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Abstract: The aim of this study was to compare two different PET/CT tomographs for the evaluation
of the role of radiomics features (RaF) and machine learning (ML) in the prediction of the histological
classification of stage I and II non-small-cell lung cancer (NSCLC) at baseline [18F]FDG PET/CT. A
total of 227 patients were retrospectively included and, after volumetric segmentation, RaF were
extracted. All of the features were tested for significant differences between the two scanners and
considering both the scanners together, and their performances in predicting the histology of NSCLC
were analyzed by testing of different ML approaches: Logistic Regressor (LR), k-Nearest Neighbors
(kNN), Decision Tree (DT) and Random Forest (RF). In general, the models with best performances
for all the scanners were kNN and LR and moreover the kNN model had better performances
compared to the other. The impact of the PET/CT scanner used for the acquisition of the scans on
the performances of RaF was evident: mean area under the curve (AUC) values for scanner 2 were
lower compared to scanner 1 and both the scanner considered together. In conclusion, our study
enabled the selection of some [18F]FDG PET/CT RaF and ML models that are able to predict with
good performances the histological subtype of NSCLC. Furthermore, the type of PET/CT scanner
may influence these performances.

Keywords: PET/CT; radiomics; texture analysis; machine learning; lung cancer; FDG

1. Introduction

Non-small-cell lung cancer (NSCLC) is a frequent form of neoplasm with globally ris-
ing incidence, accounting for most cancer-related deaths worldwide [1–3]. The risk factors
associated with the development of disease are mainly environmental, with cigarette smok-
ing as the most important [4,5]. The three main histological types of NSCLC, according to
World Health Organization (WHO), are adenocarcinoma (ADK), squamous cell carcinoma
(SCC) and large cell carcinoma [4].

The correct diagnosis of NSCLC is often made in advanced stages, since the disease
can become symptomatic only in these stages. In this setting, the main symptoms are
presented by cough, hemoptysis, chest pain and dyspnea [4,6].

The correct diagnostic and staging assessment of NSCLC is performed with imaging
evaluation with chest X-ray (XR) and chest computed tomography (CT) that are pivotal
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for the evaluation of disease. In this setting, such imaging modalities directly drive the
treatment of the disease and are also able to perform distant staging, being useful even
for its follow-up [4]. The clinical outcome of NSCLC is directly related to its stage at
diagnosis: early stages are usually managed with surgical resection and good prognosis,
while advanced and metastatic disease can benefit from adjuvant therapy [7–11].

In the recent years, positron emission tomography/computed tomography (PET/CT)
with different tracers is emerging as a fundamental imaging modality for the assess-
ment of a high amount of neoplastic and infectious diseases [12,13]. In this scenario,
18F-fluorodeoxyglucose ([18F]FDG) PET/CT is routinely performed for the staging of
NSCLC and the usefulness of some semiquantitative parameters in predicting the prog-
nosis of patients has been proved [14,15]. In this setting, the possible role of [18F]FDG
PET/CT radiomics features (RaF) to differentiate between malignant and benign lesions in
various organs has recently emerged and pulmonary nodules do not make exception [16,17].
Furthermore, it has also been reported that texture analysis is somehow able to differen-
tiate between ADK and SCC, however with heterogeneous findings in terms of PET/CT
acquisition, RaF extraction and results [18–25]. The populations considered in such studies
were characterized by high heterogeneity in terms of clinicopathological features and, as
mentioned, prognosis of patients is related to the stage of disease at the time of diagnosis.
Furthermore, it is known that different scanners and protocols used for the acquisition and
reconstruction of PET images are able to influence the extraction of RaF and therefore affect
the results of such analysis [16–18].

The aim of this study is therefore to analyze the value of baseline [18F]FDG PET/CT
RaF and ML models for the prediction of final histological diagnosis in patients with stage
I and stage II NSCLC and also to assess the influence of different scanners on this scenario.

2. Materials and Methods
2.1. Patient Selection

We retrospectively screened our database in order to find patients submitted to our
center to perform [18F]FDG PET/CT for the initial staging of NSCLC. The screening was
performed from January 2014 until February 2022 and a total of 2332 subjects were selected.
Inclusion criteria were the presence of a histologically proven diagnosis of stage I or stage
II NSCLC, the presence of a baseline [18F]FDG PET/CT performed before any treatment
and the presence of tracer uptake by NSCLC higher than liver uptake. After applying such
inclusion criteria, 233 patients were included in the study.

Clinicopathological information including gender, age, size of NSCLC measured
on histological evaluation, grading, lobe involved by the disease, therapy performed,
TNM category and American Joint Commission on Cancer (AJCC) VIII Edition stage were
collected. Furthermore, histological classification was collected and since only 6 patients
had the presence of adenosquamous carcinoma, they were excluded from the present study.
A total of 227 patients were therefore finally included in the study.

2.2. [18F]FDG PET/CT Acquisition and Interpretation

Patients fasted for at least 6 h before tracer injection and had a glucose blood level
below 150 mg/dL (mean: 116, standard deviation [SD]: 19, range: 83–148). In order to
perform PET/CT scan, 3.5–4.5 MBq/kg of [18F]FDG were intravenously injected to the
patients and before images acquisition they were instructed to void. No contrast agent,
intestinal preparation with purge or enteric contrast were used.

Images were acquired 60 min after radiotracer injection, from the vertex to the
midthigh on two different PET/CT tomographs. The first one (scanner 1) was a Dis-
covery 690 PET/CT (General Electric Company, Milwaukee, WI, USA) while the second
(scanner 2) was a Discovery STE PET/CT (General Electric Company, Milwaukee, WI,
USA). On both, standard acquisition parameters (CT: 80 mA, 120 kV without contrast;
2.5–4 min per bed PET-step, axial width 15 cm) and standard reconstruction parameters
were used (256 × 256 matrix and 60 cm field of view). Furthermore, scanner 1 had LYSO
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(cerium-doped lutetium yttrium oxyorthosilicate) scintillator crystals with a decay time
of 45 ns, while scanner 2 had BGO (bismuth germanate) scintillator crystals with a de-
cay time of 300 ns. Scanners were not harmonized with a cross-calibration program and
all PET/CT scans were acquired at free-breath, instructing the patients to have regular
breathing. For anatomical correlation and to perform attenuation correction, a low dose
CT at free breathing and without contrast agent was acquired for both the scanners. More
in detail, CT acquisition parameters for scanner 1 were: 120 kV, fixed tube current ≈
60 mAs (40–100 mAs), 64 slices × 3.75 mm and 3.27 mm interval, pitch 0.984:1, tube ro-
tation 0.5 s. CT acquisition parameters for scanner 2 were: 120 kV, fixed tube current ≈
73 mAs (40–160 mAs), 4 slices × 3.75 mm and 3.27 mm interval, pitch 1.5:1, tube rotation
0.8 s. Furthermore, on scanner 1 time of flight (TOF) and point spread function (PSF)
algorithm were used for the reconstruction of images, with filter cut-off 5 mm, 18 subsets
and 3 iterations. Moreover, on scanner 2 an ordered subset expectation maximization
(OSEM) algorithm with filter cut-off 5 mm, 21 subsets and 2 iterations was used.

PET images were visually and semiquantitatively analyzed by a nuclear physician with
at least 10 years of experience and every focal tracer uptake deviating from physiological
distribution and background was regarded as suggestive of disease localization.

2.3. Radiomics Features Extraction

Before RaF extraction, PET/CT scan were segmented with LIFEx 2.20 software (http:
//www.lifexsoft.org, accessed on 10 September 2021) by manually drawing volume of
interest (VOI) on hypermetabolic lesions [26]. RaF were extracted using Moddicom [27], a
software library compliant with the Image Biomarker Standardization Initiative [28]. For
each image series, a set of 216 features were extracted, grouped in three main families:
morphological (12), grey-level histogram based (21) and textural (190).

2.4. Statistical Analysis

Statistical analyses were performed using R (version 3.6.3). The descriptive analysis
of categorical variables comprised the calculation of simple and relative frequencies. The
numeric variables were described as mean, SD, minimum and maximum (range).

The general statistical analysis line of the study was structured of various steps and was
aimed at training a predictive model testing different Machine Learning (ML) approaches:
Logistic Regressor (LR), k-nearest neighbors (kNN), Decision Tree (DT) and Random Forest
(RF). Due to the nature of the used ML techniques, different approaches were used to cope
with the feature selection strategy. For LR and kNN, for example, to reduce the complexity
of the space, we used a Wilcoxon analysis after a 50-cross fold validation for all RaF and
we removed the feature poorly correlated with the outcome. The 50-cross fold validation
was performed randomly splitting the cohort in 80% for training and 20% per validation,
50 times. In this setting, a p-value ≤ 0.001 was considered as cutoff. DT and RF, on the other
hand, did not need any preliminary feature selection strategy because they operate a feature
selection exploiting a measure of the GINI index to split the node in the different branches
(and this operation can be performed also with a relatively high number of variables).
The ML models were than trained to find the best model and the corresponding most
representative RaF. The different models were trained in the following ways:

• LR: a bivariate Logistic Regressor was trained using the RaF survived at the feature
selection strategy. All the possible couple of RaF with a Spearman’s correlation
coefficient lower than 0.3 were tested and only the LR models were both the p-values
were lower than 0.05 were considered for the testing. This bivariate analysis was
conducted in order to classify these couples based on the area under the curve (AUC)
value of the receiver operating characteristic (ROC) analysis. The entire process was
repeated in a 50 cross-fold validation, in order to be able to measure the mean and the
SD of the AUCs, for each tested couple of RaF.

http://www.lifexsoft.org
http://www.lifexsoft.org
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• kNN: kNN was trained with a 50 cross-fold validation technique for each couple of
RaF tested for LR. This was done to assess the different performances between LR and
kNN on the same couple of RaF. Again, mean and SD of the AUCs were measured.

• DT and RF were tested with a 50 cross-fold validation technique on all the available
RaF. In this case, for each run of the cross-fold validation, only two model were trained
(one for DT and one for RF) and the mean and the SD of the AUC were measured on
the base of the 50 different training runs.

The entire aforementioned analyses were performed by considering the performances
of scanner 1 alone, scanner 2 alone and both the scanners together.

3. Results

Among the total number of 227 patients included in the study, 147 were men (64.8%)
and the mean age was 70 years (SD: 8, range: 38–87). The mean size of neoplasms was
32 mm (SD: 15, range: 7–69). Regarding histological classification of NSCLC, 169 patients
(74.4%) had ADK while 58 (25.6%) were affected by SCC. In this setting, the lobe involved
by disease was represented by left superior lobe (LSL) in 54 patients (23.8%), left inferior
lobe (LIL) in 39 (17.2%), right superior lobe (RSL) in 82 (36.1%), middle lobe (ML) in 7
(3.1%) and right inferior lobe (RIL) in 47 (19.8%). For what concerns the TNM classification,
75 patients (33.0%) had a T1 disease, 114 (50.2%) had a T2 disease, while 38 (16.7%) had
a T3 disease. In particular, 1 (0.4%) had a T1mi disease, 26 (11.5%) had a T1a disease, 31
(13.7%) had a T1b disease, 11 (4.8%) had a T1c disease, 2 (0.9%) had a T1aN1 disease, 3
(1.3%) had a T1bN1 disease, 1 (0.4%) had a T1cN1 disease, 59 (26.0%) had a T2a disease, 23
(10.1%) had a T2b disease, 23 (10.1%) had a T2aN1 disease, 9 (4.0%) had a T2bN1 disease
and 38 (16.7%) had a T3 disease. As a consequence, the presence of nodal localization of
disease was reported in 38 patients (16.7%) (Table 1).

Table 1. Characteristics of the 227 patients included in the study.

Characteristic n (%)

Sex

Male 147 (64.8%)

Female 80 (35.2%)

Age (mean ± SD, range) 70 ± 8, 38–87

Histology

Adenocarcinoma 169 (74.4%)

Squamous cell carcinoma 58 (25.6%)

Size (mean ± SD, range) (mm) 32 ± 15, 7–69

Grading *

G1 1 (1.0%)

G2 42 (42.0%)

G3 57 (57.0%)

Lobe

LSL 54 (23.8%)

LIL 39 (17.2%)

RSL 82 (36.1%)

ML 7 (3.1%)

RIL 45 (19.8%)
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Table 1. Cont.

Characteristic n (%)

TNM stage

T1mi 1 (0.4%)

T1a 26 (11.5%)

T1b 31 (13.7%)

T1c 11 (4.8%)

T1aN1 2 (0.9%)

T1bN1 3 (1.3%)

T1cN1 1 (0.4%)

T2a 59 (26.0%)

T2b 23 (10.1%)

T2aN1 23 (10.1%)

T2bN1 9 (4.0%)

T3 38 (16.7%)

AJCC stage

I

IA1 27 (11.9%)

IA2 31 (13.7%)

IA3 11 (4.8%)

IB 59 (26.0%)

II

IIA 23 (10.1%)

IIB 76 (33.5%)

Nodal metastasis

Yes 38 (16.7%)

No 189 (83.3%)

PET/CT scanner

Scanner 1 (Discovery 690) 142 (62.6%)

Scanner 2 (Discovery STE) 85 (37.4%)
* Data available only for 100 patients. SD: standard deviation; mm: millimeters; LSL: left superior lobe; LIL: left
inferior lobe; RSL: right superior lobe; ML: middle lobe; RIL: right inferior lobe; AJCC: American Joint Commission
on Cancer; PET/CT: positron emission tomography/computed tomography.

According to the VIII edition of AJCC staging system, 128 patients (56.4%) had stage I
disease while 99 (43.6%) had stage II disease. In particular, 27 (11.9%) subjects had stage IA1
disease, 31 (13.7%) had stage IA2 disease, 11 (4.8%) had stage IA3 disease, 59 (26.0%) had
stage IB disease, 23 (10.1%) had stage IIA disease while 76 (33.5%) had stage IIB disease.

Data about the grading of disease were available only for 100 patients and in this
setting 1 patient (1.0%) had a G1 disease, 42 (42.0%) had G2 disease, while 57 (57.0%) had
G3 disease. Furthermore, a total of 142 (62.6%) scans were performed on the Discovery
690 tomograph (scanner 1), while 85 (37.4%) of them were acquired on the Discovery STE
tomograph (scanner 2). Analyzing PET/CT acquisition depending on the tomograph used
for their execution, in 107 (75.4%) scans performed on scanner 1 the presence of ADK was
revealed while in 35 (24.6%) the presence of SCC was reported. On scanner 2, ADK was
present in 66 (77.6%) subjects while SCC was reported in 19 (22.4%) cases. No significant
difference in terms of final diagnosis was reported between the 2 scanners (p-value 0.7).
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RaF selection analyses and cross correlation matrixes before applying the ML mod-
els for all the scanners are presented in Figure 1. After the cross-correlation selection,
scanner 2 had more removed variables, compared to scanner 1 and both the scanners
considered together.
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The best results of LR analysis for scanner 1, scanner 2 and both the scanners together
are presented in Table 2. In this setting, for scanner 1 L_least, F_cm.2.5Dmerged.diff.entr,
L_major and F_cm_2.5D.diff.entr were between the RaF with the best performances and
AUCs over 0.8 were reported. On scanner 2 the best performances were obtained by
F_cm.clust.shade, F_cm_merged.inv.var, F_cm.inv.var and F_cm_merged.clust.shade, with
AUCs comprised between 0.6 and 0.8. When considering the combination of the two
scanner together L_major, F_rlm.2.5Dmerged.sre, F_stat.entropy and F_rlm_2.5D.sre were
part of the couples with the best performances, again with AUCs comprised between 0.6
and 0.8.

The couples of variables that presented the best performances at kNN analyses for all
the scanners are presented in Table 3. For scanner 1 F_stat.entropy, F_cm_2.5D.clust.shade,
F_cm.2.5Dmerged.clust.shade, F_morph.surface, F_cm_merged.clust.prom and
F_cm.clust.prom had the best performances, with general AUCs above 0.8. Moreover,
for scanner 2 the best performances were obtained by F_stat.median, F_cm.clust.shade,
F_cm_merged.clust.shade and F_cm.joint.max, with the AUCs values that were comprised
between 0.6 and 0.8. In the general analysis considering all the scanner, F_stat.uniformity,
F_cm.clust.shade, F_cm_merged.clust.shade, F_rlm.lre, F_cm.2.5Dmerged.sum.entr and
F_cm_2.5D.clust.shade were part of the couples of RaF with best performances, with AUCs
above 0.8. In this setting, a visual representation of the best combination of RaF for kNN
and LR are presented in Figure 2.
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Table 2. Couples of RaF with best performances at logistic regression analysis for scanner 1, scanner
2 and both scanners together.

Covariate 1 Covariate 2 Mean AUC SD AUC Mean
p-Value 1

Mean
p-Value 2

Scanner 1

L_least F_cm.2.5Dmerged.diff.entr 0.852 0.015 <0.001 0.020

L_least F_cm_2.5D.diff.entr 0.850 0.017 <0.001 0.020

L_major F_cm_2.5D.diff.entr 0.847 0.018 <0.001 <0.001

L_major F_cm.2.5Dmerged.diff.entr 0.846 0.019 <0.001 <0.001

F_cm_2.5D.diff.entr F_cm_2.5D.inv.diff.mom.norm 0.845 0.019 <0.001 <0.001

F_cm_2.5D.diff.entr F_cm.2.5Dmerged.inv.diff.mom.norm 0.845 0.019 <0.001 <0.001

F_cm_2.5D.diff.entr F_szm_2.5D.zsnu 0.845 0.018 0.012 <0.001

F_cm.2.5Dmerged.diff.entr F_cm.2.5Dmerged.inv.diff.mom.norm 0.844 0.019 <0.001 <0.001

F_cm.diff.entr F_cm_2.5D.inv.diff.mom.norm 0.844 0.017 <0.001 <0.001

F_cm.diff.entr F_cm.2.5Dmerged.inv.diff.mom.norm 0.844 0.016 <0.001 <0.001

Scanner 2

F_cm.clust.shade F_cm_merged.inv.var 0.777 0.027 0.029 0.021

F_cm.inv.var F_cm.clust.shade 0.777 0.028 0.019 0.030

F_cm.inv.var F_cm_merged.clust.shade 0.777 0.028 0.019 0.030

F_cm_merged.inv.var F_cm_merged.clust.shade 0.777 0.027 0.021 0.029

Scanner 1 + 2

L_major F_rlm.2.5Dmerged.sre 0.784 0.020 <0.001 <0.001

F_stat.entropy F_rlm.2.5Dmerged.sre 0.784 0.020 <0.001 <0.001

L_least F_rlm.2.5Dmerged.sre 0.784 0.021 <0.001 <0.001

F_stat.entropy F_rlm_2.5D.sre 0.784 0.020 <0.001 <0.001

L_major F_rlm_2.5D.sre 0.784 0.020 <0.001 <0.001

L_least F_rlm_2.5D.sre 0.784 0.021 <0.001 <0.001

L_minor F_rlm.2.5Dmerged.sre 0.782 0.020 <0.001 <0.001

L_minor F_rlm_2.5D.sre 0.782 0.020 <0.001 <0.001

F_morph.surface F_rlm.2.5Dmerged.sre 0.782 0.021 <0.001 <0.001

F_szm_2.5D.zsnu F_rlm.2.5Dmerged.sre 0.782 0.020 <0.001 <0.001

AUC: area under the curve; SD: standard deviation; RaF: radiomics features.
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Table 3. Couples of RaF with best performances at k-nearest neighbors analysis for scanner 1, scanner
2 and both scanners together.

Covariate 1 Covariate 2 Mean AUC SD AUC Mean
p-Value 1

Mean
p-Value 2

Scanner 1

F_stat.entropy F_cm_2.5D.clust.shade 0.938 0.012 <0.001 0.271

F_stat.entropy F_cm.2.5Dmerged.clust.shade 0.938 0.012 <0.001 0.272

F_morph.surface F_cm_merged.clust.prom 0.936 0.016 <0.001 0.613

F_morph.surface F_cm.clust.prom 0.936 0.016 <0.001 0.613

F_stat.entropy F_cm_merged.clust.prom 0.935 0.013 <0.001 0.610

F_stat.entropy F_cm.clust.prom 0.935 0.013 <0.001 0.611

F_cm.energy F_cm.2.5Dmerged.inv.diff.mom.norm 0.933 0.015 0.046 0.008

F_stat.entropy F_cm_2.5D.clust.prom 0.933 0.013 <0.001 0.515

F_stat.entropy F_cm.2.5Dmerged.clust.prom 0.933 0.013 <0.001 0.516

F_cm.energy F_cm_2.5D.inv.diff.mom.norm 0.932 0.014 0.044 0.007

Scanner 2

F_stat.median F_cm.clust.shade 0.903 0.014 0.065 0.026

F_stat.median F_cm_merged.clust.shade 0.909 0.014 0.063 0.026

F_cm.joint.max F_cm.clust.shade 0.899 0.025 0.014 0.140

F_cm.joint.max F_cm_merged.clust.sade 0.897 0.024 0.014 0.139

F_cm.clust.shade F_cm_2.5D.joint.max 0.893 0.016 0.111 0.028

F_cm.2.5Dmerged.energy F_cm.2.5Dmerged.clust.shade 0.892 0.021 0.013 0.791

F_cm_2.5D.joint.max F_cm_merged.clust.shade 0.892 0.016 0.028 0.111

F_cm_2.5D.clust.shade F_cm.2.5Dmerged.energy 0.892 0.022 0.790 0.013

F_cm.clust.shade F_cm.2.5Dmerged.joint.max 0.886 0.020 0.108 0.031

F_cm_merged.clust.shade F_cm.2.5Dmerged.joint.max 0.885 0.020 0.107 0.031

Scanner 1 + 2

F_stat.uniformity F_cm.clust.shade 0.912 0.011 0.008 0.110

F_stat.uniformity F_cm_merged.clust.shade 0.911 0.011 0.008 0.111

F_rlm.lre F_cm.2.5Dmerged.sum.entr 0.910 0.010 0.857 <0.001

F_stat.uniformity F_cm_2.5D.clust.shade 0.907 0.014 0.008 0.158

F_stat.uniformity F_cm.2.5Dmerged.clust.shade 0.907 0.015 0.008 0.158

F_morph.volume F_rlm_2.5D.gl.var 0.903 0.013 0.117 0.030

F_rlm.lre F_cm_2.5D.sum.entr 0.903 0.013 0.838 <0.001

F_morph.volume F_rlm.2.5Dmerged.gl.var 0.903 0.014 0.117 0.031

F_stat.uniformity F_cm.diff.avg 0.903 0.014 0.008 0.005

F_stat.uniformity F_cm.dissimilarity 0.903 0.014 0.008 0.005

AUC: area under the curve; SD: standard deviation; RaF: radiomics features.



J. Clin. Med. 2023, 12, 255 9 of 13

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 8 of 12 
 

 

F_cm.joint.max F_cm_merged.clust.sade 0.897 0.024 0.014 0.139 

F_cm.clust.shade F_cm_2.5D.joint.max 0.893 0.016 0.111 0.028 

F_cm.2.5Dmerged.energy 
F_cm.2.5Dmerged.clust.sh

ade 
0.892 0.021 0.013 0.791 

F_cm_2.5D.joint.max F_cm_merged.clust.shade 0.892 0.016 0.028 0.111 

F_cm_2.5D.clust.shade F_cm.2.5Dmerged.energy 0.892 0.022 0.790 0.013 

F_cm.clust.shade 
F_cm.2.5Dmerged.joint.ma

x 
0.886 0.020 0.108 0.031 

F_cm_merged.clust.shade 
F_cm.2.5Dmerged.joint.ma

x 
0.885 0.020 0.107 0.031 

Scanner 1 + 2 

F_stat.uniformity F_cm.clust.shade 0.912 0.011 0.008 0.110 

F_stat.uniformity F_cm_merged.clust.shade 0.911 0.011 0.008 0.111 

F_rlm.lre 
F_cm.2.5Dmerged.sum.ent

r 
0.910 0.010 0.857 <0.001 

F_stat.uniformity F_cm_2.5D.clust.shade 0.907 0.014 0.008 0.158 

F_stat.uniformity 
F_cm.2.5Dmerged.clust.sh

ade 
0.907 0.015 0.008 0.158 

F_morph.volume F_rlm_2.5D.gl.var 0.903 0.013 0.117 0.030 

F_rlm.lre F_cm_2.5D.sum.entr 0.903 0.013 0.838 <0.001 

F_morph.volume F_rlm.2.5Dmerged.gl.var 0.903 0.014 0.117 0.031 

F_stat.uniformity F_cm.diff.avg 0.903 0.014 0.008 0.005 

F_stat.uniformity F_cm.dissimilarity 0.903 0.014 0.008 0.005 

AUC: area under the curve; SD: standard deviation; RaF: radiomics features. 

 

Figure 2. Visual representation with the couples of RaF with best performances at LR and k-nearest 

neighbors (kNN) analyses for scanner 1 (A), scanner 2 (B) and both the scanner considered together 

(C). 

Figure 2. Visual representation with the couples of RaF with best performances at LR and k-nearest
neighbors (kNN) analyses for scanner 1 (A), scanner 2 (B) and both the scanner considered to-
gether (C).

Furthermore, RF and TM were also applied to our cohort and a comparison of the
performances of such analyses with LR and kNN for all the PET/CT scanners are presented
in Figure 3 and Table 4. In this setting, TM had the lower performances compared to other
models and both TM and RF had AUC values that were lower and more heterogeneous
compared to LR and kNN. In particular, for scanner 1 mean AUC for LR, kNN, RF and
TM were 0.852, 0.882, 0.793 and 0.701, respectively; for scanner 2 mean AUC were 0.777,
0.870, 0.703 and 0.496, respectively, while when considering both the scanner together such
values were 0.784, 0.859, 0.775 and 0.682, respectively.
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Table 4. Predictive efficiency (AUC) of ML models for scanner 1, scanner 2 and both scanners together.

ML Model Scanner 1 Scanner 2 Scanner 1 + 2

LR 0.852 0.777 0.784

kNN 0.882 0.870 0.860

RF 0.793 0.704 0.775

DT 0.701 0.496 0.682
AUC: area under the curve; ML: machine learning; LR: Logistic Regressor; kNN: k-Nearest Neighbors; RF:
Random Forest; DT: Decision Tree.

4. Discussion

As previously underlined in the literature, the technology of the scanner used to
acquire PET/CT images directly afflicts the subsequent extraction of RaF and, in this setting,
the use of different tomographs in the same department is frequent in daily practice [7,17,18].
These insights suggest that different scanners can potentially have different preferred
features in terms of correlations with a clinical outcome and that radiomics models coming
from centers adopting different technologies should be critically considered. In our cohort,
we had to deal with the presence of two different scanners and our results confirmed
this point. Due to the different technologies, for example, we reported a decreasing order
of AUCs values for LR trained/tested, respectively on scanner 1, both scanners and on
scanner 2. As expected, the p-values of the features in the related models were lower for
scanner 1, both scanners and scanner 2, respectively. Moreover, the selection of RaF before
applying any ML models selected only a small sample of features for scanner 2 compared
to scanner 1 and the analysis for both scanners. This evidence was confirmed also when
considering the kNN model, with generally higher AUC values and lower p-values for
scanner 1 and both the scanner compared to scanner 2. The higher performance of kNN can
be probably due to the linear limitations of the LR modes; on the other hand, LR provides a
more communicative model which can be easily plotted in a 2D space or shaped in form
of normogram. Our findings are therefore in line with the concept that different PET/CT
technologies can influence the contouring and/or the feature values, and therefore the
performances, of RaF. In contrast with our findings, Ma et al. [20] revealed that in a large
cohort of NSCLC, for most RaF the influence of different scanner on their extraction was not
present. However, this is not completely unexpected: in their study they used two different
tomographs with a different technological gap and different reconstructing protocols and
acquisition parameters. Even if, in their case, the gap between the two scanners was not
pivotal, it still remains, in general, an open challenge in this kind of analysis.

Our study was performed by comparing different ML models. In this setting, the
models with best performances in the analyses for all the scanners were kNN and LR and, in
general, the kNN model had better performances compared to the others. A possible reason
of the highest performances of kNN can be due to its non-linearity in cutting the space.
This can surely be a pros but, on the other hand, it can carry to a higher risk of overfitting.
In addition, a kNN model is computational expensive (to make a prediction the DSS needs
to compare the distances with all the cases in the data base) and cannot resumed in an easy-
to-use graphical representation. On the other hand, LR has lower but similar performances,
reduces the risk of overfitting, clearly show the role of the features in terms of p-value
and can be easily reshaped in form of easy-to-use nomogram. In general, in choosing the
best predictor, all the aforementioned points should be qualitatively considered, to reach
the best trade-off for the specific needs. RF and TM had lower mean AUCs compared to
the aforementioned models, and moreover such values were really heterogeneous in each
analysis based on the single scanner. Furthermore, as previously mentioned, the impact of
the scanner on such analyses is clearly evident and also in this scenario this evidence is
confirmed: mean AUC values for scanner 2 were the lowest compared to scanner 1 and
both the scanner considered together.
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In general, our results underline the ability of [18F]FDG PET/CT RaF to discriminate
between ADK and SCC in stage I and stage II NSCLC. The first study to investigate the
ability of RaF in this setting was proposed by Ha et al. [23] who reported that these NSCLC
entities had different tumoral heterogeneity, with 15 RaF that were able to discriminate
between them and that a linear discriminant analysis with such parameters was able to
clearly classify them with high performances. More recently, Kim et al. [24] reported that
tumor heterogeneity of [18F]FDG uptake was significantly different between ADK and
SCC and such parameter was able to predict recurrence of ADC but not SCC in patients
who have undergone curative surgery. Orhlac et al. [22] reported the role of different
resampling method on RaF in distinguish between ADC and SCC, underling that textural
parameters using absolute resampling can vary in function of the cancer subtype more than
in relative resampling. An interesting study by Ma et al. [20] investigated the role of texture
and colour analyses in differentiating between NSCLC subtypes in a large cohort. They
revealed that a combination of both methods had higher performances compared to single
method in differentiating between SCC and ADK, with an AUC of 0.89. More recently,
Bianconi et al. [19] reported that SCC had significantly higher degree of heterogeneity,
stronger variability and lower uniformity of [18F]FDG uptake compared to other subtypes,
while ADK had lower heterogeneity, weaker variability and higher uniformity compared
to other subtypes of NSCLC. Lastly, Aydos et al. [21] revealed that kurtosis was the only
RaF able to differentiate between such histological subtypes, given the fact that in SCC
it was significantly lower compared to ADK. Interestingly, some RaF were also able to
differentiate between moderate and poorly differentiated ADK.

Generally speaking, even with a high degree of heterogeneity in terms of number of
patients, number of scanners used, methods used for RaF extraction and analyses of such
parameters, a promising role for texture analysis in differentiating between NSCLC has
emerged. In this setting, our study confirms such evidence, reflecting also the influence of
different scanners in this context that, as mentioned, can be frequent in daily practice.

Our work is not without limitations. First of all, this is a retrospective study. Second,
conventional PET/CT scanners but not last-generation tomographs are used. Moreover,
even if characterized by the presence of a relatively high number of patients, in particular
compared to similar works, the sample of patients included still appears sub-optimal to
clearly evaluate the predictive abilities of texture analysis. The fact that the two tomographs
used in our work had different reconstruction algorithm can be another confounding factor.
Lastly, the problem of the reproducibility of radiomics analysis in terms of multicentric
evaluation is still an open issue and further research in this field is mandatory.

5. Conclusions

In conclusion, our study enabled the selection of some [18F]FDG PET/CT RaF and ML
models that are able to predict with good performances the histological subtype of NSCLC.
Furthermore, evident influences of the type of PET/CT scanner on such performances
were underlined.
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