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Abstract

:

Background: The objective of this study was to assess the performance of the first publicly available automated 3D segmentation for spontaneous intracerebral hemorrhage (ICH) based on a 3D neural network before and after retraining. Methods: We performed an independent validation of this model using a multicenter retrospective cohort. Performance metrics were evaluated using the dice score (DSC), sensitivity, and positive predictive values (PPV). We retrained the original model (OM) and assessed the performance via an external validation design. A multivariate linear regression model was used to identify independent variables associated with the model’s performance. Agreements in volumetric measurements and segmentation were evaluated using Pearson’s correlation coefficients (r) and intraclass correlation coefficients (ICC), respectively. With 1040 patients, the OM had a median DSC, sensitivity, and PPV of 0.84, 0.79, and 0.93, compared to thoseo f 0.83, 0.80, and 0.91 in the retrained model (RM). However, the median DSC for infratentorial ICH was relatively low and improved significantly after retraining, at p < 0.001. ICH volume and location were significantly associated with the DSC, at p < 0.05. The agreement between volumetric measurements (r > 0.90, p > 0.05) and segmentations (ICC ≥ 0.9, p < 0.001) was excellent. Conclusion: The model demonstrated good generalization in an external validation cohort. Location-specific variances improved significantly after retraining. External validation and retraining are important steps to consider before applying deep learning models in new clinical settings.
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1. Introduction


Spontaneous intracerebral hemorrhage (ICH) is a major cause of morbidity and mortality worldwide despite the relatively small contribution to all stroke types of up to 27% [1,2,3]. The prognosis after ICH is particularly affected by the ICH volume in addition to its location, the presence of intraventricular hemorrhage (IVH), and acute hematoma expansion (HE) [4]. Thus, instruments for accurate ICH and IVH quantification upon neuroimaging are crucial to guide further patient management and to inform future clinic trials [5,6,7,8]. The ABC/2 method has remained a clinically well-established formula to manually estimate the ICH volume [9] despite the consistent reports of underestimation or overestimation in large and irregular bleedings. The semiautomatic measurements of ICH and IVH are equally limited as they are labor-intensive and time-consuming [10]. Novel deep learning-based models have the potential to quantify ICH and IVH volumes rapidly and accurately in a fully automated approach and are therefore in high demand [11]. The DeepBleed network presented by Sharrock et al. is the first publicly available 3D neural network for the segmentation of ICH and IVH [12]. Despite being trained and internally validated on a large dataset from the MISTIE II and III trial series [13,14], its performance in an independent cohort has not been described yet. This step is of particular importance in imaging-based segmentation networks as they have increasingly shown inconsistent performance results on external datasets [15]. Therefore, it is important that clinicians are aware of the quality assessment steps that need to be taken before the local implementation of these models. In particular, the performance of DeepBleed in the detection and segmentation of infratentorial and small ICH remains undetermined as these two subsets were excluded from the MISTIE trials [13,14,16]. The aim of this study was to evaluate the generalizability and further improve the robustness of the proposed DeepBleed network. The objective of this study was to assess the performance of the existing DeepBleed network before and after retraining. Therefore, we hypothesized that the DeepBleed network would accurately detect and segment ICH and IVH regardless of its location and size. To test and evaluate this, the following threefold steps were performed. First, we externally validated the original DeepBleed model (OM) in an independent multicenter cohort. Secondly, we retrained the model (RM) to test the effect on the validation accuracy through an internal validation design. Third, we compared the interrater reliabilities between the OM and RM network and independent human raters. This study serves as a use case illustrating how the generalizability of deep learning models may be addressed via local retraining.




2. Materials and Methods


2.1. Study Population


This retrospective study was approved by the local ethics committee (Charité Berlin, Germany (protocol number EA1/035/20), University Medical-Center Hamburg, Germany (protocol number WF-054/19), and IRCCS Mondino Foundation, Pavia, Italy (protocol number 20190099462]). Written informed consent was waived by the institutional review boards. All study protocols and procedures were conducted in accordance with the Declaration of Helsinki. The study included patients of ≥18 years who were diagnosed with primary spontaneous ICH upon noncontrast computed tomography (NECT) between January 2017 and June 2020. Patients with multiple ICH, artifacts, external ventricular drain (EVD) or any other type of surgical procedure, and secondary hemorrhage following head trauma, ischemic infarction, neoplastic mass lesions, ruptured cerebral aneurysms, or vascular malformations were excluded from the study as presented in Figure 1.




2.2. Image Acquisition and Manual Segmentation


Participating sites acquired NECT images according to their local imaging protocols. De-identified and pseudomyzed imaging data were retrieved from the local picture archiving and communication system (PACS) servers and converted into a Digital Imaging and Communications in Medicine (DICOM) format according to local guidelines. DICOM data were then transformed in Neuroimaging Informatics Technology Initiative (NifTI) for further imaging analysis. Images were analyzed for the presence of IVH and the ICH location by one experienced neuroradiologist (J.N., who has 5 years of experience in ICH imaging research). Supratentorial bleedings in cortical and subcortical locations were classified as lobar and hemorrhages involving the thalamus, basal ganglia, internal capsule and deep periventricular white matter [17]. Infratentorial bleedings were classified within the brainstem, pons and cerebellum [18]. Ground truth (GT) masks of ICH and IVH were manually segmented on CT scans by two experienced raters (both with 3 and 5 years of experience in ICH imaging research) who were supervised by one neuroradiologist (J.N.) who inspected each ICH and IVH mask for the quality of segmentations and corrected them if necessary. Segmentation of the ICH and IVH was performed using ITK-SNAP software version 3.8.0 (Penn Image Computing and Science Laboratory, Philadelphia, PA, USA) [19]. Two expert raters segmented the test set six months apart for 60 patients to calculate inter-reader agreement (J.N. and FM, with 5 years of experience in ICH imaging research). The function shuffle from Python library NumPy random was applied on the subject ID list [20]. All readers independently analyzed and segmented images in a random order while blind to all demographic data and were not involved in the clinical care of assessment of the enrolled patients.




2.3. Preprocessing and Postprocessing


The preprocessing comprised two steps as described in the original study (Figure 2): brain extraction and the coregistration. Briefly, after setting to zero the CT scan intensities lower than 0 or higher than 100, brain extraction was performed with FSL Brain Extraction Tool (BET) [21], setting the fractional intensity parameter (-f flag) to 0.01. Rigid coregistration was performed with ANTs [22] using a 1.5 mm3 isotropic CT template [23]. The resulting transformation was applied to the GT masks as well. During postprocessing, a threshold of 0.6 was applied to the resulting probability maps, setting the higher values to 1 and the others to 0. Finally, inverse coregistration of the resulting mask was performed using the inverse transformation matrix.



After gantry tilt and unequal slices were corrected, DICOM data were converted using NIfTI. For brain extraction and coregistration, Python preprocessing pipelines were used. DeepBleed was then used to predict intracerebral hemorrhage (ICH) and intraventricular hemorrhage (IVH). In the final step, the predictions from the previous template registration were inversely transformed in the native space.




2.4. Model Retraining


In addition to the general exclusion criteria described in the above, the following additional exclusion criteria were applied to the training cohort in accordance with those of MISTIE studies [13,14]: symptom onset > 24 h prior to the admission CT or an unknown time of symptom onset as well as an admission ICH volume of >30 mL. As described in the original study, adaptive moment estimation (Adam) was used as the optimization function [24], the dice similarity coefficient (DSC) was used as a loss function [25], and 100, randomly selected subjects were used as a training cohort, whereas 20 were used as a validation cohort. After testing various combinations, the optimal learning rate was 1 × 10−4 and a batch size of 3 was chosen. Initially, the training dataset was shuffled; we stopped the training if, after the first 10th epoch, the current epoch did not improve, and validation was performed every five epochs.




2.5. Model Testing


For the model testing, preprocessing and postprocessing as described above were performed on the OM and RM test dataset. Contrary to the training dataset, the test dataset was defined according to the original criteria of our study with no additional exclusion criteria applied. This decision was made because we were interested in evaluating the performance of DeepBleed on small hemorrhages.




2.6. Code Availability


The code is publicly available in Jupiter Notebooks on GitHub (Microsoft, San Fransisco, CA, USA) with the following link: https://github.com/Orangepepermint/retraindeepbleed accessed on 9 May 2023. It is written in Python v3.9 [26] using the following libraries: NumPy v1.23.3 [20], FSLpy v3.9.0 [27], and ANTsPy v0.3.1 [22].




2.7. Statistical Analysis


Statistics were conducted using GraphPad Prism v9.0.2 (GraphPad Software, Inc., San Diego, CA, USA) [28] and R (the R project for statistical computing, Vienna, AT) using tidyverse [29]. Various metrics were used to evaluate the DeepBleed performance and compare the segmentations from our RM with the OM. These included DSC, sensitivity, positive predictive value (PPV), and volume measurements. t-tests were used to compare the DSC, sensitivity, and PPV distributions between the OM and RM. Based on the central limit theorem, the t-test assumptions were fulfilled. To determine factors influencing segmentation performance, a linear regression model with the following formula was used:
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Pairwise correlations among volumes measured from each of the three segmentation methods (GT masks, OM and RM DeepBleed network) were assessed using the Pearson correlation coefficient (r). Agreements between two raters and the OM and RM DeepBleed network were assessed using the intraclass correlation coefficient (ICC) in the DSC. Moreover, a repeated measures ANOVA was performed with a pairwise t-test as a post hoc. The homogeneity of variance assumption for ANOVA was evaluated using the Levene test. Cohen’s d effect size was determined as well. A p-value of < 0.05 was considered significant. Bonferroni adjustment was applied where necessary. Adjusted p-values are indicated as padj-values.





3. Results


3.1. Demographics and Characteristics of the Study Cohort


The manual review of the images led to an elimination of 54 patients due to exclusion criteria and manual segmentation errors. The final dataset was composed of 1040 patients, NECT scans and respective masks, where the numbers of patients in training, validation and test were n = 100, n = 20 and n = 920. The mean age was 69.6 (SD 14.2) years. The median NIHSS and GCS scores were 7.5 (IQR 12) and 13 (IQR 7), respectively. Imaging was performed within a median symptom onset time of 4.3 h (IQR 13.6). In total, 519 patients (49.9%) presented with ICH and IVH with a mean volume of 74.9 (SD 41.6) ml. A total of 521 patients (50.1%) presented with ICH only with a mean volume of 41.5 (SD 32.8) mL. No significant differences in demographic characteristics were found between training, validation, and test subjects as presented in Table 1.




3.2. Model Retraining and Testing


With Nvidia RTX 3090 GPU, the model was trained for 810 epochs in 16 h. Illustrative examples of segmentations are displayed in Figure 3. Model performance metrics of the OM and RM derived in the test set are presented in detail in Table 2 with additional DSC metrics illustrated in Figure 4A. The overall DSC values for the segmentations across all locations were relatively similar in both DeepBleed models with a median DSC of 0.84 (95% CI, 0.73–0.88) in the OM and 0.83 (95% CI, 0.74–0.88) in the RM. DSC values given separately for each location were also almost equally high in supratentorial ICH with a median DSC of 0.86 (95% CI, 0.80–0.89) in deep ICH and 0.84 (95% CI, 0.78–0.89) in lobar ICH in the OM compared to 0.87 (95% CI, 0.81–0.90) and 0.83 (95% CI, 0.72–0.88) in the RM, respectively. In comparison, performance metrics in infratentorial locations demonstrated an overall lower DSC with a median DSC of 0.71 (95% CI, 0.46–0.78) in cerebellar ICH and 0.48 (95% CI, 0.23–0.64) in brainstem ICH in the OM. DSC metrics improved in the RM, especially in cerebellar ICH, with a median DSC of 0.79 (95% CI, 0.65–0.84) and 0.77 (95% CI, 0.57–0.83) in brainstem ICH. OM and RM performance metrics were significantly different for the DSC and PPV, at padj-values of < 0.001, compared to the sensitivity, padj-value of >0.05. DSC, and sensitivity showed a significant improvement in the cerebellum (p < 0.001) after retraining.




3.3. Analysis of Factors Influencing the Model Performance


The results from the multivariate linear models are summarized in Table 3. Results for the univariate analysis are presented in the Supplementary Table S2. Overall model performance was negatively influenced by the ICH location. However, deep ICH was the only location that was not significantly associated with a DSC loss performance neither in the OM nor RM network, at p-values of > 0.05. While the slope coefficients for lobar ICH remained relatively similar in the OM and RM (−0.04, SD 0.01 and −0.06, SD 0.01), the negative effect of brainstem and cerebellar ICH decreased from −0.20 (SD 0.03) and −0.32 (SD 0.02) in the OM to −0.18 (SD 0.03) and −0.08 (SD 0.02) in the RM, at p-values of < 0.001. ICH volume increase had a strong positive effect on the DSC in the OM and RM network. The presence of IVH and the data’s originating site had no significant effect on the DSC in the OM or RM. The correlation between ICH location and volume in the DSC are illustrated in Figure 4B,C.




3.4. Volume and Segmentation Agreement Analysis


Figure 5A shows the correlation between the GT masks and DeepBleed’s automatic volume prediction with the OM and RM. Overall strong correlations were observed among the three segmentation methods (r > 0.9, p-value < 0.001), however, correlations among both DeepBleed models, OM and RM, were highest, whereas their correlation with GT volumes was lowest (r = 0.92 for OM and r = 0.94 for RM). The mean volumes of GT, OM and RM (±SD) were 43.2 (±42.6), 36.0 (±35.9) and 36.2 (±35.9). The median volumes of the three methods are displayed in Figure 5B. The repeated-measure ANOVA showed no significant effect between the volume estimation of GT masks and automatic volume estimations in the DeepBleed OM and RM (F = 0.45, p-value > 0.05).



Significant agreements were found between the DSCs of manual segmentations by two expert raters and those of the OM and RM DeepBleed network with the GT masks (ICC = 0.90 and ICC = 0.94, p-value < 0.0001) and are presented in Figure 6A,B. The repeated-measure ANOVA showed a significant effect of the rater and OM and RM on the DSC (F = 14.38, p < 0.0001). The post hoc test showed a significant effect between OM and RM (t = 2.78, padj-value < 0.05, d = 0.4, small), OM and both raters (t = −5.11 and t = –5.37, padj-value <0.001 and d = 0.7, moderate for both) and RM and both raters (t = −4.9 and t = −5.3, padj-value < 0.001 and d = 0.7, moderate for both). No significant difference was found between the two raters (t = −1.57, p-value > 0.05, d = 0.2, small).





4. Discussion


Our study confirmed the external validity of the first open-source 3D deep learning network for the automatic detection and segmentation of spontaneous ICH with the presence of IVH upon CT. Furthermore, we illustrated the importance of local retraining for a specific setting to increase the applicability of neural network models for ICH segmentation purposes.



In brief, the OM showed overall good results in our multicenter cohort during the validation process. However, location-specific performance metrics were comparatively low for infratentorial ICH lesions which improved significantly after retraining. In particular, performance metrics in cerebellar ICH improved with a 1.7-fold increase in the DSC. The negative effects on the DSC in our linear model improved with a slope increase of 25% for cerebellar ICH after retraining. In comparison, the model performance in supratentorial ICH was overall good for both the OM and RM, with deep ICH demonstrating the best and stable performance metrics. Nonetheless, even lobar ICH slightly improved after model retraining while initially demonstrating the second-best performance metrics in the OM. Additionally, the DSC performance was negatively associated with lobar ICH lesions in our linear regression model. Lobar ICH may demonstrate irregular margins and internal density heterogeneities upon imaging [30]. These imaging phenomena have especially been associated with the use of oral anticoagulants which in turn have been excluded from the MISTIE III trial (novel oral anticoagulants; NOAC) [14,31,32]. As DeepBleed adopts a binary prediction approach at the voxel level using a predetermined threshold, these nuanced voxel differences might be missed [12]. In comparison, another deep learning network, nnU-Net, utilizes the softmax output, as demonstrated by Zhao et al., for ICH segmentation [33,34,35]. However, we believe that these differences have only a minor impact on the general segmentation performance as shown by the overall good DSC during the validation process. A key strength of the network was that the DSC metrics were independent of the participating site’s dataset as well as the presence of IVH. The level of heterogeneity in the developmental cohort of the DeepBleed network may directly relate to this high generalizability of the original model in our external validation cohort. In brief, the original DeepBleed network was multicenter-curated with data from the MISTIE II and III trial series that were conducted at 78 sites in North America, Europe, Australia, and Asia with over 500 patients included [13,14]. In comparison, most of the previous ICH segmentation models were single-center-curated and thus required even more generalization testing ahead of clinical implementation at other sites [35,36,37,38,39]. Secondly, the DeepBleed model employs a dice-based loss function and Adam optimizer, enabling the easy combination of various datasets and augmentation options making it easy to share the trained models as open-source models in order to adapt the network to specific settings [12].



We also observed some limitations in the DeepBleed network. We found that a volume increase had a significantly positive effect on the DSC. This finding is also consistent with that of previous studies showing a positive correlation between lesion size and the DSC in other segmentation networks [40,41]. Therefore, DeepBleed’s limited performance in small ICH appears to be a general limitation of deep learning-based networks for segmentation purposes rather than a methodological limitation of DeepBleed—due to the inclusion of supratentorial ICH with an absolute volume greater 30 mL according to the inclusion criteria of the MISTIE III trial [14]. Considering other performance metrics, the absolute volume differences described by the DeepBleed authors were only small despite the variations in the DSC [12] and were thereby within the range with volume errors of 2 to 5 mL observed in similar studies [11,12,42]. In line with this, our post hoc analysis showed a high correlation between the manual and automatic volume predictions, with an underestimation of 5 mL in the automated approach, while the automatic segmentations had a statistically lower agreement in terms of the DSC compared to human expert raters [43,44]. The latter findings might have a stronger clinical implication than do the conclusions obtained from the DSC metrics, as in clinical practice the ICH volume is of great relevance [13,14,16,45,46,47]. The DSC evaluates the quality of the alignment, which denotes the overlap between the predicted and the GT segmentation [48]. Finally, our results are limited to an external validation cohort of ICH patients who presented within a symptom onset of 24 h. Hence, the performance upon follow-up CT scans beyond a time interval of 24 h may differ.



Our study has the following two main implications. First, our results illustrated that the generalizability of neural networks may be restricted, even when the development and validation cohorts have strong similarities in terms of patient population and healthcare context. Secondly, more extensive retraining may be required to improve the performance at a new site when generalizability is poor. From a clinical point of view, the open-source RM could support decision making for surgical interventions and aid outcome prediction [18,49] in both supra- and infra-tentorial ICH [17,18] with IVH [50,51].



To conclude, the DeepBleed network demonstrated good generalization in an external validation cohort of patients diagnosed with spontaneous ICH on CT and retraining improved location-specific variances significantly. Volumetric analysis showed strong agreement with the manual segmentations of expert raters. However, segmentation accuracy was statistically higher in ground truth masks. The code and RM weights have been made available online [52,53]. Our study illustrates the importance of local retraining for a specific setting to increase the applicability of neural network models for segmentation purposes in spontaneous ICH patients. ICH clinicians and decision makers may take this into account when considering applying externally designed neural network models to their local settings.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jcm12124005/s1; Table S1: Original and retrained model performance metrics; Table S2: Factors influencing the original and retrained model performance using univariate analysis.





Author Contributions


Conceptualization, H.C., A.M., F.M., D.D., F.S., C.G., H.K., T.P., J.F., U.H., A.D. and J.N.; methodology, H.C., J.N. and A.D.; software, H.C. and A.D.; validation, H.C., J.N. and A.D.; formal analysis, H.C., A.M., F.M., D.D., F.S., C.G., H.K., T.P., J.F., U.H., A.D. and J.N.; investigation, H.C., J.N. and A.D.; resources, H.C., A.M., F.M., D.D., F.S., C.G., H.K., T.P., J.F., U.H., A.D. and J.N.; data curation, H.C., A.M., F.M., D.D., F.S., C.G., H.K., T.P., J.F., U.H., A.D. and J.N.; writing—original draft preparation, H.C., J.N. and A.D.; writing—review and editing, H.C., A.M., F.M., D.D., F.S., C.G., H.K., T.P., J.F., U.H., A.D. and J.N.; visualization, H.C., J.N. and A.D.; supervision, J.N., A.D., T.P. and U.H. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Institutional Review Board Statement


The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board of Charité Berlin, Germany (protocol number EA1/035/20), University Medical-Center Hamburg, Germany (protocol number WF-054/19), and IRCCS Mondino Foundation, Pavia, Italy (protocol number 20190099462).




Informed Consent Statement


Written informed consent was waived by the institutional review boards due to the retrospective nature of the study.




Data Availability Statement


The data that support the findings of this study are available from the corresponding authors upon reasonable request and in accordance with the institution’s data security regulations.




Acknowledgments


J.N. is grateful for being supported by the Berlin Institute of Health (Digital Clinician Scientist Grant funded by Charité—Universitaetsmedizin Berlin, the Berlin Institute of Health and the German Research Foundation, DFG). F.S. was supported by the Berlin Institute of Health (Clinician Scientist Grant). T.P. was supported by the Berlin Institute of Health (Clinician Scientist Grant and Platform Grant), Ministry of Education and Research (BMBF, 01KX2021, and 68GX21001A), German Research Foundation (DFG, SFB 1340/2), and Horizon 2020 (952172). F.M. was supported by the Italian Ministry of Health (Ricerca Corrente 2022–2024).




Conflicts of Interest


Tobias Penzkofer reports research agreements (with no personal payments, outside of submitted work) with AGO, Aprea AB, ARCAGY-GINECO, Astellas Pharma Global Inc. (APGD), Astra Zeneca, Clovis Oncology, Inc., Dohme Corp, Holaira, Incyte Corporation, Karyopharm, Lion Biotechnologies, Inc., MedImmune, Merck Sharp, Millennium Pharmaceuticals, Inc., Morphotec Inc., NovoCure Ltd., PharmaMar S.A. and PharmaMar USA, Inc., Roche, Siemens Healthineers, and TESARO Inc., and has received fees for a book translation (Elsevier). All other authors have no relevant financial or non-financial interests to disclose.




References


	



Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]

	



Caplan, L.R. Intracerebral haemorrhage. Lancet 1992, 339, 656–658. [Google Scholar] [CrossRef] [PubMed]

	



Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet 2009, 373, 1632–1644. [Google Scholar] [CrossRef] [PubMed]

	



Pinho, J.; Costa, A.S.; Araújo, J.M.; Amorim, J.M.; Ferreira, C. Intracerebral hemorrhage outcome: A comprehensive update. J. Neurol. Sci. 2019, 398, 54–66. [Google Scholar] [CrossRef]

	



Hemphill, J.C., III; Greenberg, S.M.; Anderson, C.S.; Becker, K.; Bendok, B.R.; Cushman, M.; Fung, G.L.; Goldstein, J.N.; Macdonald, R.L.; Mitchell, P.H.; et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2015, 46, 2032–2060. [Google Scholar] [CrossRef]

	



Anderson, C.S.; Huang, Y.; Wang, J.G.; Arima, H.; Neal, B.; Peng, B.; Heeley, E.; Skulina, C.; Parsons, M.W.; Kim, J.S.; et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): A randomised pilot trial. Lancet Neurol. 2008, 7, 391–399. [Google Scholar] [CrossRef]

	



Garg, R.K.; Liebling, S.M.; Maas, M.B.; Nemeth, A.J.; Russell, E.J.; Naidech, A.M. Blood pressure reduction, decreased diffusion on MRI, and outcomes after intracerebral hemorrhage. Stroke 2012, 43, 67–71. [Google Scholar] [CrossRef]

	



Morgan, T.; Zuccarello, M.; Narayan, R.; Keyl, P.; Lane, K.; Hanley, D. Preliminary findings of the minimally-invasive surgery plus rtPA for intracerebral hemorrhage evacuation (MISTIE) clinical trial. Acta Neurochir. Suppl. 2008, 105, 147–151. [Google Scholar]

	



Webb, A.J.; Ullman, N.L.; Morgan, T.C.; Muschelli, J.; Kornbluth, J.; Awad, I.A.; Mayo, S.; Rosenblum, M.; Ziai, W.; Zuccarrello, M.; et al. Accuracy of the ABC/2 Score for Intracerebral Hemorrhage: Systematic Review and Analysis of MISTIE, CLEAR-IVH, and CLEAR III. Stroke 2015, 46, 2470–2476. [Google Scholar] [CrossRef]

	



Delcourt, C.; Carcel, C.; Zheng, D.; Sato, S.; Arima, H.; Bhaskar, S.; Janin, P.; Salman, R.A.-S.; Cao, Y.; Zhang, S.; et al. Comparison of ABC methods with computerized estimates of intracerebral hemorrhage volume: The INTERACT2 study. Cerebrovasc. Dis. Extra 2019, 9, 148–154. [Google Scholar] [CrossRef]

	



Wang, T.; Song, N.; Liu, L.; Zhu, Z.; Chen, B.; Yang, W.; Chen, Z. Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement. BMC Med. Imaging 2021, 21, 125. [Google Scholar] [CrossRef]

	



Sharrock, M.F.; Mould, W.A.; Ali, H.; Hildreth, M.; Awad, I.A.; Hanley, D.F.; Muschelli, J. 3D Deep Neural Network Segmentation of Intracerebral Hemorrhage: Development and Validation for Clinical Trials. Neuroinformatics 2021, 19, 403–415. [Google Scholar] [CrossRef]

	



Hanley, D.F.; Thompson, R.E.; Morgan, T.C.; Ullman, N.; Mould, W.A.; Carhuapoma, J.; Kase, C.; Ziai, W.; Thompson, C.B.; Yenokyan, G.; et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016, 15, 1228–1237. [Google Scholar] [CrossRef]

	



Hanley, D.F.; Thompson, R.E.; Rosenblum, M.; Yenokyan, G.; Lane, K.; McBee, N.; Mayo, S.W.; Bistran-Hall, A.J.; Gandhi, D.; Mould, W.A.; et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019, 393, 1021–1032. [Google Scholar] [CrossRef]

	



Yu, A.C.; Mohajer, B.; Eng, J. External validation of deep learning algorithms for radiologic diagnosis: A systematic review. Radiol. Artif. Intell. 2022, 4, e210064. [Google Scholar] [CrossRef]

	



Hanley, D. Minimally Invasive Surgery Plus Rt-PA for ICH Evacuation Phase III (MISTIE III). Available online: https://clinicaltrials.gov/ct2/show/study/NCT01827046 (accessed on 28 January 2022).

	



Falcone, G.J.; Biffi, A.; Brouwers, H.B.; Anderson, C.D.; Battey, T.W.K.; Ayres, A.; Vashkevich, A.; Schwab, K.; Rost, N.S.; Goldstein, J.N.; et al. Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol. 2013, 70, 988–994. [Google Scholar] [CrossRef]

	



Chen, R.; Wang, X.; Anderson, C.S.; Ronbinson, T.; Lavados, P.M.; Lindley, R.I.; Chalmers, J.; Delcourt, C.; The INTERACT Investigators. Infratentorial intracerebral hemorrhage: Relation of location to outcome. Stroke 2019, 50, 1257–1259. [Google Scholar] [CrossRef]

	



Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]

	



Harris, C.; Millman, K.; van der Walt, S.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Smith Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M.H.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]

	



Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef]

	



Avants, B.B.; Tustison, N.; Song, G. Advanced normalization tools (ANTS). Insight J. 2009, 2, 1–35. [Google Scholar]

	



Rorden, C.; Bonilha, L.; Fridriksson, J.; Bender, B.; Karnath, H.O. Age-specific CT and MRI templates for spatial normalization. Neuroimage 2012, 61, 957–965. [Google Scholar] [CrossRef] [PubMed]

	



Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:14126980. [Google Scholar]

	



Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]

	



Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]

	



McCarthy, P.; Cottaar, M.; Webster, M.; Fitzgibbon, S.; Craig, M. fslpy (3.10.0). 2022. Available online: https://git.fmrib.ox.ac.uk/fsl/fslpy/ (accessed on 9 May 2023).

	



GraphPad. Available online: www.graphpad.com (accessed on 9 May 2023).

	



Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]

	



Muschelli, J.; Sweeney, E.M.; Ullman, N.L.; Vespa, P.; Hanley, D.F.; Crainiceanu, C.M. PItcHPERFeCT: Primary intracranial hemorrhage probability estimation using random forests on CT. NeuroImage Clin. 2017, 14, 379–390. [Google Scholar] [CrossRef]

	



Morotti, A.; Goldstein, J.N. Anticoagulant-associated intracerebral hemorrhage. Brain Hemorrhages 2020, 1, 89–94. [Google Scholar] [CrossRef]

	



Gerner, S.T.; Kuramatsu, J.B.; Sembill, J.A.; Sprügel, M.I.; Hagen, M.; Knappe, R.U.; Endres, M.; Haeusler, K.G.; Sobesky, J.; Schurig, J.; et al. Characteristics in Non–Vitamin K Antagonist Oral Anticoagulant–Related Intracerebral Hemorrhage. Stroke 2019, 50, 1392–1402. [Google Scholar] [CrossRef]

	



Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]

	



Isensee, F.; Jäger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. Automated design of deep learning methods for biomedical image segmentation. arXiv 2019, arXiv:190408128. [Google Scholar]

	



Zhao, X.; Chen, K.; Wu, G.; Zhang, G.; Zhou, X.; Lv, C.; Wu, S.; Chen, Y.; Xie, G.; Yao, Z. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Eur. Radiol. 2021, 31, 5012–5020. [Google Scholar] [CrossRef]

	



Patel, A.; Leemput SCvd Prokop, M.; Ginneken, B.V.; Manniesing, R. Image Level Training and Prediction: Intracranial Hemorrhage Identification in 3D Non-Contrast CT. IEEE Access 2019, 7, 92355–92364. [Google Scholar] [CrossRef]

	



Ironside, N.; Chen, C.-J.; Ding, D.; Mayer, S.A.; Connolly, E.S., Jr. Perihematomal edema after spontaneous intracerebral hemorrhage. Stroke 2019, 50, 1626–1633. [Google Scholar] [CrossRef]

	



Dhar, R.; Falcone, G.J.; Chen, Y.; Hamzehloo, A.; Kirsch, E.P.; Noche, R.B.; Roth, K.; Acosta, J.; Ruiz, A.; Phuah, C.-L.; et al. Deep Learning for Automated Measurement of Hemorrhage and Perihematomal Edema in Supratentorial Intracerebral Hemorrhage. Stroke 2020, 51, 648–651. [Google Scholar] [CrossRef]

	



Yu, N.; Yu, H.; Li, H.; Ma, N.; Hu, C.; Wang, J. A robust deep learning segmentation method for hematoma volumetric detection in intracerebral hemorrhage. Stroke 2022, 53, 167–176. [Google Scholar] [CrossRef]

	



Lin, L.; Dou, Q.; Jin, Y.-M.; Zhou, G.-Q.; Tang, Y.-Q.; Chen, W.-L.; Su, B.-A.; Liu, F.; Tao, C.-J.; Jiang, N.; et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 2019, 291, 677–686. [Google Scholar] [CrossRef]

	



Rudie, J.D.; Weiss, D.A.; Saluja, R.; Rauschecker, A.M.; Wang, J.; Sugrue, L.; Bakas, S.; Colby, J.B. Multi-disease segmentation of gliomas and white matter hyperintensities in the BraTS data using a 3D convolutional neural network. Front. Comput. Neurosci. 2019, 13, 84. [Google Scholar] [CrossRef]

	



Scherer, M.; Cordes, J.; Younsi, A.; Sahin, Y.-A.; Götz, M.; Möhlenbrunch, M.; Stock, C.; Bösel, J.; Unterbreg, A.; Maier-Hein, K.; et al. Development and Validation of an Automatic Segmentation Algorithm for Quantification of Intracerebral Hemorrhage. Stroke 2016, 47, 2776–2782. [Google Scholar] [CrossRef]

	



Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]

	



Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]

	



Hanley, D. Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III (CLEAR-III). 2013. Available online: https://clinicaltrials.gov/ct2/show/NCT00784134 (accessed on 28 January 2022).

	



Hanley, D.F.; Lane, K.; McBee, N.; Ziai, W.; Tuhrim, S.; Lees, K.R.; Dawson, J.; Gandhi, D.; Ullman, N.; Mould, W.A.; et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: Results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 2017, 389, 603–611. [Google Scholar] [CrossRef] [PubMed]

	



MIND. Artemis in the Removal of Intracerebral Hemoorrhage. Available online: https://clinicaltrials.gov/ct2/show/NCT03342664 (accessed on 28 January 2022).

	



Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]

	



Hemphill, J.C., III; Bonovich, D.C.; Besmertis, L.; Manley, G.T.; Johnston, S.C. The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001, 32, 891–897. [Google Scholar] [CrossRef] [PubMed]

	



Hill, M.D.; Silver, F.L.; Austin, P.C.; Tu, J.V. Rate of stroke recurrence in patients with primary intracerebral hemorrhage. Stroke 2000, 31, 123–127. [Google Scholar] [CrossRef]

	



Hallevi, H.; Albright, K.C.; Aronowski, J.; Barreto, A.D.; Martin-Schild, S.; Khaja, A.M.; Gonzales, N.R.; Illoh, K.; Noser, E.A.; Grotta, J.C. Intraventricular hemorrhage: Anatomic relationships and clinical implications. Neurology 2008, 70, 848–852. [Google Scholar] [CrossRef]

	



Cao, H.; Dell’Orco, A. DeepBleed Retrained Weights. Dataset Zenodo. Available online: https://doi.org/10.5281/zenodo.7616199 (accessed on 9 May 2023). [CrossRef]

	



Cao, H.; Dell’Orco, A. DeepBleed Code. Code Gitub. Available online: https://github.com/orangepepermint/retraindeepbleed (accessed on 9 May 2023).








[image: Jcm 12 04005 g001 550] 





Figure 1. Flow diagram of patients included from three European participating sites and final patient cohort after further exclusion. 
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Figure 2. Processing pipeline of the 3D DeepBleed network. 
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Figure 3. Segmentations of the original and retrained model across different locations. Illustrative examples of ground truth segmentations (red) for intracerebral hemorrhage (ICH) with intraventricular hemorrhage (IVH; upper rows) and ICH only (lower rows) given for deep, lobar, brainstem, and cerebellar ICH. Segmentations given are displayed for manual segmentations (left column), and DeepBleed segmentations with the original model (OM, middle column), and the retrained model (RM, right column). 
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Figure 4. Model performance of the original and retrained model across different locations. (A) Comparison of dice scores across lobar, deep, brainstem and cerebellar hemorrhage with original weights (OM, grey) and retrained weights (RM, blue). (B,C) Relationship between hemorrhage volume and dice scores across different locations. (B) Automatic segmentation with OM. (C) Automatic segmentation with RM. **: p-value < 0.01, ***: p-value < 0.001. 
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Figure 5. Volume agreement analysis of the original and retrained model with the ground truth. (A) Pearson’s correlation matrix of agreement for ground truth volume and automatic segmentations of DeepBleed with original weights (original model, OM) and retrained weights (retrained model, RM). (B) Median intracerebral hemorrhage and intraventricular hemorrhage volumes of ground truth and automatic segmentation with OM and RM given with a 95% confidence interval. The mean volumes of GT, OM and RM (± SD) were 43.2 (± 42.6), 36.0 (± 35.9) and 36.2 (± 35.9). It is possible to see that DeepBleed normally underestimates volume, probably due to the probability map threshold. 
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Figure 6. Segmentation agreement analysis of the original and retrained model and human expert raters. (A) Intraclass correlation coefficient (ICC) of dice score (DSC) from two experienced raters, automatic segmentations of DeepBleed with original weights (OM) and retrained weights (RM) compared to ground truth (GT) of a senior stroke imaging neuroradiologist. (B) Median with 95% CI of DSC from each group. DSC, dice score; ICC, intraclass correlation coefficient; OM, original model; RM, retrained model. ****: p-value < 0.0001. 
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Table 1. Comparison of the demographics and volumetry.
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Variable

	
Training Cohort (n = 100)

	
Validation Cohort (n = 20)

	
Test Cohort (n = 920)

	
p-Value






	
Age (years), mean ± SD

	
70.5 ± 13.1

	
68 ± 13.4

	
69.6 ± 14.2

	
0.84 1




	
Sex, n (%)

	

	

	

	




	

	
Male

	
41 (41)

	
11 (55)

	
516 (56)

	




	

	
Female

	
59 (59)

	
9 (45)

	
404 (44)

	




	
NIHSS score, median (IQR)

	
7.5 (10)

	
10 (10)

	
7 (5)

	
0.70 1




	
GCS score, median (IQR)

	
13 (7)

	
14 (4)

	
13 (8)

	
0.11 2




	
Symptom onset to imaging (hours), median (IQR)

	
4.3 (13.6)

	
3.9 (7.6)

	
4.23 (12.8)

	
0.89 2




	
ICH location, n (%)

	

	

	

	




	

	
Lobar

	
44 (44)

	
6 (30)

	
338 (36.7)

	




	

	
Deep

	
46 (46)

	
7 (35)

	
455 (49.5)

	




	

	
Brainstem

	
3 (3)

	
3 (15)

	
41 (4.5)

	




	

	
Cerebellum

	
7 (7)

	
4 (20)

	
86 (9.3)

	




	
ICH + IVH volume (ml), mean ± SD

	
83.8 ± 47.2

	
56.4 ± 89.7

	
76.5 ± 44.9

	
0.67 2




	
ICH volume (ml), mean ± SD

	
27.7 ± 30.2

	
34.2 ± 30.9

	
44.1 ± 14.2

	
0.30 2




	
IVH volume (ml), mean ± SD

	
61.1 ± 49.1

	
22.2 ± 77.1

	
34.5 ± 42.5

	
0.64 2








Demographics and descriptive characteristics compared between the training, validation, and test datasets. NIHSS, National Institutes of Health Stroke score; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; IQR, interquartile range; IVH, intraventricular hemorrhage; SD, standard deviation. 1 one-way-ANOVA test; 2 Kruskal–Wallis test, if the data do not fulfill the normal distribution.
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Table 2. Original and retrained model performance metrics.
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	Metric
	All Locations
	Deep
	Lobar
	Brainstem
	Cerebellum





	OM
	
	
	
	
	



	DSC
	0.84 (0.73, 0.88)
	0.86 (0.80, 0.89)
	0.84 (0.78, 0.89)
	0.71 (0.46, 0.78)
	0.48 (0.23, 0.64)



	Sensitivity
	0.79 (0.65, 0.86)
	0.85 (0.79, 0.91)
	0.80, (0.70, 0.87)
	0.58 (0.38, 0.74)
	0.34 (0.13, 0.49)



	PPV
	0.93 (0.85, 0.97)
	0.91 (0.85, 0.95)
	0.99 (0.85, 0.97)
	0.88 (0.76, 0.94)
	0.94 (0.76, 0.99)



	RM
	
	
	
	
	



	DSC
	0.83 (0.74, 0.88)
	0.87 (0.81, 0.90)
	0.83 (0.72, 0.88)
	0.77 (0.57, 0.83)
	0.79 (0.65, 0.84)



	Sensitivity
	0.80 (0.69, 0.87)
	0.85 (0.79, 0.91)
	0.79 (0.63, 0.88)
	0.72 (0.57, 0.79)
	0.75 (0.59, 0.84)



	PPV
	0.91 (0.84, 0.95)
	0.91 (0.85, 0.95)
	0.92 (0.63, 0.88)
	0.87 (0.77, 0.94)
	0.88 (0.79, 0.94)



	t1 OM vs. RM (padj-value)
	
	
	
	
	



	DSC
	−5.9 (0.001)
	1.64 (ns)
	4.57 (0.001)
	1.90 (ns)
	12.94 (0.001)



	Sensitivity
	1.45 (ns)
	3.05 (0.036)
	4.03 (0.001)
	3.33 (0.03)
	16.49 (0.001)



	PPV
	−7.23 (0.001)
	0.12 (ns)
	2.33 (ns)
	0.02 (ns)
	0.30 (ns)







Model performance across the original (OM) and retrained (RM) DeepBleed models. All datasets and hemorrhage locations were evaluated for dice scores (DSCs), sensitivity, and positive predictive values (PPVs) and are given as medians with 95% confidence intervals. The metrics of the original (OM) and retrained weights (RM) were compared using t-tests with adjusted p-values. Briefly, 95% CI = 95% confidence interval; padj-value = adjusted p-value; t1 = paired t-test between OM and RM for the specified metric; ns = not significant.
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Table 3. Factors influencing the original and retrained model performance.
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OM

	
RM




	
Parameter

	
Slope

	
SD

	
p-Value

	
Slope

	
SD

	
p-Value






	

	
0.75

	
0.01

	
<0.001

	
0.78

	
0.01

	
<0.001




	
Location (in respect to deep location)




	
Lobar

	
−0.04

	
0.01

	
<0.01

	
−0.06

	
0.01

	
<0.001




	
Brainstem

	
−0.20

	
0.03

	
<0.001

	
−0.18

	
0.03

	
<0.001




	
Cerebellum

	
−0.32

	
0.02

	
<0.001

	
−0.08

	
0.02

	
<0.001




	
Volume (mm3)

	
0.00

	
0.00

	
<0.001

	
0.00

	
0.00

	
<0.001




	
IVH Presence

	
0.02

	
0.01

	
0.17

	
0.02

	
0.01

	
0.15




	
Center (in respect to Berlin, DE)




	
Hamburg, DE

	
0.003

	
0.01

	
0.81

	
−0.02

	
0.013

	
0.09




	
Pavia, IT

	
0.008

	
0.02

	
0.73

	
−0.01

	
0.023

	
0.66








Multivariate linear regression analysis of variables influencing the model performance in the original (OM) and retrained (RM) DeepBleed model. DE, Germany; IT, Italy; IVH, intraventricular hemorrhage; SD, standard deviation.
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