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Abstract: Low-density lipoprotein cholesterol (LDL-C) is a well-established biomarker in the man-
agement of dyslipidemia. Therefore, we aimed to evaluate the concordance of LDL-C-estimating
equations with direct enzymatic measurement in diabetic and prediabetic populations. The data of
31,031 subjects included in the study were divided into prediabetic, diabetic, and control groups
according to HbA1c values. LDL-C was measured by direct homogenous enzymatic assay and
calculated by Martin–Hopkins, Martin–Hopkins extended, Friedewald, and Sampson equations. The
concordance statistics between the direct measurements and estimations obtained by the equations
were evaluated. All equations evaluated in the study had lower concordance with direct enzymatic
measurement in diabetic and prediabetic groups compared to the non-diabetic group. Even so, the
Martin–Hopkins extended approach demonstrated the highest concordance statistic in diabetic and
prediabetic patients. Further, Martin–Hopkins extended was found to have the highest correlation
with direct measurement compared with other equations. Over the 190 mg/dL LDL-C concentrations,
the equation with the highest concordance was again Martin–Hopkins extended. In most scenarios,
the Martin–Hopkins extended performed best in prediabetic and diabetic groups. Additionally, direct
assay methods can be used at low values of the non-HDL-C/TG ratio (<2.4), as the performance of
the equations in LDL-C estimation decreases as non-HDL-C/TG decreases.

Keywords: diabetes; prediabetes; dyslipidemia; LDL-C; LDL-C estimating equations

1. Introduction

Diabetes mellitus (DM) is a chronic disease characterized by insulin resistance/
deficiency and hyperglycemia [1]. Globally, according to the 10th edition of the IDF
Diabetes Atlas the prevalence of diabetes in adults is about 10.5% [2]. Dyslipidemia, one
of the significant complications of DM, is a disorder of lipoprotein metabolism in the
blood, including elevated levels of total cholesterol (TC), low-density lipoprotein choles-
terol (LDL-C), and triglycerides (TG), or low levels of high-density lipoprotein cholesterol
(HDL-C) [3,4]. Dyslipidemia-related atherosclerotic cardiovascular disease (ASCVD) is
the most common comorbidity in diabetic patients, and it is responsible for mortality in
approximately 50–70% of patients [5–11]. Prediabetes with a high risk for type 2 diabetes
(T2D) is a component of metabolic syndrome and defined as HbA1C between 5.7–6.4%.
The state shares the same pathophysiological process with T2D regarding insulin resis-
tance and/or defects in insulin secretion. Like individuals with diabetes, prediabetes has
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a more prominent ASCVD risk due to dyslipidemia [12]. Therefore, measuring blood
lipid concentrations is crucial for objectively monitoring these patients and preventing
complications.

LDL-C is an important marker, as it is the primary target in lipid-lowering therapy
and the main parameter used in assessing cardiovascular disease risk and modulation
of treatment for diabetic patients. Thus, LDL-C’s precise and accurate measurement is
vital for preventing complications. Different methods are used to establish serum LDL-C
status, including beta (β) quantification, which is used as a gold standard approach, ho-
mogenous assay techniques, and LDL-C-estimating equations. However, β quantification
is not suitable for routine laboratory testing since it is time-consuming, expensive, and
requires large sample volumes [13]. Therefore, many laboratories widely use either direct
measurement or equations, such as Friedewald, Martin–Hopkins, and Sampson. However,
because of financial reasons, the calculation techniques are broadly utilized in biochemistry
laboratories instead of directly determining LDL-C.

These equations estimate LDL-C levels based on the concentrations of serum TC, TG,
and HDL-C levels obtained from direct measurement. It is a well-known fact that bias
and imprecision from the direct measurements and the increasing TG levels can adversely
affect the accuracy of these equations [14–16]. Diabetic dyslipidemia is characterized
by an increase in very low-density lipoprotein (VLDL) and a decrease in high-density
lipoprotein (HDL) levels, resulting in an increase in triglycerides and a decrease in HDL
cholesterol levels. In individuals with diabetes, there is often insulin resistance, which
can contribute to the development of dyslipidemia. Insulin resistance can lead to an
increase in triglycerides and non-HDL and a decrease in HDL cholesterol levels. [17,18].
Accordingly, we hypothesized that the different serum lipoprotein patterns might lead
to additional erroneous effects on the accuracy of these equations. Although previous
studies have evaluated the performance of the Sampson, Martin–Hopkins, and Friedewald
equations in diabetic patients [19–24], none of these studies evaluated the concordance of
Martin–Hopkins extended equation with direct enzymatic measurement in diabetic and
prediabetic subjects. Moreover, there is no study evaluating the effect of glycemic control
on the performance of Martin–Hopkins extended.

This study aimed to assess the validity of the LDL-C levels estimated by Friedewald,
Martin–Hopkins, Martin–Hopkins extended, and Sampson equations with the LDL-C
levels measured by direct assay in diabetic, prediabetic, and non-diabetic populations. As
far as we know, no study has been conducted to evaluate these four equations in a diabetic
and prediabetic populations. Therefore, our study, carried out on a large population
sample, offers an exciting opportunity to advance existing knowledge regarding the use of
well-known LDL-C estimation equations in diabetes and prediabetes.

2. Materials and Methods
2.1. Study Participants

The data were obtained by Sivas Cumhuriyet University Faculty of Medicine De-
partment of Biochemistry between January 2018 and January 2021. These parameters
were ordered from different polyclinics. The study was approved by the local ethics
committee of Sivas Cumhuriyet University (decision number: 2022-09/03). Due to the
retrospective design of the study, informed consent was not obtained from the partici-
pants. Subjects were not categorized based on fasting status. Based on HbA1c concen-
trations, participants (31,031) were divided into three groups as non-diabetic (<5.7% or
<39 mmol/mol), prediabetic (5.7 to 6.5% or 39 to 48 mmol/mol), and diabetic (≥6.5% or
>48 mmol/mol). Additionally, diabetes patients were separated into controlled (HbA1c
values 6.5 to 7%) and uncontrolled (>7% or >53 mmol/mol) subgroups. In well-controlled
diabetics, HbA1c levels may have values below 6.5%, in which case they may be classified as
prediabetes. However, to prevent this misclassification, all past HbA1c levels of individuals
with HbA1c values between 5.7% and 6.5% were also screened, and individuals with HbA1c
levels ≥ 6.5% were excluded from prediabetes group. The following inclusion criteria were
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used: adult participants of 18 years old, both male and female participants from the diabetic
group whose full lipid profile results were included. Participants who were non-diabetics,
<18 years old, and with incomplete lipid profile were excluded. We also excluded subjects
with iron deficiency anemia, hemoglobinopathy, thalassemia, liver disease or abnormal
liver function tests, severe renal impairment or end-stage renal disease, pregnancy, and
malignancy. Samples with hemolysis or icterus were rejected. Patients whose HbA1c%
value is outside the values measuring range (4.2–20.1%) were excluded.

2.2. Biochemical Analyses

We determined HDL-C, LDL-C, TG, and TC concentrations by colorimetric enzymatic
reaction using Roche Cobas 8000 c702 (Roche Diagnostics GmbH, Mannheim, Germany).
LDL-C level was measured according to the following principle obtained from the method
sheet of LDL-C 3rd generation kit of Roche Cobas system. Cholesterol esters and free
cholesterol in LDL were measured by using the cholesterol enzymatic method. Cholesterol
esterase and cholesterol oxidase in the presence of surfactants that selectively solubilize only
LDL were used. The enzyme reactions to the lipoproteins other than LDL were inhibited
by surfactants and a sugar compound. Cholesterol in HDL, VLDL, and chylomicron was
not determined.

HbA1c was measured by turbidimetric inhibition immunoassay using the Roche
Cobas c501 analyzer. The quality of analyses is ensured by performing internal quality
controls, using three levels of specific internal quality control (PreciControl levels 1 and 2;
Roche Diagnostics GmbH, Mannheim, Germany) and external quality control materials
(Randox quality control, General Clinical Chemistry Programme, RIQAS, Antrim, UK).

Analytical CV was calculated by using two-level internal quality control results over a
one-year period, and pooled CV results were established. Bias was given as the average
absolute % deviation determined from the external quality assessment over the same year
period. Bias and CV values were found as follows, respectively; 3.40 and 2.97 for HbA1c
on Cobas c501; and 4.0 and 3.29 for TC; 3.05 and 2.90 for HDL-C; 3.63 and 3.58 for LDL-C;
3.30 and 2.86 for TG on Cobas c702.2.3.

2.3. Lipid Estimations

We estimated LDL-C levels using the Friedewald and recently developed equations,
i.e., Martin–Hopkins, Martin–Hopkins extended, and Sampson. These equations are given
below. The Friedewald equation [25] is defined as follows:

LDL − C(F) = TC − HDL − C − TG
5

(1)

where LDL-C(F) denotes the estimated LDL-C level by Friedewald. We note that the
Friedewald equation employs a fixed TG/VLDL-C ratio in estimating LDL-C levels.

The Martin–Hopkins equation [26] is defined as follows:

LDL − C(M) = TC − HDL − C −
(

TG
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is an
adjustable factor used for the TG/VLDL-C ratio. In contrast to the Friedewald equation,
the TG/VLDL-C ratio, which is no longer fixed, was determined using the 180 cells table
described in Martin’s paper [26]. Using a similar table format to Martin–Hopkins, Martin–
Hopkins extended equation (LDL-C(E)) was implemented to estimate the LDL-C levels. In
the Martin–Hopkins extended equation, the data from the Turkish population were used to
produce the strata-specific median TG/VLDL-C ratios in the 180 cells table (Table 1).
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Table 1. Median statistics for the ratio of triglycerides to very low-density lipoprotein cholesterol
by the cross table of non-high-density lipoprotein cholesterol and triglycerides calculated from the
Turkish population.

TG Levels
(mg/dL)

Non-HDL-C (mg/dL)

<100 100–129 130–159 160–189 190–219 ≥220

7–49 8.17 6.62 5.00 4.36 - 14.67
50–56 9.00 7.00 5.58 3.50 - 3.53
57–61 8.50 8.14 6.33 5.45 6.56 -
62–66 8.13 7.33 7.33 5.13 4.14 -
67–71 9.57 7.67 6.18 5.65 4.38 17.00
72–75 9.25 8.00 7.40 7.40 7.90 18.25
76–69 9.50 7.80 5.57 7.18 12.61 8.53
80–83 9.22 8.20 7.55 8.15 4.78 4.21
84–87 8.70 8.70 7.08 5.73 4.63 8.07
88–92 8.80 8.80 7.08 5.75 5.80 10.49
93–96 8.73 8.64 8.00 6.00 5.00 5.00

97–100 9.00 8.82 8.25 6.39 5.50 28.58
101–105 8.58 8.58 8.67 6.80 6.59 20.20
106–110 9.00 8.38 8.46 8.04 5.43 4.98
111–115 8.85 8.77 8.62 7.60 6.53 5.81
116–120 9.45 8.54 8.54 7.44 6.16 5.02
121–126 9.38 9.00 8.23 7.41 7.24 6.78
127–132 8.60 9.21 8.19 7.17 6.07 5.74
133–138 8.50 9.20 8.53 8.38 6.14 5.52
139–146 8.75 9.00 8.59 8.24 6.64 6.67
147–154 9.34 9.06 8.65 8.05 6.61 8.82
155–163 9.38 9.35 8.72 8.00 7.62 7.11
164–173 9.56 9.36 8.45 7.59 7.64 6.59
174–185 8.70 9.50 8.71 7.96 6.96 6.81
186–201 9.75 9.07 8.88 8.28 7.14 7.11
202–220 8.87 9.32 8.90 8.23 7.77 6.79
221–247 8.54 9.40 8.77 8.54 8.18 7.59
248–292 8.93 9.18 8.69 8.39 7.61 7.30
293–399 8.59 9.11 8.68 8.11 7.65 7.15
≥400 9.80 9.08 8.69 7.99 7.32 6.57

TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; -: Median statistics were not calculated since there
were no samples in this case.

The Sampson equation [15], which uses the least square estimation, is defined as
follows:

LDL − C(S) =
TC

0.948
− HDL − C

0.971
−
(

TG
8.56

+
TG × Non − HDL − C

2140
− TG2

16100

)
− 9.44 (3)

where LDL-C(S) denotes the estimated LDL-C levels by Sampson.

2.4. Statistical Analysis

In order to evaluate the concordance between LDL-C estimating equations and direct
assay, the overall concordance statistic, which is calculated as the ratio of direct LDL-C (LDL-
C(D)) in the same strata as estimated LDL-C based on estimated LDL-C levels (<70, 70 to
99, 100 to 129, 130 to 159, 160 to 189, and ≥190 mg/dL), was used. The overall concordance
statistic was calculated separately for the non-diabetic, prediabetic, and diabetic groups.
For each group, overall accuracies for LDL-C estimates were also calculated for the TG
sublevels (<100, 100 to 149, 150 to 199, 200 to 399, and ≥400 mg/dL) and non-HDL-C
sublevels (<100, 100 to 129, 130 to 159, 160 to 189, 190 to 219, and ≥220 mg/dL). Between-
group comparisons were performed using a two-sided independent samples t-test and
Mann–Whitney U test. Chi-square test was used to compare groups for sex. Within-group
comparisons were performed using one-way analysis of variance (ANOVA) and Friedman
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tests. Bonferroni and Nemenyi tests were used simultaneously for multiple comparisons. A
p value of <0.05 was considered statistically significant. Ordinary least squares regression
analysis was used to compare the estimated and directly measured LDL-C levels, and
residual error plots were created to depict the change in the difference between estimated
and directly measured values. Additionally, mean absolute deviations and the coefficient
of determination (R2) were computed. All statistical analyses were performed using R,
version 4.0.4 (http://www.r-project.org, last access on 1 February 2023) and used packages
ggplot2, ggforce, ggdist, gghalves, gridExtra, ggpubr, readxl, haven, tidyverse.

3. Results
3.1. Patient Characteristics

The study included a total of 3,1031 participants. The main characteristics of the
participants are resumed in Table 2. Participants were divided into three groups according
to their HbA1c levels: non-diabetic (n = 11,423, 36.8%), prediabetic (n = 9362, 30.2%), and
diabetic (n = 10,246, 33.0%). Diabetic patients were also categorized into two categories:
controlled (n = 2794, 27.3%) and uncontrolled (n = 7452, 72.7%). The diabetic group had a
higher average age than the prediabetic and non-diabetic groups (p < 0.05). While almost
half of the patients in the diabetic group were women, the rate of women in the non-diabetic
group was 36.3% (p < 0.05). TC and non-HDL-C levels were higher in the prediabetic
group compared to the other groups, whereas TG levels and TG/TC ratio were higher
in the diabetic group (p < 0.05). The mean LDL-C for each group was 112 (90–136), 121
(96–146), and 113 (87–139) mg/dL, respectively. The mean estimated LDL-C concentrations
were found to be higher in the prediabetic group than in other groups (p < 0.05). In
contrast to LDL-C levels, the diabetic group had the highest median of remnant cholesterol
measured directly.

3.2. Overall Concordances of the Various LDL-C Estimating Equations

Figure 1a demonstrates the overall concordance of several LDL-C estimation algo-
rithms for non-diabetic, prediabetic, and diabetic groups. The figure shows that the Martin–
Hopkins extended method yielded the highest concordance for each group, whereas Friede-
wald’s equation yielded the lowest concordance. The concordance of all equations, except
for the Martin–Hopkins extended equation, has significantly decreased for participants
with prediabetes, and a further decrease follows this fall in the diabetic group. The overall
concordance of LDL-C estimation equations for the controlled and uncontrolled diabetic
categories is shown in Figure 1b. Even though the concordance of LDL-C levels was higher
for individuals with controlled diabetes, the results showed no discernible change in LDL-C
estimation when the Martin–Hopkins extended method was employed.

3.3. Overall Concordances of the Various LDL-C Estimating Equations by LDL-C Sublevels

Figure 2 demonstrates the overall concordances of the various LDL-C-estimating
equations by LDL-C levels for the non-diabetic, prediabetic, and diabetic groups. The most
concordant results were achieved for these groups using Sampson when LDL-C was below
70 mg/dL. Despite producing the least concordant results when LDL-C was less than
70 mg/dL, the Martin–Hopkins extended yielded the most reliable results for any partic-
ipant when LDL-C was greater than 70 mg/dL. As can be seen from the figure, LDL-C
levels predicted by all equations decreased until LDL-C levels reached 190 mg/dL and then
increased after they did, with the diabetic group experiencing a far smaller increase. For
diabetic patients, we also investigated the concordances of LDL-C estimating equations for
LDL-C levels with 70 and 100 mg/dL thresholds. The Martin–Hopkins extended equation
performed with the best results for LDL-C ≥ 70 mg/dL and LDL-C ≥ 100 mg/dL. In
diabetic patients with lower LDL-C levels (LDL-C < 70 mg/dL and LDL-C < 100 mg/dL),
the Sampson equation had the highest concordance statistics with direct assays (Table 3).

http://www.r-project.org
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Table 2. Patient characteristics.

Characteristic

Group Diabetic Group

Non-Diabetic
(N = 11,423)

Prediabetic
(N = 9362)

Diabetic
(N = 10,246) p Uncontrolled

(N = 7452)
Controlled
(N = 2794) p

Age (years) 43.57 ± 16.48 a 56.97 ± 14.19 b 61.12 ± 12.43 c <0.001 60.78 ± 12.45 61.99 ± 12.34 <0.001
Sex

Female 7276 (63.7) a 5583 (59.6) b 5768 (56.3) c <0.001 4174 (56.0) 1594 (57.1) 0.892
Male 4147 (36.3) a 3779 (40.4) b 4478 (43.7) c 3278 (44.0) 1200 (42.9)

Lipid values
TC (mg/dL) 176.00 (152.00–204.00) a 186.00 (157.00–215.00) b 178.00 (149.00–210.00) c <0.001 178.00 (149.00–210.00) 178.00 (148.00–208.00) 0.164
TG (mg/dL) 116.00 (83.00–165.00) a 139.00 (100.00–193.00) b 155.00 (111.00–221.00) c <0.001 159.00 (113.00–229.00) 146.00 (107.00–201.25) <0.001
HDL-C (mg/dL) 46.00 (39.00–56.00) a 44.00 (37.00–52.00) b 41.00 (34.75–49.00) c <0.001 41.00 (34.00–49.00) 42.00 (36.00–50.00) <0.001
Non-HDL-C (mg/dL) 127.00 (103.00–155.00) a 140.00 (113.00–169.00) b 134.00 (107.00–166.00) c <0.001 135.00 (107.00–167.00) 134.00 (104.00–162.25) 0.002
TG-TC ratio 0.66 (0.50–0.93) a 0.76 (0.58–1.02) b 0.89 (0.67–1.22) c <0.001 0.92 (0.68–1.25) 0.85 (0.64–1.12) <0.001
LDL-C(D) (mg/dL) 112.00 (90.00–136.00) a 121.00 (96.00–146.00) b 113.00 (87.00–139.00) a <0.001 113.00 (88.00–140.00) 113.00 (86.00–138.00) 0.467
LDL-C(F) (mg/dL) 101.00 (79.80–124.40) a 108.60 (84.60–132.60) b 99.00 (75.00–124.80) c <0.001 98.60 (74.80–124.60) 100.20 (75.40–125.25) 0.306
LDL-C(S) (mg/dL) 103.79 (82.60–127.19) a 112.24 (88.37–135.85) b 103.41 (79.62–128.60) a <0.001 103.07 (79.72–128.49) 104.20 (79.29–129.06) 0.717
LDL-C(M) (mg/dL) 104.13 (82.92–127.55) a 113.30 (90.07–137.13) b 105.98 (82.08–131.14) c <0.001 105.85 (82.67–131.37) 106.23 (80.70–130.52) 0.385
LDL-C(E) (mg/dL) 112.00 (90.33–135.68) a 121.17 (97.62–145.78) b 113.95 (89.36–139.42) c <0.001 113.58 (89.44–139.25) 114.01 (87.93–138.58) 0.612
Non-HDL-C-TG ratio 2.46 (1.82–3.23) a 2.24 (1.70–2.92) b 1.91 (1.43–2.52) c <0.001 - - -
Remnant-C(D) (mg/dL) 14.00 (8.00–22.00) a 17.00 (10.00–26.00) b 19.00 (11.00–29.00) c <0.001 - - -

Values are expressed as N (%), mean ± SD or median (1st–3rd quartiles). TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density
lipoprotein cholesterol; LDL-C(D): LDL-C measured by direct assay; LDL-C (F): LDL-C calculated by Friedewald formula; LDL-C(S): LDL-C calculated by Sampson formula; LDL-C(M):
LDL-C calculated by Martin/Hopkins formula; LDL-C(E): LDL-C calculated by the extended Martin–Hopkins formula; Remnant-C (D): Remnant cholesterol calculated by direct assay.
Different lowercase letters (a–c) in the same line indicate a statistically significant difference among groups. Significant p values are shown in bold.
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Figure 1. Overall concordances of the different equations for LDL-C estimation. Overall concord-

ances of different LDL-C equations for each group (i.e., non-diabetic, prediabetic, and diabetic) are 

depicted in a clustered bar chart (a). Overall concordances of different equations for LDL-C estima-

tion in two diabetic groups (i.e., controlled and uncontrolled) are depicted in a clustered bar chart 

(b). Each bar displays the concordance of LDL-C directly measured with LDL-C levels estimated by 

different formulas in different groups. 

3.3. Overall Concordances of the Various LDL-C Estimating Equations by LDL-C Sublevels 

Figure 2 demonstrates the overall concordances of the various LDL-C-estimating 

equations by LDL-C levels for the non-diabetic, prediabetic, and diabetic groups. The 

most concordant results were achieved for these groups using Sampson when LDL-C was 

Figure 1. Overall concordances of the different equations for LDL-C estimation. Overall concordances
of different LDL-C equations for each group (i.e., non-diabetic, prediabetic, and diabetic) are depicted
in a clustered bar chart (a). Overall concordances of different equations for LDL-C estimation in two
diabetic groups (i.e., controlled and uncontrolled) are depicted in a clustered bar chart (b). Each
bar displays the concordance of LDL-C directly measured with LDL-C levels estimated by different
formulas in different groups.
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LDL-C: Low-density lipoprotein cholesterols. 

When comparing the controlled and uncontrolled diabetic subgroup, the same trend 

was seen in the controlled group: LDL-C concentration was reduced until LDL-C level 

reached a threshold of 190 mg/dL, which began to rise (Figure 3). For the uncontrolled 

Figure 2. Concordances of the different equations for LDL-C estimation by LDL-C strata. Concor-
dances of different equations for LDL-C estimation by LDL-C groups are shown in a clustered bar
chart. Each bar displays the concordance of estimating LDL-C levels by direct measured LDL-C in
different groups (i.e., non-diabetic, prediabetic, and diabetic).
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Table 3. The concordances (%) of LDL-C estimating equations in different LDL-C thresholds in
diabetic patients.

LDL-C

LDL-C Estimating Equations

Friedewald Sampson Martin–Hopkins Extended
Martin–Hopkins

LDL-C
<70 mg/dL 78.7 84.7 83.5 77.8
≥70 mg/dL 89.9 93.5 95.7 98.7

LDL-C
<100 mg/dL 92.5 94.4 93.6 88.3
≥100 mg/dL 76.0 83.0 86.5 95.3

LDL-C: Low-density lipoprotein cholesterols.

When comparing the controlled and uncontrolled diabetic subgroup, the same trend
was seen in the controlled group: LDL-C concentration was reduced until LDL-C level
reached a threshold of 190 mg/dL, which began to rise (Figure 3). For the uncontrolled
diabetic subgroup, though, there was no increase in the performance of LDL-C estimation
using Martin–Hopkins extended when LDL-C ≥ 190 mg/dL.
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Figure 3. Concordances of the different equations for LDL-C estimation by LDL-C strata. Concor-
dances of different equations for LDL-C estimation by LDL-C groups are shown in a clustered bar
chart. Each bar displays the concordance of estimating LDL-C levels by direct measured LDL-C in
two diabetic groups (i.e., controlled and uncontrolled).

3.4. Overall Concordances of the Various LDL-C Estimating Equations by TG Sublevels

Figure 4 shows the overall concordances of four alternative LDL-C estimating equa-
tions by TG sublevels (100, 100 to 149, 150 to 199, 200 to 399, and ≥400 mg/dL) for
non-diabetic, prediabetic, and diabetic groups. The findings demonstrated that while
TG levels go up, there is a decreasing tendency for any LDL-C calculating equations.
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Martin–Hopkins extended performed better than the other equations for almost all TG
sublevels in any group, whereas the Friedewald equation produced the least concordant
results. Furthermore, Martin–Hopkins extended performed worse than Martin–Hopkins
only when TG ≥ 400 mg/dL in non-diabetic and diabetic groups. Figure 5 depicts the
overall concordances of LDL-C estimating equations by TG sublevels for the controlled
and uncontrolled diabetic subgroups. When TG ≥ 400 mg/dL, both Martin–Hopkins and
Martin–Hopkins extended equations estimated LDL-C levels more accurately for patients
with uncontrolled diabetes than those with controlled diabetes. As TG levels increased,
both controlled and uncontrolled diabetic subgroups showed a decreasing trend. Further-
more, Martin–Hopkins performed slightly better than Martin–Hopkins extended for any
diabetic group with TG levels over 400 mg/dL.
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Figure 4. Concordance of the different equations for LDL-C estimation by triglycerides strata. Con-
cordances of the different equations for LDL-C estimation by triglyceride groups in different groups
(i.e., non-diabetic, prediabetic, and diabetic) are shown in a clustered bar chart. Each bar displays the
concordance of estimating LDL-C levels by different formulas for each group of triglyceride levels by
direct measured LDL-C, in different groups (i.e., non-diabetic, prediabetic, and diabetic).

3.5. Overall Concordances of the Various LDL-C Estimating Equations by Non-HDL-C Sublevels

Figure 6 shows the overall concordances of four alternative LDL-C-estimating equa-
tions by non-HDL-C sublevels (100, 100 to 129, 130 to 159, 160 to 189, 189 to 219, and
≥220 mg/dL) for non-diabetic, prediabetic, and diabetic groups. The results showed that
the Martin–Hopkins extended equation performed the best for non-HDL-C sublevels in
each group. It can be seen from the figure that the performance of each equation gradually
decreased until the non-HDL-C level reached 220 mg/dL and then started to increase.
It is clearly seen that the Friedewald equation had the lowest concordance statistics in
entire groups. Furthermore, similar results and patterns were observed for each diabetic
subgroup (Figure 7).
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Figure 5. Concordance of the different equations for LDL-C estimation by triglycerides strata.
Concordances of the different equations for LDL-C estimation by triglyceride groups in two diabetic
groups (i.e., controlled and uncontrolled) are shown in a clustered bar chart. Each bar displays the
concordance of estimating LDL-C levels by different formulas for each group of triglyceride levels by
direct measured LDL-C in two diabetic groups (i.e., controlled and uncontrolled).
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Figure 6. Concordances of the different equations for LDL-C estimation by non-HDL-C strata.
Concordances of the different equations for LDL-C estimation by non-HDL-C groups for differ-
ent groups (i.e., non-diabetic, prediabetic, and diabetic) are shown in a clustered bar chart. Each
bar displays the concordance of estimating LDL-C levels by different formulas for each group of
non-HDL-C levels by direct measured LDL-C in different groups (i.e., non-diabetic, prediabetic,
and diabetic).
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Figure 7. Concordances of the different equations for LDL-C estimation by non-HDL-C strata.
Concordances of the different equations for LDL-C estimation by non-HDL-C groups in two diabetic
groups (i.e., controlled, and uncontrolled) are shown in a clustered bar chart. Each bar displays the
concordance of estimating LDL-C levels by different formulas for each group of non-HDL-C levels by
direct measured LDL-C in two diabetic groups (i.e., controlled and uncontrolled).

3.6. Overall Concordances of the Various LDL-C Estimating Equations by
Non-HDL-C/TG Sublevels

Figure 8 depicts the overall concordances of the LDL-C estimating equations by
non-HDL-C/TG sublevels (<1.2, 1.2 to 2.39 mg/dL, 2.4 to 3.59, and ≥3.6 mg/dL), for
non-diabetic, prediabetic, and diabetic groups. It is remarkable that the performance of
all equations, especially Friedewald, decreases as the non-HDL-C/TG ratio decreases.
However, this decrease was lower in Martin–Hopkins, and the Martin–Hopkins extended
approaches. In individuals with non-HDL-C/TG ratios less than 1.2, the concordance
statistics were around 60% for these equations.

3.7. Correlation between Estimated LDL-C Levels Using Different Equations and Directly
Measured LDL-C Levels

Figure 9 presents the correlation between directly measured LDL-C concentrations
and estimated LDL-C concentrations using different equations for each group (i.e., non-
diabetic, prediabetic, and diabetic). The regression analyses revealed that all equations
strongly correlated the calculated LDL-C concentrations and the directly measured LDL-C
concentrations. Friedewald, on the other hand, had the weakest correlation, with R2 of
0.91, 0.90, and 0.88 for the non-diabetic, prediabetic, and diabetic groups, respectively.
Compared to other equations, Martin–Hopkins extended showed a stronger correlation
with the direct assay for non-diabetic patients, with an R-square of 0.94. In addition,
Martin–Hopkins and Martin–Hopkins extended demonstrated similar agreement with the
direct assay for prediabetic patients, with an R2 of 0.93. Moreover, for diabetic patients, all
equations except Friedewald showed a similar association with the direct assay. Figure 10
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presents the correlation between directly measured LDL-C concentrations and estimated
LDL-C concentrations using different equations for each diabetic subgroup (i.e., controlled
and uncontrolled). The Martin–Hopkins extended assay has a greater correlation with the
direct assay for either diabetic group, with an R2 of 0.94 and 0.91 for the controlled and
uncontrolled diabetic subgroups, respectively.
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Figure 8. Concordances of the different equations for LDL-C estimation by non-HDL-C/TG. Con-
cordances of different equations for LDL-C estimation by non-HDL-C/TG ratio groups are shown
in a clustered bar chart. Each bar displays the concordance of estimating LDL-C levels by different
formulas for each group of non-HDL-C/TG ratio levels by direct measured LDL-C in different groups
(i.e., non-diabetic, prediabetic, and diabetic).

3.8. Residual Error Plots for LDL-C Concentrations Estimated by Different Equations concerning
Direct Assay

Residual error plots were created for the non-diabetic, prediabetic, and diabetic groups
to illustrate how the difference between the directly measured and estimated LDL-C
concentrations varies by TG levels (Figure 11). The residual error plots for each group
revealed that Friedewald and Sampson equations underestimated LDL-C levels when TG
levels escalated. Even though the difference between the directly measured and predicted
LDL-C values was nearly equal to zero when Martin–Hopkins equations were employed,
the lowest mean absolute deviation score was achieved using the Martin–Hopkins extended
equation for non-diabetic, prediabetic, or diabetic patients. Residual error plots were
also created for diabetic subgroups, i.e., controlled and uncontrolled diabetic subgroups
(Figure 12). When diabetic subgroups were analyzed, a very similar trend was observed for
each diabetic category, namely that the Friedewald and Sampson equations underestimated
LDL-C levels as TG levels increased. In contrast, the difference was close to zero for
Martin–Hopkins equations. The Martin–Hopkins extended equation again recorded the
lowest mean absolute deviation score for any patients with diabetes.
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Figure 9. Regression analysis between LDL-C levels estimated by formulas and directly measured
LDL-C levels. Correlations of LDL-C levels estimated by Friedewald, Sampson, Martin–Hopkins,
and extended Martin–Hopkins formulas with LDL-C levels measured in non-diabetic, prediabetic,
and diabetic groups; Red dashed line: reference curve of 45 degrees; Black line: regression curve.
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4. Discussion

Friedewald and Martin–Hopkins equations are widely used to estimate LDL-C lev-
els. It should be noted, however, that these equations are limited by the requirement for
triglyceride levels below 400 mg/dL [27]. A further limitation of the Friedewald method is
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the dependence on fasting serum and inaccurate determination of LDL-C levels, especially
in subjects with TG ≥ 150 mg/dL or LDL-C < 70 mg/dL [15–17,19–26]. Several novel ap-
proaches, such as Martin–Hopkins extended and Sampson equations, have been proposed
to overcome these limitations. Although previous studies evaluated the performances of
the Friedewald and Martin–Hopkins equations in patients with diabetes, no study had
evaluated the concordance of the Martin–Hopkins extended and Sampson equations with
direct enzymatic measurement in a diabetic and prediabetic population [18,20,21,26–33]. In
the present study, Friedewald, Martin–Hopkins, Martin–Hopkins extended, and Sampson
equations had lower concordance with direct enzymatic measurement in diabetic and
prediabetic groups than in the non-diabetic group. Impaired response to insulin is one
of the main molecular mechanisms of dyslipidemia in prediabetic and diabetic patients.
Furthermore, an exclusive characteristic of diabetic dyslipidemia is the increase in both
apo B and other particle concentrations, such as very low-density lipoprotein (VLDL) and
intermediate density lipoprotein (IDL), which distinguishes it from other types of dyslipi-
demia [3,4]. Accordingly, we believe that the impaired insulin response and diabetes- and
prediabetes-specific serum lipoprotein patterns may further contribute to erroneous results
for all these equations. It is, therefore, essential to interpret the results of these equations
with caution in diabetic and prediabetic individuals.

The Martin–Hopkins extended formula takes into account non-HDL cholesterol, which
includes all atherogenic lipoprotein particles in the blood, not just LDL-C, and this is
particularly important in patients with high triglyceride levels, where the levels of other
atherogenic lipoproteins such as VLDL-C and IDL-C are also elevated. Additionally, the
formula uses a strata-specific median ratio of triglycerides to very-low-density lipoprotein
cholesterol (TGs:VLDL-C) to estimate LDL-C levels in patients with triglyceride levels
between 400 and 799 mg/dL. This accounts for the fact that the TGs:VLDL-C ratio varies
depending on the patient’s triglyceride level, and may be more accurate than using a
fixed ratio as used in other equations. Sajja et al. recently conducted a study comparing
the accuracy of various methods for estimating low-density lipoprotein cholesterol (LDL-
C) levels in patients with high triglyceride levels, with direct measurement of LDL-C
levels [27]. The study found that the Martin–Hopkins extended equation demonstrated
the strongest correlation with direct measurement, especially when using a newer TG-
non-HDL-C correlation table. Similarly, we used an extended Martin–Hopkins formula
by using strata-specific median ratios obtained from Turkish population data. Our study
also supported this finding by demonstrating that the extended Martin–Hopkins formula
exhibited the highest correlation coefficient value when compared to other equations,
indicating a stronger correlation with direct enzymatic measurement of LDL-C levels.

This study detected the lowest overall concordance between direct enzymatic mea-
surement and the Friedewald equation in diabetic and prediabetic groups. Moreover, the
lowest correlation coefficient value was determined between the Friedewald equation and
direct measurement compared to other equations. Although previous studies reported
that the calculation of LDL-C by the Friedewald equation was not suitable in patients
with DM [23,32–34], discordant results have been reported regarding the performance
of the Friedewald equation in the diabetic population [20,22,35]. Chaen et al. found a
strong correlation between the Friedewald equation and direct LDL-C measurement [20].
Razi et al. [22] and Whiting et al. [35] indicated that the Friedewald equation could be
a suitable alternative for LDL-C measurement. Discordances between studies might be
related to differences in the LDL-C measurement method, population number, and patient
characteristics. However, considering our study’s results, we think the Friedewald equation
is a less convenient method for diagnosing and managing dyslipidemia in the diabetic and
prediabetic groups.

The accurate estimation of LDL-C is crucial for assessing the risk of cardiovascular disease
and determining the appropriate treatment strategy for dyslipidemia in diabetes patients [5]. Fol-
lowing our findings, previous studies found that the Martin–Hopkins [18,22,30] and Sampson
equations [24] were superior to the Friedewald equation in diabetic patients. However,
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the current study determined that the Martin–Hopkins extended approach has the highest
overall concordance statistic in diabetic and prediabetic patients. Diabetic patients have
a high risk of atherosclerotic coronary artery disease or stroke [11]. There are extremely
limited studies examining the relationship between LDL-C estimating equations and car-
diovascular risk factors. Overall, studies in this area have the potential to shed light on
the complex interplay between diabetes, LDL-C-estimating equations, and cardiovascular
health. Examining the relationship between LDL-C-estimating equations and cardiovas-
cular risk factors may help us learn more about potential interventions that may reduce
this risk.

HbA1c is the single biomarker to evaluate glycemic control, and levels above 7% are
related to chronic hyperglycemic complications [36]. We confirmed that there was no effect
of the glycemic control status on the concordance between extended Martin–Hopkins and
direct measurement as previously reported [28]. When the equation’s performance was
evaluated according to LDL-C cut points, Sampson showed higher concordances with
the direct enzymatic method at the <70 and <100 mg/dL LDL-C thresholds used for the
treatment target based on current guidelines [37]. However, extended Martin–Hopkins
had higher concordance with the direct enzymatic method at the ≥190 mg/dL threshold,
defining the high cardiovascular risk. Thus, we suggest using equations according to
LDL-C cut points, treatment goals, the state of glycemic control, and cardiovascular risk
categories to obtain more accurate LDL-C results and cardiac disease risk in diabetic and
prediabetic subjects.

Our study found that increased TG and Non-HDL-C levels caused decreased concor-
dances between direct enzymatic measurement and Martin–Hopkins, Martin–Hopkins
extended, Friedewald, and Sampson in diabetic and prediabetic groups. Interestingly, we
determined that the concordance of equations with direct enzymatic measurement was
increased at ≥220 mg/dL levels of non-HDL-C in the prediabetes and non-diabetes groups.
However, this pattern was not seen in the diabetes group. Earlier studies suggest that
the overproduction of VLDL and IDL particles, also known as remnant cholesterol, is a
fundamental component of diabetic dyslipidemia [38–40]. In this study, we determined
higher remnant cholesterol levels in diabetic subjects than in non-diabetic and predia-
betic subjects. Moreover, there are no differences between prediabetic and non-diabetic
groups. Consequently, we hypothesize that the difference between these groups may be
explained by remnant cholesterol contributing less to non-HDL-C levels at >220 mg/dL for
prediabetic and non-diabetic individuals compared to diabetic individuals.

As in a previous study [41], we showed that decreasing non-HDL-C/TG levels caused
decreased concordance between all equations and direct enzymatic methods in all groups.
However, the least affected equation from decreased non-HDL-C/TG levels was Martin–
Hopkins extended. Thus, we think that the accuracy of the equations may be improved
by considering TG/non-HDL-C ratios. Furthermore, we determined that subjects with
non-HDL-C/TG < 2.4 had decreased concordance between the Martin–Hopkins extended
equation and the direct enzymatic method. This finding suggests that the non-HDL-C/TG
ratio may be a novel marker in evaluating the accuracy of the Martin–Hopkins extended
equation in diabetic and prediabetic populations.

As for other similar studies [42,43], the main limitation of our study is that it is
based on a cross-sectional observation of a single population sample, and therefore our
results should be confirmed in other ethnicities, as well. Other limitations of this study are
the absence of data related the treatment of diabetes, dyslipidemia, and other metabolic
diseases that could have somewhat influenced the LDL-C dosage. However, the aim of our
study was to evaluate the reliability of a new LDL-C estimating formula in clinical practice,
where patients usually take any kind of drugs.

5. Conclusions

As in the non-diabetic population, the concordance of Martin–Hopkins, Martin–Hopkins
extended, Friedewald, and Sampson equations with direct enzymatic methods was affected
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by different conditions, including the levels of TG, LDL-C, non-HDL-C, non-HDL-C/TG,
and glycemic control. The extended Martin–Hopkins equation was the best regarding
overall concordance with enzymatic measurements and avoiding the effects of glycemic
control. Since the decreased performance of the extended Martin–Hopkins in diabetic and
prediabetic subjects with non-HDL-C/TG ratio < 2.4, we recommend using direct LDL-C
measurements for these patients. Lastly, the effectiveness of the equations varies according
to the level of LDL-C. Due to this, we believe that selecting an equation based on the LDL-C
threshold is beneficial for obtaining more accurate results. Finally, it would be valuable
to explore the long- and short-term effects of treatment on LDL-C estimation in diabetic
population.
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