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Acute kidney failure, also called acute kidney injury (AKI), is defined by a sudden
loss of kidney function that is conventionally determined on the basis of increased serum
creatinine levels and reduced urinary output. AKI is a complex syndrome with high
morbidity and mortality rates. AKI can not only lead to short-term adverse outcomes, but
also leave survivors at risk for chronic kidney disease (CKD), cardiovascular events, and
kidney cancer. There is also a high incidence of COVID-19-related AKI, synonymous with
its global outbreak. Therefore, AKI affects the quality of life of survivors and results in
heavy healthcare burdens.

At present, it is still difficult to diagnose AKI. First, AKI may be asymptomatic in its
early stages because clinical signs depend on the degree of renal impairment. Second, the
glomerular filtration rate (GFR) is a key marker that is used to evaluate renal function,
but there are currently no available tools to monitor real-time GFR. Serum creatinine and
urine volume are used to assess the changes in GFR in current clinical practice, but they are
neither sensitive nor specific. An increase in serum creatinine levels can only be detected
when there is at least a 50% loss of kidney function in previously healthy patients [1]. In
addition, several factors can affect serum creatinine levels. For example, patients with
sepsis may experience a decrease in creatinine production, and then a drop in creatinine
may occur, while the high baseline serum creatinine levels of patients with pre-existing
CKD may lead to misclassification errors. The volume expansion and loss of muscle mass
in critically ill patients may also lower the concentration of serum creatinine. In comparison
to serum creatinine, urine output is extremely sensitive to overall volume status. Therefore,
neither serum creatinine nor urine output can reflect the timely development of kidney
injury. As stated in the Kidney Disease Improving Global Outcomes (KDIGO) guideline [2],
AKI is a clinical diagnosis that requires further clinical evidence. Patient history, blood tests,
urine microscopy, renal imaging, and renal biopsy are useful in providing information on
the causes of AKI, but all of these methods are controversial and ineffective in diagnosing
early AKI. It is generally accepted that the stage and duration of an episode of AKI are
strongly associated with long-term outcomes, including survival and kidney recovery.
Specifically, AKI patients with a transient reduction in excretory function may fully recover
without causing irreversible nephron loss, whereas AKI with extensive nephron damage
may progress to post-AKI CKD and even end-stage kidney disease. Hence, early detection
and diagnosis are extremely significant for a prognosis of AKI.

The clinical management of AKI is also challenging due to its complex pathophysio-
logical mechanisms caused by multifactorial etiology and comorbidities. The key principle
of AKI management is to treat the underlying causes of AKI and mitigate further kidney
damage. However, as mentioned earlier, the causes of AKI are complicated and are often
identified too late by clinicians. By then, kidney damage may have already occurred, and
there is unfortunately no targeted pharmacological approach. Furthermore, patients with
AKI may develop many complications, such as fluid, electrolyte, and acid–base imbalances.
Therefore, symptomatic and supportive therapies are the primary clinical strategies. Fluid
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management is a significant component in the prevention and treatment of AKI. Isotonic
crystalloids play a role in the initial management for the correction of intravascular hypov-
olemia, but more high-quality data and clinical trials are required to verify this hypothesis.
Moreover, it is still controversial or evidence-limited in other management strategies, such
as the most effective vasopressor agent, the use of diuretics, the control range of blood
glucose, and the optimal amount of protein supplementation [2]. Renal replacement ther-
apy (RRT) is inevitable and life-saving in severe AKI. Refractory hyperkalemia, metabolic
acidosis, volume overload, or signs of uremia in AKI patients are the most accurate in-
dications of RRT initiation, but there is substantial controversy surrounding the optimal
timings to start RRT in patients without severe complications [3]. There are still ongoing
debates surrounding whether intermittent or continuous RRT should be used and when
RRT should be stopped [4,5].

Despite these current challenges, there have been many advances in the diagnosis and
management of AKI. A body of evidence from preclinical and clinical studies shows that
the use of novel biomarkers has the potential to significantly improve AKI diagnosis and
management. Novel biomarkers have been shown to change earlier than serum creatinine
concentrations and can be broadly categorized as stress markers, damage markers, and
functional markers. Accordingly, a consensus statement proposed that damage markers
should be combined with functional biomarkers and clinical information to expand and
refine the KDIGO definition of AKI [6]. The early detection of AKI using biomarkers may
help clinicians take timely interventions before irreversible AKI injury occurs, consequently
improving the outcomes. Additionally, new biomarkers may be helpful when considering
the withdrawal of RRT based on conventional biomarkers [7]. However, most of these
kidney biomarkers are still in the clinical trial stage, and their adoption in clinical practice
is slow. In addition to biomarkers, attempts are being made to diagnose AKI through the
use of electronic alerts and machine learning [8]. The electronic AKI alerts collect data
from electronic health record systems and then automatically decide whether to trigger
electronic alerts based on changes in the key variables. Machine learning is based on large
datasets as well, but it also focuses on building predictive models that can improve the
accuracy of an AKI diagnosis. Clearly, data collection is a barrier to the application of
electronic alerts and machine learning. With the development of technology, new detection
methods, such as renal contrast-enhanced ultrasonography, multiparametric MRI, optical
probes, and electrochemical immunosensors, also seem to provide information about renal
microcirculation and improve the accurate and timely detection of biomarkers [9].

From a treatment perspective, in addition to the traditional role of RRT, such as main-
taining a fluid and electrolyte balance, RRT with extracorporeal hemoadsorption can be
applied to remove inflammatory mediators. Although the pathogenesis of AKI is incom-
pletely understood, the dysregulation of an immune response is considered to be one of
the pathological mechanisms of sepsis and COVID-19-associated AKI. Theoretically, the
removal of inflammatory mediators in the early phase to achieve immune homeostasis can
relieve the dramatic systemic effects of severe infection [10]. Recently, several hemoadsorp-
tion technologies, such as high-cut-off membranes, the Ultraflux EMIC2 filter, the oXiris
hemofilter, polymyxin B hemoadsorption, CytoSorb, and HA380, have been studied in
clinical practice [11]. Multiple clinical trials have reported encouraging results, but there
is insufficient amount of evidence to demonstrate any survival benefits [12]. In addition,
some key issues, including the selection of optimal patients and filters, the correct initiation
time and duration, and the definition to evaluate efficacy, all remain elusive [12,13]. Beyond
inflammation, it is generally accepted that a decrease in renal perfusion is the primary
mechanism for most AKI cases. The resulting renal hypoxia and ischemia promote an
increase in reactive oxygen species (ROS). There is a considerable amount of evidence which
demonstrates that increased ROS and decreased antioxidants can be detected in AKI [14].
Thus, scavenging excessive ROS may be a novel and specific treatment for AKI. Numerous
antioxidants, such as vitamin C, antioxidant enzyme mimetics, heme oxygenase-1, and
N-acetylcysteine, have been tested [15]. With the rapid development of nanotechnology,
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various nanomedicines with ROS scavenging actions have also been synthesized to ame-
liorate AKI [14]. The efficacy of antioxidants and nanomedicines has been proven in vitro
and in animal models. However, it is worth noting that the translation of antioxidants to
human AKI has shown little benefits, and research on antioxidant nanomedicines in AKI
is still in its infancy [14,15]. Finally, stem-cell-based therapy, gene therapy, and artificial
kidneys may also be effective for AKI [16–18].

In conclusion, although there are some challenges in the current diagnosis and man-
agement of AKI, the development of methods and technologies is helping to create oppor-
tunities for the early detection and treatment of AKI. With an improved understanding
of the pathophysiology, targeted therapies for AKI may also emerge and be applied in
clinics. With this Special Issue, we hope to provide an overview of new perspectives for
AKI diagnosis and management.
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