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Abstract: In clinical practice, the consideration of non-specific symptoms of rare diseases in order
to make a correct and timely diagnosis is often challenging. To support physicians, we developed a
decision-support scoring system on the basis of retrospective research. Based on the literature and
expert knowledge, we identified clinical features typical for Fabry disease (FD). Natural language
processing (NLP) was used to evaluate patients’ electronic health records (EHRs) to obtain detailed
information about FD-specific patient characteristics. The NLP-determined elements, laboratory
test results, and ICD-10 codes were transformed and grouped into pre-defined FD-specific clinical
features that were scored in the context of their significance in the FD signs. The sum of clinical
feature scores constituted the FD risk score. Then, medical records of patients with the highest FD
risk score were reviewed by physicians who decided whether to refer a patient for additional tests or
not. One patient who obtained a high-FD risk score was referred for DBS assay and confirmed to
have FD. The presented NLP-based, decision-support scoring system achieved AUC of 0.998, which
demonstrates that the applied approach enables for accurate identification of FD-suspected patients,
with a high discrimination power.

Keywords: clinical diagnosis support system; decision-support; electronic health record; EHR; Fabry
disease; natural language processing; NLP; rare disease; risk factor
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1. Introduction

Fabry disease (FD) is an ultra-rare genetic disorder with an incidence of 1:40,000 to
1:117,000, depending on the studied population [1]. It is caused by pathological variants
of the alpha-galactosidase A gene (GLA) encoding lysosomal enzyme alpha-galactosidase
A [2]. Lower activity of that enzyme leads to pathological accumulation of glycosphin-
golipids, such as globotriaosylceramides inside lysosomes, followed by cell degeneration,
tissue inflammation, and organ impairment [3]. Since FD is an X-linked disorder, the
symptoms are usually more severe in males than in females [4,5]. Interestingly, screening
studies have revealed that the frequency of GLA pathological variants in newborns is much
higher than the prevalence of clinically significant FD cases [6,7]. This phenomenon is
likely a result of the complex gene expression profile or post-transcriptional modifications
opposing the clinical role of the genetic GLA abnormalities [8–10]. Usually, the first clinical
symptoms of FD appear early, during the preschool or school periods [11]. They include
neuropathic pain (e.g., acroparesthesias), with the so-called “pain crises”, gastrointesti-
nal symptoms, impaired sweating, and cold/heat intolerance. Other characteristic FD
traits include recurrent fever, typical skin changes (e.g., angiokeratoma), ophthalmologic
(e.g., cornea verticillata) and otolaryngological (e.g., hearing impairment or loss, dizzi-
ness) abnormalities, while those most frequently responsible for shortening the patient’s
life include cardiac dysfunction, cardiovascular and cerebrovascular events, and chronic
kidney disease, usually with proteinuria [12,13]. Despite many symptoms, diagnosis of
FD in relation to the appearance of the first symptoms is usually significantly delayed (by
7–10 years), because most of the symptoms are non-specific [14–16]. Furthermore, aware-
ness about this disease in the medical community is low [16,17]. It has been shown that
43% of pediatricians and 70% of rheumatologists could not point to the proper diagnostic
approach in FD suspicion [16]. On the other hand, since effective therapy exists [18], early
diagnosis is critical to limit disease progression; however, damage done to the organs prior
to its initiation cannot be reversed [19–21]. Automatization of the screening process, based
on approaches evaluating medical file records for suspicion of FD trait, might facilitate and
shorten the time to diagnosis, benefiting patients and their physicians. Several applications
have been described in the literature based on artificial intelligence (AI) or related methods
for identifying rare diseases. For example, Hughes et al. [22] presented an approach helping
to determine the severity of FD using an expert algorithm based on symptoms and clinical
findings. Jefferies et al. [23] described an AI tool (OM1 Patient Finder™, OM1 Inc., Boston,
MA, USA) capable of identifying patients at high FD risk. They proved the tool to be
effective, with an AUC of 0.82. Access to large-scale databases of EHRs presents new op-
portunities to apply NLP methods and new sources of clinically valuable knowledge. One
of the text processing tasks is the recognition of entities, especially in the medicine domain
entities like symptoms or signs of certain conditions in general. Today’s implementations
of NLP on unstructured narrative texts from EHRs have shown promising results on this
task [24]. There is an increasing interest in BERT-like transformers [25,26]. Rule-based
approaches have also been shown to be effective [24,27–29]. However, we decided to use
a lexicon-based approach similar to that used by Oladapo Oyebode [29], but instead of
the sentiment score, we used sentence embedding, implemented in spaCy [30], and cosine
similarity to measure the level of similarity to achieve a complete automated process of
extracting data from electronic health records (EHRs). It is important to note that medical
description accounts for a substantial part of EHRs, and in many cases the majority of the
information is in the form of unstructured data; therefore, NLP-based methods may be
more sensitive than approaches based on ICD-9- or ICD-10-derived clinical phenotypes or
on laboratory test results alone. Our study aimed to develop and test a risk-factor-based
scoring system to support physicians in early diagnosis of FD through automatic screening
and analysis of EHRs available in the information systems of primary care and outpatient
clinics in real life with the use of NLP. Specific rare disease indication is much more efficient
when a patient’s description is mapped against thousands of other records. In addition,
tremendous amounts of complicated patient background information—i.e., the complete
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documentation of the patient’s medical history, which facilitates diagnosis—cannot be
evaluated by a physician during one visit, in contrast to the presented approach. We believe
that the NLP-based approach presented in this paper could accelerate accurate diagnosis
among patients with signs of FD.

2. Materials and Methods
2.1. Studied Population

The study was conducted on medical data obtained from the Saventic Health database
that covered eight Polish hospitals that had signed agreements with Saventic Health. It
covers years 2008–2022, and all medical information of the patients were included in the
study. However, in terms of the time horizon of the medical history, 25% of patients had
less than 1 year of historical documentation, 50% less than 5 years, and 75% less than
9 years, respectively. The longest time range for a patient was 16 years between the first
and last visit. This database was based on the PostgreSQL Relational Database and con-
tained medical records that had been anonymized in accordance with the GDPR guidelines.
The following types of data in unstructured form were present in the patients’ electronic
health records (EHRs): age and gender, medical history, symptoms and signs, laboratory
results, diagnoses, ICD-10 codes, imaging study descriptions, and epicrisis. Patient data
were extracted and processed in Jupyter Notebook [31] in Python [32]. The Numpy [33]
and Pandas [34] libraries were used for data preprocessing. The informed consent of the
patients was not needed to perform analysis based on medical data from health care centers.
Data were anonymized by the medical center prior to sharing data with the Saventic. After
obtaining the results of the analysis (see Section 3), medical coordinators in individual
facilities were contacted and the report specifying high-risk medical records was shared
with them. The decision on whether to invite patients for further consultations, including a
DBS, was taken by doctors leading individual patients. At first, it was verified, based on
the presence of the ICD-10 code E75.2 in the EHRs, that 13 of the patients in the medical
database had previously been diagnosed with FD using dry blood spot (DBS) assay. The
EHRs of these 13 patients were obtained from the seven Polish hospitals at which they
were treated. Together, these patients formed the study group. The control group was
established with the aim of imitating a hospital population, in which this kind of scoring
system could be implemented. For this reason, the control group was obtained from one
hospital and included 19,372 patients from various hospital wards: allergology, angiology,
surgery, phoniatrics, gastroenterology, hematology, cardiology, neonatology, neurology,
neurosurgery, ophthalmology, otolaryngology, gynecology, obstetrics, rheumatology, urol-
ogy, anesthesiology, internal medicine, emergency medicine, orthopedics and outpatients.
None of the patients in the control group had been diagnosed with FD, and there was no
information about FD in their EHRs. Unfortunately, the control group could potentially
include undiagnosed FD patients. Patients were selected from the Saventic Health database
according to inclusion and exclusion criteria listed below. (i) Inclusion criteria: age 18–75;
no other criteria were defined in order to imitate implementation of the decision-support
scoring system in a hospital population. (ii) Exclusion criteria: palliative care, alcohol
dependency, disseminated cancer, blood cancer, and chemotherapy.

2.2. FD Risk Factor Development

The goal of the presented approach was to develop a scoring system for FD diagnosis
based on digitized data from hospital records and its practical implementation. Firstly,
according to detailed literature screening [23,35,36] and consultations with physicians from
FD knowledge centers, a set of FD-related signs available in the literature was brought to
13 clinical features, considered by physicians as most useful and typical for FD. Secondly,
based on expert knowledge, a scoring system for 13 clinical features was created. The score
of each feature ranged from zero to three. When creating a scoring system, the following
aspects were taken into consideration: the number of traits and characteristics included
in a particular feature; the significance of a feature in FD diagnosis and/or severity; and
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the typical age of a feature’s first manifestation. Therefore, when a feature was common in
the general population at a specific age, its score was low. On the other hand, if a feature
typical for the elderly was observed in younger patients, e.g., stroke, myocardial infarction,
renal failure, eye fundus lesions, or hearing loss, the scoring weight increased the score
value of a feature. The sum of the clinical feature scores of a patient constituted the FD risk
factor. Next, some of the clinical features typical for FD may be caused by other diseases
known to be relevant for a patient. In such cases, when another confirmed disease was
a potential source of a clinical feature, then it was not scored. In order to achieve this,
several feature exclusion criteria were considered (Figure 1). One exclusion criterion was
concerned with renal failure: nephropathies, amyloidosis, sarcoidosis, Alport’s syndrome,
post-nephrectomy condition (single kidney, bilateral), metastatic urolithiasis, and congenital
renal system defects. Another exclusion criterion was related with the clinical features of
stroke: patent foramen ovale (PFO) and trauma. Finally, the 13 clinical features selected
were further categorized according to the five most common FD signs: (1) cardiovascular
symptoms; (2) kidney disease; (3) skin changes in selected areas; (4) neurological disorders;
and (5) eye changes (Figure 1).
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Figure 1. Overview of patients’ assignment to the study and control groups, as well as the extraction
of characteristics related to FD from text records and descriptions of ICD-10 codes. The fields that
were used for FD risk factor assessment are indicated in lime. Fields eliminating patients from further
analysis due to specific symptoms or exclusion criteria, which are described in the Materials and
Methods, are indicated in gray. EHR—electronic health records; ICD-10—International Statistical
Classification of Diseases and Related Health Problems; NLP—natural language processing.

2.3. Natural Language Processing

NLP was implemented based on spaCy’s pl_core_news_md model [30]. The name
pl_core_news_md consists of four elements: pl stands for the language on which the model
was trained; core stands for general purpose, that is, tagging, parsing, lemmatization,
and named entity recognition; news stands for the type of text data (blogs, news, com-
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ments) on which the model was originally trained by the spaCy developers; and finally,
md stands for medium package size. This size has a reduced word vector table with
20 thousand unique vectors, resulting in approximately 500 thousand words. In our study,
NLP was used to evaluate text records in the EHRs to obtain detailed patient characteristics
(Figure 2). Regular expressions were combined to describe a medical term (Figure 2, step 1).
Then, extensive medical descriptions found in the EHRs were broken down into sentences
(Figure 2, step 2). The next step was to correct errors and typos occurring in the sentences,
as well as to perform lemmatization (Figure 2, step 3). The text prepared in this way was
subjected to tokenization (Figure 2, step 4). Tokenization is the division of sentences into
meaningful units, usually separated in the text by white space. Regular expressions created
in step 1 were searched for in the token sequence (Figure 2, step 5). Tokens were evaluated
for the presence of a given medical term or its negation (Figure 2, step 6). This stage
was supervised and usually required several hundred analyzed descriptions before it was
considered to have worked properly, and the term saved in the dictionary (Figure 2, step 7).
Subsequently, the cosine similarity of the specified token to an expression that already exists
in the dictionary was checked (Figure 2, step 8). Finally, the medical term was extracted
and evaluated, which contributed to the feature score (Figure 2, step 9). In cases where a
token was related to a medical term that already existed and was stored in the dictionary,
steps 6 and 7 were omitted. To determine how well the extraction technique performed,
precision-oriented tests were conducted. Symptom-wise, 100 medical descriptions were
analyzed, in which the presence of a symptom was detected; then, the correctness of the
findings was manually verified by previously trained annotators. The results varied among
symptoms, but they all exceeded the 70% precision threshold, at least. The model did not
identify abbreviations if they were not in the dictionary.
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2.4. FD Risk Score Implementation

To assess the FD risk factor among the studied population of patients, their EHRs were
extracted from hospital systems. In a first step, ICD-10 codes were turned into their full
descriptions, which allowed the extraction of additional patient information. Next, with
the use of NLP, detailed patient characteristics were obtained from the text records. Then,
the NLP-determined traits, laboratory test results, and characteristics obtained from the
ICD-10 codes were assigned to 13 clinical features. Finally, using the established scoring
system, each patient was assigned an FD risk factor. For the obtained values of risk factor
for the patients from the study and control groups, a distribution plot was created and a
cut-off value was established. The purpose of the cut-off value was to effectively reduce
the number of patients referred for screening.

Several cut-off values were tested in order to choose the one that maximized the
detection specificity of FD patients. None of the patients from the study group achieved
a risk factor lower than three. For this reason, 3 was the lowest considered value for the
cut-off. The risk factor values were verified between the cut-off of 3 and 11 in order to
determine the specificity for the detection of FD patients. Based on the chosen cut-off value,
patients were divided into those having low and high risk factor scores. The EHRs of
those with high risk factor scores were further evaluated by two physicians, who decided
whether a patient should be reported to the coordinator at the hospital at which the patient
was being treated. There, the attending physician, having received the report, made a
decision as to whether to contact the patient for further verification, e.g., to refer for DBS
assessment, as is required for final FD confirmation [37,38]. At the final step of the analytical
pipeline, a confusion matrix was created based on the established cut-off point. It was
used to evaluate the number of patients with high or low risk factor scores among the total
number of patients in the study and control groups. The quality of the FD risk factor scoring
system was evaluated as follows: (1) accuracy, Equation (1); (2) precision, Equation (2);
(3) recall, Equation (3); (4) F1-score, Equation (4); where TN—non-FD patients correctly
classified as non-FD; TP—FD patients correctly classified as FD patients; FP—non-FD
patients misclassified as FD patients; FN—FD patients misclassified as non-FD.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score = 2· Precision·Recall
Precision + Recall

(4)

2.5. Statistical Analysis

Specific statistical tests were used to verify whether there was any evidence rejecting
the null hypothesis, considering the attributes of the study and control groups. The null
hypothesis was that there is no difference between the study and control groups. The
Mann–Whitney test was used to compare continuous numerical variables, e.g., age, while
the chi-squared test and Fisher’s exact test were used to compare categorical variables, e.g.,
sex proportions, incidence of cardiovascular diseases, skin changes, neurological disorders,
kidney diseases, and eye disorders between the two analyzed groups. Statistics were
calculated using the Sklearn [39] and Scipy [40] libraries, while the visualizations were
created using Matplotlib [41] and Seaborn [42] libraries.
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3. Results

This study presents a detailed NLP-based analysis of the EHRs of 19,385 patients. Their
general characteristics and five most common FD signs are shown in Table 1. According
to the obtained results, the prevalence of Fabry was higher among males than females
(by 11.5%). The number of females and males was equal in the control group (within an
accuracy of 1%). The statistical test failed to reveal any significant difference in terms of
gender distribution between the study and control groups. Hence, there is not enough
evidence to confirm a gender predisposition based on the observed differences among FD
patients. In other words, patients are likely to have random chances rather than gender
predisposition. On the other hand, the statistical test revealed a significant difference in
mean age between the two groups, with FD patients being younger than patients in the
control group. The results of the other tests showed that the distribution of traits differed
significantly between both groups. As no eye disorders were observed in the study group,
we excluded this sign from hypothesis testing. It was found that the most frequent sign in
both the study and control groups was cardiovascular disease (Table 1) with the following
clinical feature: hypertrophic.

Table 1. General characteristics and five most common FD signs, extracted with the use of NLP,
presented for the patients from the study and control groups; Study group—patients with confirmed
FD; Control group—patients presumably without FD. SD—standard deviation.

Study Group (n = 13) Control Group (n = 19,372) p-Value

Sex (% female) 38.5% 50.5% 0.38
Mean age (SD) 45.2 (10.5) 55.5 (13.3) p < 0.05
Cardiovascular

diseases (%)
10 (76.9%) 6641 (34.3%) p < 0.05

Skin changes (%) 8 (61.5%) 149 (0.8%) p < 0.05
Neurological
disorders (%)

7 (53.8%) 5034 (26.0%) p < 0.05

Kidney diseases (%) 4 (30.8%) 2030 (10.5%) p < 0.05
Eye disorder (%) 0 (0%) 298 (1.5%) -

The frequency of the 13 clinical features selected was scored to obtain the risk factor,
and this varied between groups (Figure 3). Of all of the clinical features taken into account
as part of the FD risk factor, the most frequent in the study group was myocardial infarction
(Figure 3), while in the control group, it was hypertrophic cardiomyopathy (Figure 3).
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The risk factor was individually computed for each patient from the study and control
groups based on the NLP analysis performed on their EHRs (Figure 4). Using the obtained
results, a distribution of the number of patients with a given risk factor was plotted. The
patients with confirmed FD in the study group were aligned following the ranking, showing
high risk score values (Figure 4).
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Patients with Diagnosed FD

Based on the distribution of the number of patients with specific risk factor values,
several cut-offs were examined. For the assumed cut-off of 3, the specificity obtained was
lower than when the cut-off was set to 4. At the same time, when assuming a cut-off
equal to 5 or higher, the specificity increased, but the sensitivity dropped drastically. For
this reason, a cut-off value equal to 4 was chosen. This effectively reduced the number
of patients referred for screening. An adjustment was made for the risk factor of patients
with confirmed FD, so that they would be included among those referred for screening.
Moreover, the determined cut-off value accurately separated patients who should be
referred for diagnostic tests and those whose symptoms were not alarming and/or had no
signs of FD (Figure 4). In total, there were 92 patients who obtained a high risk factor ≥4.
The risk factor distributions in the control and study groups are presented in Figure 5.

Out of 92 patients with risk factors above the cut-off point, 80 were initially assigned
to the control group, and their average risk factor was 4.3 (SD 0.62). The EHRs of these
patients were verified by two physicians experienced in the diagnosis of FD, who came
to the conclusion that of the 80 patients, 15 should be reported to the coordinators of
the hospitals in which they were being treated, so that their attending physicians could
decide whether to refer them for DBS assay for further diagnosis. At this point, it is known
that one patient originally assigned to the control group, who received a high risk factor
equal to 8 (Figure 4), was diagnosed with FD after a DBS assay was performed. Other
patients received a negative test result. It is worth noting that there was one patient in
the study group who was diagnosed with FD with a risk factor of 3, which is below the
chosen cut-off point. The EHR of this patient was manually verified, and it was found that
some symptoms, like skin changes, were described as: “Lesions of the type of multiple
cavernous angiomas on the skin. Long-standing problem. Undiagnosed”, which, due to
the general indications, was rated low in the scoring system, but if assigned more directly
as “angiokeratoma” would have resulted in a higher risk factor assignment.
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As mentioned, there were 92 patients with the risk factor ≥4. Among them, 80 patients
were classified as FP and 12 were TP, which gave the ratio 1:7, while in the general popula-
tion it is known to be 1:40,000 [1]. The obtained 1:7 ratio is 5714 times higher than the ratio
represented within the general population. This represents significant knowledge gain.
Next, a confusion matrix on all patients included in this study was prepared (Figure 6) to
summarize the classification performance of the presented risk factor scoring for the cut-off
set to 4. That evaluation helped to select patients who disagreed with the original class.
The only FN patient known to have FD was confirmed to have a very general description
in the EHR (as already mentioned). The returned confusion matrix (Figure 6) indicated an
accuracy of 0.996, with sensitivity = 92.3% and specificity = 99.59%. However, due to the
high class imbalance, precision = 0.1304, area under the precision–recall curve = 0.537 and
F1-score = 0.2286 were found to be much more informative metrics. The obtained recall
value supported the project’s assumptions. The low value of precision was anticipated, as
from the beginning, it was assumed that some FD patients could be present in the control
group. The high AUC value of 0.998 confirmed that the applied risk factor scoring and
assigned cut-off point enabled accurate distinction between patient groups with a high
discrimination power.
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4. Discussion

Despite the low prevalence of rare diseases, their proper and early diagnosis, although
challenging, is critical for affected patients. Therefore, a machine learning approach can
accelerate their appropriate determination, e.g., in the case of FD [23,43,44], particularly
when facilitated by NLP, as described in this paper. In this case, EHR analysis can highlight
seemingly imperceptible facts or symptoms that typically elude physicians, preventing
proper FD detection, especially in the case of physicians who have never seen the symptoms
of this disease, e.g., cherry-like skin changes (angiokeratoma) coupled with pain in the
extremities and recurrent fever. Furthermore, since FD symptoms develop over many
years, long-term monitoring of medical history is essential [45]. Therefore, the long-
term incorporation of AI algorithms may be a valuable tool for supporting physicians
in their clinical practice. These algorithms will increase the chance of detecting typical
symptoms, characteristic combinations thereof, and their changes over time, leading to
correct diagnosis. Referring people with high risk factor, who might potentially suffer
from FD, for diagnostic testing may be more effective and less expensive than screening
the whole population. Moreover, AI algorithms that support physicians may also increase
the awareness of rare diseases in the medical community. As a next step, they might also
improve therapeutic approaches and prognostic decision-making processes in affected
individuals. We presented a novel NLP-based approach that can support physicians in the
diagnosis of FD based on the medical information included in patients’ EHRs, covering
symptoms, laboratory results, and ICD-10 codes. The patients in the study group were
23–59 years old; thus, we decided that only adults would be included in the control group.
In addition, the upper age limit in the control group was 75 years, in line with [46], where
it was reported that more than 99% of 2044 FD patients had been diagnosed with FD before
that age. As a result of this study, a narrow group of patients with a high risk factor of FD
was identified. The likelihood of FD diagnosis in patients whose risk factor score exceeded
the cut-off value was several thousand times higher than in the general population. The
presented approach showed very high accuracy. However, accuracy might be a misleading
metric in the case of imbalanced datasets where the searched trait is characterized by a
very low incidence, as is the case with rare diseases. The disparity between the numbers
of patients in the study and control groups was not related to data preparation, but to the
fact that FD is a rare disease. For this reason, the AUC, precision, and F1-score served as
performance metrics for the presented approach. In order to evaluate the effectiveness of
the presented FD risk scoring system, a simple comparison was performed between the
AUC values of the presented approach (AUC 0.998) and the approach designed by Jeffries
et al. [23] (AUC 0.82). In the present study, the number of patients in the control group
who had risk factor ≥4 was relatively small. Patients were assessed for a specific clinical
presentation, and whether there were FN patients in the control group who did not undergo
DBS assay remains uncertain. Therefore, it is difficult to judge what the true AUC was and
whether it was really higher than the 0.82 presented by Jeffries et al. [23]. Their study [23]
had significantly more participants, with close to 5000 FD patients in the study group and
1,000,000 patients in the control group, giving a ratio between study/control equal to 0.005.
In our study, this ratio was 0.00067. Due to this fact, it is difficult to clearly determine which
method is more effective. The presented approach is not a classic example of a classifier.
Initially, the study group consisted of only 13 patients diagnosed with FD. Modeling such a
small sample is difficult because of the high risk of overfitting due to the limited model
verification capabilities. Test–train partitioning is affected by the sampling mechanism,
and model learning and evaluation methods such as bootstrapping or leave-one-out cross-
validation are computationally expensive. Models resulting from small-sample modeling
are simple in structure, and factor-based models provide an alternative characterized by
full controllability and explainability. Therefore, a risk-factor-based approach was used to
select patients who should be referred for specialized diagnostic testing. The presented
approach was developed to screen patients at the population scale. This would facilitate
and accelerate the work of physicians. Moreover, the use of the presented approach could



J. Clin. Med. 2023, 12, 3599 11 of 14

potentially reduce diagnostic costs, as it will indicate the need for diagnostic testing only
for patients whose risk factor score exceeds the cut-off value.

The implementation of the presented approach contributed to the diagnosis of one
patient with FD, as confirmed with DBS assay. This patient was 45, with a history of
unexplained cardiomyopathy, vertigo, asymptomatic ischemic changes in the brain MRI,
and renal transplant in a first-degree relative under 45, resulting in a risk factor of 8. At the
time of the implementation of the risk factor-based approach, this patient was clinically
suspected of amyloidosis, and FD was not considered as a potential reason at any point
in the patient’s EHRs. Thus, our method led to the proper diagnosis, which is critical for
the affected patient. Family screening also confirmed a diagnosis of FD in the patient’s
brother. The approach presented in this paper makes it possible to narrow the pool of
patients with a high risk factor who should be referred for DBS assay. Even imperfect
indications can be perceived as beneficial due to the raising of physicians’ suspicions,
followed by patients’ referring for further evaluation and proper diagnostic tests, therefore
resulting in earlier diagnosis. However, it should be kept in mind that this method of risk
factor assessment still has a chance of missing individual patients whose EHRs analysis
incorrectly underestimates their risk factor. However, in such cases, further data follow-up
may be decisive. The use of the approach presented in this paper may prove particularly
useful due to the fact that it is able to draw attention to seemingly irrelevant facts and
can combine multiple features (e.g., ICD-10 codes) to improve predictive and diagnostic
capabilities. In recent years, we have observed a breakthrough in NLP competition, large
pretrained transformers like BERT [47] and GPTs [48] have become state-of-art and general-
purpose language models due to their capacity to contextualize word representations. This
means that models like BERT can understand the meaning of words based on their context
in a sentence, allowing it to capture more nuanced and complex relationships between
words. It has been demonstrated that BERT-based models can be used effectively in medical
tasks [49]. Unsupervised training generates embeddings used as inputs for downstream
supervised tasks such as disease classification. They can significantly improve performance,
particularly on smaller datasets where labeled data are limited. The vast majority of
implements have considered only the English language; however, our research is based
on content in Polish. To overcome this problem, procedures for transferring knowledge
from multilingual to monolingual BERT-based models were developed, thanks to which
HerBERT (Polish BERT) was developed [50]. Transformers constitute the state of the art,
and can be considered to be a direction worth incorporating into our study to enhance or
replace the NLP search approach we developed.

5. Conclusions

This work aimed to create a risk factor scoring system to support physicians in FD
diagnosis using real-life data. The authors used an original approach to the NLP tool
evaluating patients’ EHRs and assessing risk factor among patients who may suffer from
FD. The proposed method increases the effectiveness of diagnostics, further improving
patients’ quality of life and prognosis. To the best of the authors’ knowledge, this is the
first case of FD diagnosis with the help of NLP application. Despite the promising results
of this experiment, there are several limitations that need to be considered. First of all, the
sample size of the FD patients was relatively small, and EHRs are incomplete, which may
limit the generalizability of the conclusions drawn. Therefore, further development and
testing of the risk factor with a larger and more diverse patient population are required to
precisely assess usability in a clinical setting. Secondly, the control group could potentially
include undiagnosed FD patients. However, for this reason, we present our solution as
a screening tool at the population level, and not as a classifier in itself. Thirdly, the NLP
algorithm implemented in this study requires further development to improve its accuracy.
While the algorithm has demonstrated its utility, there is still room for improvement
in terms of its ability to generalize and analyze context. Since the confirmation of the
studies are prospective tests, an appropriate amount of time is needed to collect patients
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for the DBS examinations. These limitations highlight the need for continued research
and development.
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