LAMN). Mucinous colonic adenocarcinoma (MCA). Low-grade
mucinous carcinoma peritonei (LMCP). Acellular mucin (AM). CC0: completed cytoreduction. CC1: residual
tumor nodules < 0.25 cm. Alive without recurrence (AWR). Dead with recurrence (DWR).
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Subsequently, all histopathologic analyses were repeated to detect neoplastic cells in
mucin samples. Six consecutive patients were included in the final sample: three with
acellular mucin and three with neoplastic cells in the mucin. The multi-step process
followed to characterize mucin is described below.

Mucin degradation: The viscosity of the mucinous component in PMP is related to
such characteristics of mucin as protein concentration or cellularity (higher cellularity and
protein concentration, greater sclerosis) and other external factors related to the microenvi-
ronment such as hyperosmolarity, pH < 4, or the existence of trefoil factors (soluble peptides
secreted by goblet cells of the digestive tract that promote mucin viscosity) [6]. Mucolytics
such as bromelain and N-acetylcysteine can be used to digest both soft and hard mucin
(Figure 1) [7,8]. Soft mucin is easily degradable, while hard mucin exhibits greater sclerosis
and an increased resistance to degradation [7].
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Figure 1. (a) Hard mucin; (b) soft mucin.

Soft mucin was digested with a solution consisting of 0.3 mg/mL bromelain and
2% N-acetylcysteine and left to incubate for 90–120 min at 37 ◦C. Hard mucin required a
longer incubation time to degrade (≤240 min).

Proteomic analysis: Following mucin digestion with bromelain and N-acetylcysteine,
proteins were extracted using RIPA lysis buffer (Tris-HCl (50 nM), NaCl (150 mM), EDTA
(1 mM), Nonidet P-40 (1%), DOC (0.5%), and SDS (80.1%)). The proteins were then quan-
tified by Coomassie Brilliant blue R-250, running the gel at 100 V for 1.15 h. Finally,
20 µL per well was loaded into a precast gel (Mini-Protean TGx 4–15%, Bio-Rad, Her-
cules, CA, USA) using 4× Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) and
5% β-mercaptoethanol as loading buffer, according to manufacturer recommendations.
Subsequently, each membrane was incubated overnight with specific antibodies against the
different mucins: MUC-1 (Proteintech/Fisher Scientific, Madrid, Spain), MUC-2 (ABCore
Ramona-San Diego County, CA, USA), MUC-3 (Santa Cruz Biotechnology, Heidelberg,
Germany), MUC-5AC (Cloud-Clone Corp/Biogen Científica, Madrid, Spain), MUC-13
(Santa Cruz Biotechnology, Heidelberg, Germany), and MUC-16 (Santa Cruz, Biotech-
nology, Heidelberg, Germany) at 4 ◦C and washed 4× with TTBS under gentle agitation
for 15 min; goat anti-mouse secondary antibody (Southern Biotech/Bionova, Madrid,
Spain) was added (MUC 2, 3, 13, and 16) as well as goat anti-rabbit (Southern Biotech)
(MUC 1, 5AC), incubating for 1 h at room temperature under agitation. The membranes
were washed with TTBS for 15 min and analyzed in an iBright system (Thermo Fisher,
Madrid, Spain).

Microbiome analysis: The prokaryotic 16S ribosomal RNA (rRNA) gene is frequently
used in metagenomic surveys of microbial populations due to its conserved and variable
regions, which facilitate sequencing and phylogenetic classification. The microbiota in
human and mouse biospecimens can be effectively studied through targeted amplification
of bacterial 16S rRNA genes [9]. To identify the bacteria present in cellular and acellu-
lar mucin specimens, we performed 16S gene sequencing on the DNA extracted from
these samples. Subsequently, we inoculated the mucin samples into both immunocom-



J. Clin. Med. 2023, 12, 4007 4 of 10

petent and immunocompromised mice to study the behavior of the microbiome in these
experimental models.

Generation of 16S amplicons and amplicon sequencing was performed using the
Illumina Miseq platform in the Genomics Unit of the Madrid Scientific Park. An initial
PCR was performed with the Q5® Hot Start High-Fidelity DNA Polymerase enzyme
(New England Biolabs, Barcelona, Spain) using 300 pg of DNA. The primers used am-
plified the V3-V4 region of 16S and add extra sequences on which the second PCR was
performed: 5′-ACACTGACGACATGGTTCTACA CCTACGGGNGGCWGCAG-3′ and
5′-TACGGTAGCAGAGACTTGGTCTGACTACHVGG GTATCTAAT CC-3′. Cycling of the
first PCR was performed as follows: 1 × 98 ◦C 30 s; 23 × (98 ◦C 10 s, 50 ◦C 20 s, 72 ◦C 20 s);
and 1 × 72 ◦C 2 min.

We performed a second PCR on the amplification products of the first PCR using
the Q5® Hot Start High-Fidelity DNA Polymerase enzyme, with the following primers
(5′-AATGATACGGCGACCACCGA GATCTACACTGACGACATGGTTCTACA-3′ and 5′-
CAAGCAGAAGACGGCATACGAGAT-[10 nucleotides] -TACGGTAGCAGAGACTTGGTCT-3′)
from Fluidigm (Illumina Sequencers, Madrid, Spain). Cycling of this PCR was as follows:
1 × 98 ◦C 30 s; 14 × (98 ◦C 10 s, 60 ◦C 20 s, 72 ◦C 20 s); and 1 × 72 ◦C 2 min.

The final products were quantified by Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) to prepare an equimolecular pool that was subsequently purified by selecting
the band of interest in an agarose gel with SYBR Gold (Thermo Fisher). After, the pool of
amplicons was quantified by qPCR using the Kapa SYBR FAST qPCR kit for Light Cycler
480 master mix and a reference library belonging to the Genomics Unit of the Madrid
Scientific Park.

Finally, the pool of amplicons was sequenced with the Illumina Miseq platform fol-
lowing the manufacturer’s instructions, in a paired-end (2 × 300 bp) sequencing run using
MiSeq reagent kit v3-600 cycles (Illumina, Eindhoven, The Netherlands).

3. Results

Proteomic analysis revealed the presence of secretory mucins MUC-2 and MUC-5AC,
as well as the membrane mucin MUC-1, in all samples analyzed, predominantly MUC-2
(Table 2). We further detected the MUC-1 protein in mucin for the first time (MUC-1
overexpression was previously described only in tumor tissue). No other mucin types were
identified, and there were no significant differences in the composition or distribution of
mucin types between acellular and cellular samples (Figure 2).

Table 2. Proteomic analysis.

Patients Samples Mucin-1
(µg/µL)

Mucin-2
(µg/µL)

Mucin-5AC
(µg/µL)

LMCP-1 Cellular mucin 46 82 40
LMCP-2 Cellular mucin 33 77 31
LMCP-3 Cellular mucin 35 70 42

AM-1 Acellular mucin 44 68 40
AM-2 Acellular mucin 44 68 40
AM-3 Acellular mucin 43 75 40

Low-grade mucinous carcinoma peritonei (LMCP). Acellular mucin (AM).

To examine the microbiota in mucin samples, we conducted 16S sequencing and
identified different bacterial taxa. The most frequently detected phylum was genomic
DNA from Proteobacteria in both acellular (82.86%) and cellular (82.52%) mucin, followed
by Actinobacteria (8.17% and 8.52%, respectively). The most common bacterial order was
Pseudomonadales, comprising 44.99% of the microbiome in acellular mucin and 44.55% in
cellular mucin. The predominant genus was Pseudomonas, accounting for about 45% of the
germs detected in both mucin groups (Figure 3).
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Interestingly, the microbiota of patients with PMP and acellular mucin was almost
identical to that of patients with cellular mucin. This suggests that germ colonization of
accumulated mucus in PMP, primarily from Pseudomonas, is a specific feature of mucin
independent of the patient and tumor histopathology. To confirm this hypothesis, we
inoculated mucin samples into immunocompetent (C57) and immunosuppressed (NSG)
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mice and found that the microbiota was maintained regardless of host species and immune
status (Figure 4).
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Pseudomonas plecoglossicida was the most frequently identified bacterial species among
all the samples analyzed, representing 11–21% of the total bacterial population.

4. Discussion

The overexpression of genes encoding different proteins of the mucin family has been
described in the primary and metastatic tumor tissues of PMP. These proteins include
mucin-2 (MUC-2), mucin-5AC (MUC-5AC), mucin-5B (MUC-5B), mucin-4 (MUC-4), and
mucin-1 (MUC-1) [7,10–17]. The MUC-2, MUC-5AC, and MUC-5B proteins are secreted
gel-forming mucins, while the MUC-1 and MUC-4 proteins are membrane-associated
mucins [18]. While there is extensive research on the overexpression of mucin in tumor
tissues, investigations focusing on mucin itself are considerably more limited (See Table 3
for an overview).

No reports to date have described the protein composition of acellular mucin in PMP.
Our results show that the mucus in acellular mucin has a makeup that resembles the mucin
of other types of PMP.

Secreted MUC-2 and MUC-5AC are the main components of mucus in PMP. MUC-5AC
is expressed in the goblet cells of the gastrointestinal and respiratory epithelium as well as
ovarian epithelial cells, whereas MUC-2 expression is specific to goblet cells of the intestinal
epithelium [10]. MUC-2 is the only protein that has been consistently described in studies
involving PMP, both those performed directly on the protein composition of mucin as well
as research using tumor tissues. This pattern of mucin expression explains the appendicular
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origin of most cases of PMP. MUC-2 is characterized by extensive glycosylation and has
been associated with mucus sclerosis and even with patient prognosis in PMP [6].

Table 3. Main research focused on characterizing mucin types in tumor tissue or mucin samples.

SAMPLES MUC-2 MUC-5AC MUC-5B MUC-1 MUC-6 MUC-4

O’Connell (2002) [7] Appendix, ovarian, and
peritoneal tissues (25) X X

Mohamed (2004) [8] Peritoneal tissue (11) X X
Nonaka (2006) [9] Peritoneal tissue (42) X X
Mall (2007) [10] Mucin (cellular) X X X X

Ferreira (2008) [11] Ovarian tissue (28) X X
Baratti (2009) [12] Peritoneal tissue (85) X X

Guo (2011) [13] Appendix, ovarian, and
peritoneal tissues (35) X

Chang (2012) [14] Appendix tissue (22) X X
Pillai (2017) [5] Mucin (16) X X X

X: confirmed finding.

With respect to the microbiome of patients with PMP, it must be noted that the
peritoneal cavity is an aseptic anatomical region. Therefore, the bacterial contamination
of mucin should originate from the intestine, secondary to the perforation of appendic-
ular mucinous neoplasms [19]. Three identifiable enterotypes have been described in
the microbiome of the human gastrointestinal tract, which are defined according to the
most prevalent bacterial genera: Bacteroides (Enterotype 1), Prevotella (Enterotype 2), and
Ruminococcus (Enterotype 3) [20]. In our study, the predominant bacterial genus in the
mucin was Pseudomonas. Therefore, we can affirm that it is not a native constituent of the
digestive tract microbiome.

Gilbreath et al. [21] were the first to describe the microbiota associated with PMP and
to suggest its potential impact on the pathogenesis of this disease. Different methods have
been used to study the microbiota of PMP, such as cultures, in situ hybridization, and 16S
sequencing. The dominant phylum described is Proteobacteria, with a predominance of the
Pseudomonas genus [19], which coincides with our results.

No previous studies have specifically characterized the microbiota of acellular mucin.
The results of the present analysis reveal that it has a microbiota that closely resembles
that of other types of PMP. Although the presence of a microbiome having these features is
not characteristic of the gastrointestinal tract, it is frequently found in the mucin within
the respiratory epithelium of patients with cystic fibrosis disease. Therefore, the existence
of abundant mucin and a predominance of Pseudomonas in the microbiome are common
to PMP and cystic fibrosis. Another shared finding between these two conditions is
MUC-2 overexpression, despite the fact that MUC-2 expression is specific to goblet cells
of the intestinal epithelium and is not present in the respiratory epithelium under normal
conditions [22]. An association between mucus hyperproduction and infection by the genus
Pseudomonas has been described, as well as a direct relationship between the overexpression
of MUC-2 and MUC-5AC and the lipopolysaccharides of this bacterial family [23,24].

Previous studies by our group demonstrated that inoculating acellular mucin in an
experimental murine model could be used to reproduce acellular PMP [25]. With these
findings in mind, we set out to explore the mechanism by which tumor-cell-free mucin can
reproduce and grow. Based on the results of the present research, and taking into account
the results of Dohrman A et al. [23] and Ben Mohamed F et al. [24], we can hypothesize
that mucin overproduction may be related to colonization by bacteria belonging to the
Pseudomonas family. To advance our understanding of PMP and improve patient outcomes,
future research should investigate the relationship between the mucin microbiome and the
aggressiveness and prognosis of the disease.

Findings from this and other research indicate that the microbiota may be a new
therapeutic target. Preliminary results from studies that added antibiotics to the standard
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treatment approach for PMP (i.e., cytoreduction and HIPEC) were inconclusive, although
a phase II clinical trial (NCT 02387203) is currently underway to analyze the long-term
results of antibiotic administration in patients with PMP [19,26].

Limitations of the study: the primary limitations of this research are the small sample
size and the exclusive use of 16S rRNA sequencing for analyzing the microbiome of
mucin samples.

No previous publications have described Pseudomonas plecoglossicida as the most
abundant Pseudomonas species in the mucin of PMP. This bacterium has been identi-
fied as the cause of hemorrhagic ascites in ayu fish [27], although it has never been
found in the human microbiome. We can only speculate whether the occurrence of
Pseudomonas plecoglossicida is associated with diet or some other cause. It was first iden-
tified in diseased ayus (Plecoglossus altivelis) [28] and has since been identified in large
yellow croakers (Larimichthys crocea), groupers (Epinephelus coioides), and barramundi
(Lates calcarifer) [29–32]. These occurrences have been documented solely in fish infections
within Asian studies, and there have been no reported cases of their presence in humans.
However, it is important to note that this bacterium belongs to the group of Pseudomonas
Putidas, which are associated with human pathologies, although the transmission mecha-
nism has not been clearly defined [33].

5. Conclusions

Sufficient evidence points to a direct relationship between the dominant microbiome
of the pseudomyxoma and the production of mucus in PMP.
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