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Abstract: With the progression of diabetic retinopathy (DR) from the non-proliferative (NPDR) to
proliferative (PDR) stage, the possibility of vision impairment increases significantly. Therefore, it is
clinically important to detect the progression to PDR stage for proper intervention. We propose a
segmentation-assisted DR classification methodology, that builds on (and improves) current methods
by using a fully convolutional network (FCN) to segment retinal neovascularizations (NV) in retinal
images prior to image classification. This study utilizes the Kaggle EyePacs dataset, containing retinal
photographs from patients with varying degrees of DR (mild, moderate, severe NPDR and PDR.
Two graders annotated the NV (a board-certified ophthalmologist and a trained medical student).
Segmentation was performed by training an FCN to locate neovascularization on 669 retinal fundus
photographs labeled with PDR status according to NV presence. The trained segmentation model
was used to locate probable NV in images from the classification dataset. Finally, a CNN was trained
to classify the combined images and probability maps into categories of PDR. The mean accuracy of
segmentation-assisted classification was 87.71% on the test set (SD = 7.71%). Segmentation-assisted
classification of PDR achieved accuracy that was 7.74% better than classification alone. Our study
shows that segmentation assistance improves identification of the most severe stage of diabetic
retinopathy and has the potential to improve deep learning performance in other imaging problems
with limited data availability.

Keywords: AI in ophthalmology; segmentation aided classification; diabetic retinopathy; deep
learning; computer aided diagnosis

1. Introduction

Diabetic retinopathy (DR) is the second leading cause of blindness in U.S. adults. In
diabetic patients, retinopathy occurs when elevated blood glucose levels damage blood
vessels in the eye, resulting in a variety of lesions that subsequently damage the retina.
These lesions are readily visible in fundoscopy and color fundus photography. This includes
microaneurysms, intraretinal hemorrhages, accumulation of lipid exudates due to capillary
leakage, and neovascularization (NV; formation of new, abnormal blood vessels), among
other lesions [1]. Severity of disease is based on the presence of different lesions, some of
which can be detected by deep learning computer algorithms [2], and the number of eye
regions affected. In this context, the identification of NV at the disc (NVD) or elsewhere
(NVE) constitutes the key criterion for the initiation of panretinal photocoagulation [3], or
anti-vascular endothelial growth factor (anti-VEGF) therapy [4].

State of the art deep learning methods such as convolutional neural networks (CNNs)
can accurately classify disease status from imaging data for multiple conditions, such as
in skin cancer, diabetic retinopathy, and breast cancer, to name a few [5–7]. CNNs are
algorithms that learn from labeled training data. For imaging data this involves analyzing
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progressively more complex visual elements leading up to eventual categorization of whole
images. Accuracy of these algorithms matches or exceeds those of human experts in
recent studies. One such example is highlighted by Ehteshami et al., analysis of the 2016
CAMELYON16 competition for automated solutions in detecting breast cancer lymph node
metastases, with CNNs sweeping the top 19 spots [7]. For diabetic retinopathy specifically,
recent studies have demonstrated CNN-based methods for DR classification in all disease
spectrum [6]. However, existing research on DR classification has not yet achieved the
granularity of distinguishing proliferative DR (PDR) on retinal photography with high
diagnostic accuracy, the most severe stage of DR, defined by the presence of NV, which
requires urgent treatment to prevent retinal detachment and irreversible blindness.

Although deep learning continues to show immense promise for clinical imaging
applications, current methods require large amounts of labeled training data. For best
results, training datasets often consist of several thousand high-quality labeled images,
which are costly to obtain and unavailable for rare diseases. Aside from increasing data
availability, improving current methods to achieve similar results with fewer data require-
ments offers a possible solution to these constraints. A number of approaches can improve
CNN results using fewer training data. The architecture of CNNs can be adjusted by
adding different data processing layers (such as RELU and convolution layers). Images can
also be pre-processed manually (e.g., by adjusting brightness or color) to bring out salient
features before undergoing classification by the CNN. A separate deep learning algorithm,
which historically has not been used in a pre-processing capacity, is the fully convolutional
neural network (FCN) first described by Shelhamer et al. in 2017. While CNNs classify
whole images into image categories, FCNs assign category labels to each pixel in an image.
By labeling individual pixels, these networks perform image segmentation, separating
clinically relevant portions of the image from other image regions.

Although FCNs have been successfully used to solve object localization problems [8–10],
their potential as a pre-processing step for classification remains relatively unexplored—a
paradigm we call “segmentation-assisted classification”. Especially, to the best of our
knowledge, there is no established work that explores segmentation-assisted classification
to identify DR progression to PDR. While traditional pre-processing methods rely on
human identification of salient features, the deep-learning nature of FCNs could make
them ideal candidates for processing images to identify the associated pathologies from the
images prior to CNN classification.

Our study demonstrates the value of FCN segmentation-assisted classification of
PDR, by segmenting NV specifically through deep learning, and successfully using FCN
segmentation of NV in DR images for improved CNN classification of DR (non-proliferative
NPDR vs. PDR).

2. Materials and Methods
2.1. Datasets and Image Selection

The Kaggle dataset (EyePacs, Santa Cruz, CA, USA), was used for developing and val-
idating the model developed in this study. Kaggle contains retinal photographs (30◦) from
patients with varying degrees of severity of diabetic retinopathy and varying resolutions
from 433 × 289 up to 5184 × 3456 pixels. The fundus photographs were colored, and it
was made sure that the fovea and optic discs were visible in the images. Images from the
dataset are already labeled with stage of disease, 1–4, following the diagnostic criteria for
diabetic retinopathy. Stage 4, or proliferative diabetic retinopathy (PDR), is defined by the
presence of neovascularization; patients at stage 3 and below have other lesions but lack
neovascularization. These patients have non-proliferative diabetic retinopathy (NPDR).

Images from the dataset varied in quality, label accuracy, and image size. To address
these discrepancies, images were discarded if they were poor quality (exclusion criteria:
artifacts, image too dark or blurry to confidently stage disease, and if either fovea or optic
disk was missing from the image). The exclusion criteria were set by an ophthalmologist.
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1163 non-discarded images were reviewed, and NV annotations were corrected by
a board-certified ophthalmologist if required. Stage 4 images were separated into those
displaying active NV, and those without active NV who were nonetheless labeled stage 4
due to the presence of scars from laser treatment of past NV. Only those with active NV
were labeled as such. Of the 1163 images, 60% of them were randomly assigned for use in
segmentation. Out of that 60%, the segmentation model used 96% of the data for training
and 4% of the data as training and validation set to evaluate segmentation performance. All
photographs in the segmentation set were used to train the CNN classifier. These segmen-
tation photographs were used for training only; none were used for classifier validation or
testing. Finally, images were resized to a uniform pixel dimension of 512 × 512.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

2.2. Labeling Neovascularizations

NV in diabetic retinopathy describes the formation of ectopic blood vessels outside the
retina, distinguishable from normal healthy vessels by their thin and web-like appearance.
NV technically differs from intraretinal microvascular abnormalities (IRMA), which are the
dilation of existing vessels or formation of new ones within the retina and tend to appear
more tortuous. IRMA marks stage 3, the most severe stage of NPDR, before the appearance
of NV which marks stage 4, or PDR. Due to similar appearances the two lesions can be
difficult to distinguish. IRMA may in fact be a precursor of NV, although this has not been
proven [11]. For these reasons, severe IRMA was also included with NV during the process
of mask generation described below.

For each image, a binary mask indicating the presence or absence of NV (or severe
IRMA) was generated. To do this, the program GIMP was used to outline areas of NV
over the original image and label all pixels within those areas with the number 1. All the
annotations were conducted by a board-certified ophthalmologist and a trained medical
student. The final decision on all the annotations was taken by the ophthalmologist. Pixels
outside the areas of NV were labeled 0. Some images contained multiple distinct instances
of NV while others contained none at all. Those without NV resulted in a mask labeled
entirely with 0 s. Masks for 669 photographs were manually generated in this fashion
(Figure 1). All 669 images were then divided into training (n = 644) and validation sets
(n = 25) for segmentation by the FCN. The green channel of all images was isolated for
segmentation, and red and blue image channels discarded. The green channel was chosen
for yielding the most accurate segmentation results, which is consistent with the fact that
NVs are red on imaging.
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Figure 1. NV mask example. A retinal photograph (a) is shown with the NV mask created for it by
the research team (b). White pixels in the mask (b) indicate areas of active NV or severe IRMA. Black
pixels indicate areas without NV. This example shows NV clustering around the optic nerve.
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2.3. FCN Segmentation of Neovascularizations

A fully convolutional neural network (FCN) was constructed by replacing the last
affine layer of the GoogleLeNet architecture with a convolutional transpose layer (deconvo-
lution) that upsampled to the output dimensions of 512 × 512 × 2 using a stride of 32 and
filter size of 64. The FCN was trained to segment retinal images for NV, i.e., label each indi-
vidual pixel with a probability of representing neovascularization. Training and validation
were performed on the 669 green-channel images described above, using the generated
binary masks as correct labels. Training was implemented with the FirstAid Deep Learning
repository implemented in Tensorflow 3.0 using Nvidia GeForce GTX 1080 ti graphical
processing units (Nvidia, Santa Clara, CA, USA) (https://github.com/yidarvin/FirstAid,
accessed on 11 March 2022). Training ran for 300 epochs, at a learning rate of 0.001, decay
of 0.99, and dropout of 0.5. Accuracy was measured by calculating both the Dice score
and the intersection over union (IOU) of true and predicted areas of segmentation. The
segmentation model was saved to be used for classification in the next step. Overall steps
of the segmentation-assisted algorithm is shown in Figure 2.
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Figure 2. Steps of the segmentation-assisted DR classification algorithm. NV: neovascularization; DR:
diabetic retinopathy.

2.4. Baseline CNN Classification of Neovascularizations

In the classification step, a convolutional neural network (CNN) was trained to classify
images into different categories of diabetic retinopathy with respect to NV. Four categories
were outlined for this purpose: (1) NPDR which by definition lacks NV, (2) images with
evidence of past (i.e., laser scars) but not active NV, (3) images with clinically ambiguous
lesions that resembled NV (severe NPDR), and (4) confirmed NV (PDR). Of 1163 total
images in the classification dataset, 75% were designated for training, 8% for validation,
and 17% for testing (Table 1). Images with no NV made up the majority, followed by images
with active NV.

Classification training, validation, and testing were performed on these 3-channel
images. Similar to the FCN, the CNN used for classification was built with GoogLeNet
architecture and trained with FirstAid Deep Learning implemented in Tensorflow 3.0 using
Nvidia GeForce GTX 1080 ti graphical processing units. Data was augmented throughout
the training and validation process by rotating, flipping, vertically and horizontally trans-
lating, and adjusting the brightness of images. Training ran for 300 epochs, at a learning
rate of 0.001, decay of 0.99, and dropout of 0.5.

https://github.com/yidarvin/FirstAid
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Table 1. Image categories. Most images (52%) had no NV. 32% had active NV, while 12% had evidence
of treatment for previous NV but no active lesions; a minority (4%) had clinically ambiguous lesions.

Training Validation Testing Total for Category (%)

0: NPDR, no NV 434 55 115 604 (52%)
1: Past NV 103 13 25 141 (12%)

2: Ambiguous 31 3 8 42 (4%)
3: NV 299 27 50 376 (32%)

Total for task 867 98 198 1163

2.5. Segmentation-Assisted CNN Classification of Neovascularizations

Prior to classification, the previously trained and saved segmentation model was run
on all green channel images in the training, validation, and testing sets. The resulting
segmentation prediction, a 512 × 512 probability map with a probability of NV assigned
to each pixel, was combined with the original 3 × 512 × 512 image to create a 4-channel
image file. In this way segmentation information was added to the classification data
without losing information contained in the original full-color (3-channel RGB) image.
Classification training, validation, and testing were then performed on these 4-channel
images following the same architecture, implementation, and hyperparameters as above.
Segmentation prediction was run only once on classification images. All CNN classification
trials used the same 4-channel images produced by this segmentation run. For each trial,
the individual predicted labels and overall image classification accuracy were recorded.

2.6. Statistical Analysis

Differences in accuracy of the classification-assisted by segmentation approach com-
pared to baseline (classification without segmentation) approach was assessed by averaging
the accuracy of baseline and of segmentation-assisted trials. The accuracies were compared
with a t-test comparison of means to determine statistical significance. For each category,
sensitivity and specificity of the CNN classifier was computed across probability thresh-
olds to plot receiver operating characteristic (ROC) curves and calculate area under the
curve (AUC). Error analysis was calculated by computing standard deviation, shown in
error bars.

2.7. Ethics

An institutional Review Board approval was not required for this study, which used
data from a freely available public dataset containing no patient identifiable information.

3. Results
3.1. Segmentation of Neovascularization

For 669 total images in the segmentation validation set, the FCN detected NV regions
of interest with a Dice score of 52.26% and intersection over union (IOU) of 42.26%. Many
of these NV areas clustered around the optic nerve, which is visually distinct from the
rest of the retina. The FCN model also detected areas of subtler NV, although with less
confidence (not higher than 95%). Figure 3 depicts several retinal fundus photographs,
their manually generated binary masks with true NV locations, and NV locations predicted
by the segmentation network. The model performed excellent in identifying NV presence
in an image with 95% accuracy.
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Figure 3. FCN-predicted NV compared to ground truth. ((a–c) are samples from three different
patients with NV). In the Ground Truth panel, red shows areas of NV that were labeled on the NV
mask by our research team, overlaid on the corresponding original retinal photograph. The Prediction
panel depicts areas of NV predicted by the FCN after training on the photographs and NV masks. In
the Prediction panel, red indicates a high probability that those pixels display NV, green indicates an
intermediate probability, and blue a low probability.

3.2. Baseline and Segmentation-Assisted Classification

For the baseline classification model, we used the CNN alone, without using the NV
segmentation assistance. Baseline classification of images according to neovascularization
was performed in three different trials (Figure 4A). The accuracy of baseline classification
by CNN alone was 79.97% (SD = 2.92%). Figure 4B shows data from one trial of how
the CNN classified each individual image in the test set, as compared with the ground
truth (manual annotation). Baseline classification largely classified images into categories 0
(NPDR) or 3 (active NV). In our case, no images were classified into category 1 (inactive
PDR following photocoagulation), and few into category 2 (vascularization resembling
NV). Of note, images in category 0 generally had fewer lesions than those in category 3.
Category 3 images were also more likely to have large non-NV lesions as well.
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Figure 4. Performance analysis. (A) Average classification accuracy across three trials. The graph
shows mean classification accuracy from three trials using CNN alone (79.97%, SD = 2.92%), compared
to mean accuracy from three trials using segmentation-assisted classification (87.71%, SD = 7.71%).
Error bars show ±SD; (B) Confusion matrix of image classification results; (C) Receiver operating
characteristic (ROC) curves for classification by CNN alone. Four ROC curves are depicted; one
for each classification category of DR: (a) Non-proliferative DR (area under the curve, AUC = 0.98),
(b) Evidence of past NV (AUC = 0.8), (c) Ambiguous (AUC = 0.74), and (d) Proliferative DR with
active NV (AUC = 0.86). (D) ROC curves for segmentation-assisted classification. Four ROC curves
are depicted; one for each classification category of DR: (a) NPDR (AUC = 0.90), (b) Evidence of past
NV (AUC = 0.95), (c) Ambiguous (AUC = 0.87), and (d) PDR with active NV (AUC = 0.97). The true
positive rate is equivalent to sensitivity. The false positive rate is equivalent to 1—specificity.

Segmentation-assisted classification incorporated prediction maps from the FCN seg-
mentation process. Segmentation-assisted classification was run in 3 different trials, all
using 512 × 512 prediction files produced by the same segmentation run prior to classifi-
cation (Figure 4A). Figure 4B shows the confusion matrix for classification results in the
test set, compared with the ground truth. The mean accuracy across trials of segmentation-
assisted classification was 87.71% on the test set (SD = 7.71%). This showed a 7.74%
improvement over classification by CNN learning alone, which was statistically significant
(p = 0.0024). All three segmentation-assisted trials outperformed CNN-alone trials.
Figure 4C,D demonstrate the receiver operation curves (ROC) for baseline and segmentation-
assisted classification models in identifying classification categories 0 through 4. The area
under the ROC curves (AUC) values are shown in Table 2.
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Table 2. Area under the ROC curves (AUC) values for DR classification tasks.

Baseline Segmentation Assisted

0: NPDR, no NV 0.98 0.9
1: Past NV 0.8 0.95

2: Ambiguous 0.74 0.87
3: NV 0.86 0.97

The greatest improvement with segmentation assistance was in distinguishing images
with past NV (category 1) from those with active NV (category 3). Compared to baseline,
the segmentation-assisted classification approach labeled the majority of past NV images
correctly (20 of 25 images, compared to 0 of 25). Of the few active NV images that were
incorrectly classified, all were labeled as having past NV. The presence of active NV and
scars from past treatment are not mutually exclusive; several patients with treatment
scars in our dataset also had active NV. Of eight images with clinically ambiguous lesions
(category 2), the segmentation-assisted classifier incorrectly labeled three as having active
NV, and five as having past NV. Thus, the improvement in classification accuracy with
segmentation assistance is due to both improved sensitivity and specificity across all NV
categories (Figure 4).

4. Discussion

Neovascularization is an important marker for proliferative DR, which if left untreated,
can result in vitreous hemorrhage, retinal detachment, and is strongly associated with
neovascular glaucoma and thus requires urgent treatment to prevent irreversible vision
loss [12]. In clinical management of DR, it is important to track the transition from severe
NPDR to PDR for therapeutic intervention, i.e., use of anti-VEGF (vascular endothelial
growth factor) treatment in the retina. In contrast to previous literature on deep learning-
based ophthalmic diagnostics, our study combines the power of deep learning and NV-
specific detection to distinguish proliferative DR with greater accuracy. Therefore, the
novel utility of our algorithm lies in identifying the transition from NPDR to PDR on retinal
photography, helping to facilitate early intervention to prevent vision impairment.

This study is the first to our knowledge to show a statistically significant improvement
in classification accuracy (7.74%, Figure 4) on retinal photography when incorporating
automated image segmentation produced by a trained FCN. Our results show that this
improvement comes from increased sensitivity and specificity in detecting NV, therefore
PDR images. The CNN classifier alone essentially learned to distinguish only category 0
images, likely by identifying obvious non-specific abnormalities (Figure 4B). Examples of
obvious abnormalities include white fibrous tissue that often forms with NV and obscures
underlying retina, and large hemorrhages that are more likely with severe disease. In
contrast, after FCN segmentation of the images, the classifier was able to distinguish retinas
with active NV (category 1) from those that received prior treatment but had no active
lesions (category 3; Table 2). Thus, this ability to identify NV specifically most likely
accounted for the 7.74% improvement in classification accuracy.

With diabetes incidence increasing worldwide, vision loss with diabetic retinopathy,
especially PDR will be a rising global health problem [13,14]. Neovascularizations can be
easily confused with other lesions such as IRMA, and missed if small. Yet, NV is crucial
to treat before vision is permanently lost. In this context, there is an opportunity for deep
learning diagnostic assistance to supplement clinician review of retinal photographs by
highlighting images of particular concern. Moreover, it was recently established (in the
setting of histopathologic classification of liver cancer) that deep learning may indeed
improve the accuracy of clinicians when integrated in a clinical workflow [15].

The phenomenon of improved overall classification after first training on smaller
specific features (i.e., NV) can be explained by the structure of CNNs and FCNs. Neural
networks learn by processing multiple smaller visual motifs (e.g., lines, then corners,
then squares) that together form an image [16]. To this end, FCNs are built on the same



J. Clin. Med. 2023, 12, 385 9 of 12

architecture as CNNs. The major difference, as first described in 2017 by Shelhamer
et al., is the addition of an extra layer that classifies every individual pixel of an image by
assigning it a category label [17]. An FCN can therefore be thought of as having trained
on 5122 = 262,144 data points for a single 512 × 512 image. This provides many more
training opportunities than direct CNN classification, in which every image can only serve
as exactly one training point because labels are assigned to whole images. This explains
why the learning of even a few small areas of NV by an FCN improved CNN learning in
whole-image classification.

Similar to transfer learning, segmentation-assisted classification has the potential to
address data limitations. Recent studies that show CNNs rivaling physicians in diagnostic
accuracy used hundreds of thousands of images for training [5–7]. Segmentation increases
the number of training opportunities without expanding the classification dataset by nature
of the individual pixel-level training in segmentation and by the augmented classification
abilities achieved when incorporating this information into classification tasks. Therefore,
segmentation-assisted classification could be advantageous by providing the ability to
increase diagnostic accuracy in cases where there is limited training data for use outside
of common conditions like diabetic retinopathy as well. In rarer diseases with few avail-
able cases to learn from, less data-intensive techniques such as we describe provide the
possibility of applying deep learning where it was previously impractical.

Recent trends in ophthalmic diagnostics have moved toward making teleophthalmol-
ogy globally available and training datasets more demographically inclusive [14,18–21].
By decreasing focus on the overall image appearance, segmentation-assisted classification
may also reduce classification bias when algorithms trained in one population are applied
to another.

It is important to note that segmentation accuracy, as well as degree of classification
improvement, will likely vary widely depending on the type of lesion. For example, mi-
croaneurysms are more discrete in nature and therefore easier to classify than neovascular-
izations; it thus follows that segmentation-assisted classification for microaneurysms may
result in greater accuracy improvement. Research on segmentation-assisted classification
with other lesions, especially those that are more easily demarcated than neovasculariza-
tions, may yield even better results.

The concept of applying information from one deep learning task to another has
yielded favorable results in medical diagnostics. In transfer learning, as surveyed by
Weiss et al. in 2016, an algorithm is trained on one task prior to training on a separate
similar task, with the hypothesis that having prior related training will result in better
learning [22]. Because of this ability to train on different tasks, transfer learning is a useful
technique in low-data settings. It has been applied to problems of image detection, survival
prediction, audio analysis, and prediction of molecular interactions, among others [23–27].
However, little published research uses transfer learning to apply image segmentation
to medical classification problems. Additionally, while our study does use training on a
previous task (segmentation) to optimize classification, it differs from transfer learning in
the method of information incorporation. This study uses final predictions produced by
the fully preserved FCN to inform classification, rather than subjecting the original neural
network to complete retraining for a new task as in transfer learning. The classification
improvement we observe with segmentation-assisted classification is most likely due to
additional information in the form of the NV probability maps overlayed onto original
images. Importantly, this suggests that for certain imaging problems, segmentation can
assist the most currently refined CNNs to improve classification even from a high baseline
accuracy. Analogously, Yim and coworkers used recently for the prediction of progression
of age-related macular degeneration the combination raw optical coherence tomography
imaging data and the output of a segmentation model as input for two prediction models,
that were then ensembled.

There are some limitations of this study. As is the case for all supervised deep learning,
FCNs and CNNs can only do as well as the accuracy of the labels provided. The gold



J. Clin. Med. 2023, 12, 385 10 of 12

standard for NV detection uses fluorescein angiography, a method of improving blood
vessel visualization that was unavailable for our study. Despite the best effort of an expert
clinician, every label in our dataset may not be perfect. If training images are erroneously
labeled by human experts, algorithm performance will be impaired. One potential solution
to this is to use extra-image data in determining labels. For example, if a patient with a
clinically ambiguous lesion resembling NV presents at a follow-up visit with evident NV
evolved from the earlier lesion, labeling photographs from the first visit can teach CNNs to
detect early-stage NV below even an expert physician’s threshold for definitive detection.
Information from electronic health records (e.g., blood sugar readings) can also inform
labeling of otherwise ambiguous lesions.

Our model is also only applicable to photography data and can be limited in terms
of utilizing other patient metadata such as electronic health report (EHR) data. This
can be a future direction where image data can be integrated with HER data. Other
limitations of our study include the labor-intensive need for clinical experts to generate
a substantial number of detailed segmentations. The subjectivity of this process varies
greatly by lesion. Neovascularizations, for instance, have much less discrete boundaries
than do microaneurysms, which are well-circumscribed lesions that appear early in diabetic
retinopathy. Even with high-quality segmentations, it is difficult to ensure that classification
prioritizes segmented lesions over potentially distracting image components. For example,
scars from past NV treatment are much more visually evident than NV, but it is the presence
of active NV that defines active proliferative DR—a fact our results show can be confusing
to classifiers.

Unlike transfer learning, the use of segmentation to assist a classification task raises
the question of how to best incorporate this information into deep learning models. In
addition to adding the segmentation as a fourth image channel, other possibilities include
brightening or increasing contrast in segmented areas. One other alternative can be using
segmentation as a self-supervised task, that teaches the deep learning model subtle embed-
dings to classify different disease stages in a subsequent downstream task. Further work
comparing segmentation-assisted classification to transfer learning and self-supervised
learning will yield insight into the merits of each technique. Furthermore, comparison
of CNN-alone and segmentation-assisted classification to physician accuracy on a larger
set of images will inform the value of using such algorithms in clinical ophthalmology
practice. There are other areas for research to explore the use of segmentation-assisted
classification, such as combining the results of segmentations for multiple lesion types
(e.g., for microaneurysms, hemorrhages, and exudates), and comparing results to transfer
learning methods with the potential to combine components of each.

Ultimately, based on our promising results, segmentation-assisted classification holds
promise for applications beyond retinal NV to other imaging modalities and diseases.
With the growing field of research on neural networks in medical imaging, there are rich
opportunities to explore these applications.

5. Conclusions

We present a deep learning-based segmentation-assisted classification model to iden-
tify NV in PDR, which is the most clinically severe stage of DR. We found that incorporating
results from automated image segmentation improved classification accuracy of prolif-
erative DR images. This technique of segmentation-assisted classification holds promise
for other imaging problems including those with limited available training data. Beyond
imaging, the use of multiple algorithms to complement each other warrants continued
research for its potential to improve all forms of deep learning problems.
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