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Abstract: Copper is required for cancer cell proliferation and tumor angiogenesis. Copper-64 radionu-
clide (64Cu), a form of copper chloride (64CuCl2), is rapidly emerging as a diagnostic PET/CT tracer
in oncology. It may also represent an interesting alternative to gallium-68 (68Ga) as a radionuclide
precursor for labelling radiopharmaceuticals used to investigate neuroendocrine tumors and prostate
cancer. This emerging interest is also related to the nuclear properties of 64CuCl2 that make it an ideal
theragnostic nuclide. Indeed, 64CuCl2 emits β+ and β- particles together with high-linear-energy-
transfer Auger electrons, suggesting the therapeutic potential of 64CuCl2 for the radionuclide cancer
therapy of copper-avid tumors. Recently, 64CuCl2 was successfully used to image prostate cancer,
bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans.
Copper cancer uptake was related to the expression of human copper transport 1 (hCTR1) on the
cancer cell surface. Biodistribution, toxicology and radiation safety studies showed its radiation and
toxicology safety. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also
holds potential for the diagnostic imaging of human hepatocellular carcinoma (HCC), malignant
melanoma, and the detection of the intracranial metastasis of copper-avid tumors based on the low
physiological background of radioactive copper uptake in the brain.
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1. Introduction

Currently, basic imaging modalities, such as single photon emission computed tomog-
raphy (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI),
computed tomography (CT), optical imaging, ultrasound imaging, etc., are regularly used
to evaluate specific targets in clinical settings. Among various molecular imaging modal-
ities, the growth of PET imaging has been particularly important over the past decade.
PET imaging provides the possibility to evaluate living systems using positron emitting
radioisotopes with high sensitivity and specificity. This imaging modality can improve
decision making and select only the right patients for tailored therapeutic regimens [1]. A
crucial node in molecular imaging with PET is the development of specific radiopharma-
ceuticals and the choice of the radionuclide to obtain a PET probe, which correlates with
its chemical and physical characteristics and feasibility of production. Therefore, copper
radionuclides are being studied for both molecular imaging and therapy and many efforts
have been made to evaluate the clinical potential of copper radiopharmaceuticals.

2. Nuclear Copper and Properties

Research is focused on five of the 32 copper isotopes—60Cu, 61Cu, 62Cu, 64Cu, and
67Cu—that have the necessary characteristics to be used in the clinical setting (Table 1) [2]. The
most studied and promising of these isotopes appears to be 64Cu. This isotope decays with
the emission of a low-energy positron (650 keV) with shallow average penetration into tissues,
that makes this isotope fit for diagnostic PET images with significantly high resolution.
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Table 1. Decay characteristics and properties of copper radioisotopes.

60Cu 61Cu 62Cu 64Cu 67Cu

Production reaction
(Source)

60Ni(p,n)60Cu
(Cyclotron)

61Ni(p,n)61Cu
(Cyclotron)

62Zn/62Cu
(Generator)

62Ni(p,n)62Cu
(Cyclotron)

natZn(p,xn)64Cu
(Reactor)

63Cu(n,g)64Cu
(Reactor)

64Ni(p,n)64Cu
(Cyclotron)

67Zn(n,p)67Cu
(Reactor)

68Zn(p,2p)67Cu
(Cyclotron)

70Zn(p,a)67Cu
(Cyclotron)

Half-life 23.4 min 3.3 h 9.7 min 12.7 h 62.0 h

Decay β− MeV (%) - - - 0.573 (38.4)
0.395 (45)
0.484 (35)
0.577 (20)

Decay β+ MeV (%)
3.92 (6)

3.00 (18)
2.00 (69)

1.22 (60) 2.91 (6) 0.655 (17.8) -

EC 7.4% 40% 2% 43.8% -

γ MeV (%)

0.511 (186)
0.85 (15)
1.33 (80)
1.76 (52)
2.13 (6)

0.284 (12)
0.38 (3)

0.511 (120)
0.511 (194) 0.511 (35.6)

1.35 (0.6) 0.184 (40)

Clinical Use Imaging Imaging Imaging Imaging and
therapy Therapy

MeV: megaelettronvolt.

64Cu decays through three different routes, namely, electron capture (EC, 42.5%),
β− (38%; Eb- 190keV) and β+ (19%; Eb- 278keV) decay [Table 1]. Furthermore, 64Cu emits
Auger electrons. These features make this isotope a pure theragnostic agent [1,3]. The
decay characteristics of 64Cu allows for PET images that are comparable in quality to those
obtained using 18F, while the longer half-life (12.7h) of 64Cu and its chemical versatility
allow for the preparation of many radiopharmaceuticals using different molecules, peptides,
proteins and nanoparticles.

64Cu can be produced via multiple routes. The most recent approach for the production
of copper-64 is by nuclear reactor, which appears to be the most suitable option for regular
use in a clinical setting [4]. Cyclotron production is also commonly used. 64Ni particles
are irradiated with low-energy neutrons, leading to the production of 64Cu in the form of
[64Cu] CuCl2, with high purity [3,5].

Regardless of the method of production, 64Cu has been used in preclinical and clinical
studies that have demonstrated that, in its simple ionic form, it highly accumulates in
multiple tumors [5]. In recent years, several studies regarding the use of novel radiophar-
maceuticals labelled with 64Cu have been published.

3. Biological Role of Copper as Theragnostic Agent

Copper is an essential nutrient in mammals, acting as a cofactor in the normal func-
tioning of many physiological processes. It plays an important role in angiogenesis and
can stimulate endothelial cell proliferation in a variety of benign and malignant situations.
The cellular distribution of copper is rather complex, and although the exact mechanisms
by which copper is internalized by human cells are not yet completely clarified, recent data
indicate that copper in its ionic form (Cu2+) is rapidly bound to plasma proteins in the blood
stream (albumin, ceruloplasmin, transcuprein) and reaches the cell surface, where Cu2+ ions
are reduced to Cu+ by specific enzymes called reductases [3,6,7]. Reduced copper enters in
the cell through the human copper transporter 1 (hCTR1) [2] and binds to the tri-peptide
glutathione (GSH), acting as primary copper acceptor. GSH plays a safeguarding role by
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binding excess Cu+ ions, to prevent oxidative damage due to redox cycling, thus protecting
the cell from copper toxicity [8,9]. After this first phase, copper ions are handed off to
copper chaperones and proteins (cytochrome c oxidase copper chaperone (COX17), copper
chaperone for SOD1 (CCS), and antioxidant protein (ATOX1)), thus keeping them in a
bound Cu+ state by preventing redox cycling. These chaperones deliver Cu+ ions to cytoso-
lic SOD1, cytochrome c oxidase (COX) in the mitochondria and copper transporting ATPase
A/B (ATP7A/B) at the trans-Golgi network (TGN), respectively (Figure 1). Analogous
mechanisms are carried out by metallothioneins capable of irreversibly binding Cu+ ions.
When intracellular copper exceeds a certain level, hCTR1 is internalized and destroyed.
During this process, copper transporting ATPase A/B (ATP7A and ATP7B) transfer from
the TGN to the plasma membrane to help in the excretion of copper from the cell [3,10].
Copper is mainly stored and redistributed by the liver, and thus the hepatobiliary system
appears to be the principal means of elimination of excess copper ions [5].
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Figure 1. Schematic representation of copper metabolism at the cellular and molecular level (64Cu as
copper ions). 64Cu2+ ions are bound to plasma proteins which carry them to the external membrane,
where they are reduced to Cu2+ by reductases before their uptake into cells. Reduced copper ions are
then transported across the cell membrane by the human copper transporter 1 (hCTR1). In the cell,
Cu2+ions are closely bound by copper chaperones (cytochrome c oxidase copper chaperone (COX17),
copper chaperone for SOD1 (CCS), and antioxidant protein (ATOX1)), which deliver copper ions to
the cytosol (via SOD1), mitochondria (via COX) and trans-Golgi network (via copper transporting
ATPase A/B). Interestingly, glutathione (GSH) binds excess Cu2+ to prevent oxidative damage, thus
protecting the cell from copper toxicity. Analogous mechanisms are carried out by metallothionein
(MT). When intracellular copper is too high, hCTR1 is internalized and destroyed and copper
transporting ATPase A/B (ATP7A and ATP7B) transfer from the TGN to the plasma membrane
to help in the excretion of copper from the cell (adapted and modified from Michniewicz F. et al.:
Copper: An Intracellular Achilles’ Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and
Cell Metabolism in Cancer Therapeutics. Chem Med Chem 2021, 16, 2315–2329. Copyright Wiley-VCH
GmbH. Reproduced with permission).



J. Clin. Med. 2023, 12, 223 4 of 9

Copper ions play an essential role in several biological processes, and copper is a
cofactor of many enzymatic reactions, a structural component of different proteins and
a key modulator of cell proliferation and growth. Preclinical and clinical studies have
demonstrated that copper is deeply involved in the development, growth and progression
of malignant lesions. Experimental data have shown significant differences in copper
metabolism between normal and cancerous cells. Some of these studies have revealed a
significantly higher expression of hCTR1 in malignant tissues than normal tissues, including
prostate cancer, lung cancer, glioblastomas, liver cancer, breast cancer, and melanoma [5,11].
Furthermore, copper in its simple ionic form is mostly located in the cytosolic fraction of
normal cells, while in tumor cells, these ions mainly diffuse to the nuclear and perinuclear
space [3,5]. Therefore, it was hypothesized that hCTR1 could be used as a target for
molecular imaging of a wide variety of cancers [8,9,12]. Several researchers have reported
an elevated level of copper uptake in malignant tissues [4], such as prostate cancer, lung
cancer, breast and liver cancer, glioblastoma and melanoma, and it was proposed that
hCTR1 could be used to visualize a large number of tumors [9].

An increased copper concentration in the neoplastic cells could be easily evaluated
in vivo using radioactive copper (64Cu2+) ions as radiopharmaceutical. Indeed, 64Cu2+ ions
can serve as an effective biomarker for the noninvasive assessment of cancer, using PET
imaging. Many mouse animal models of a wide variety of cancers, such as prostate, lung,
breast, ovarian, colorectal, brain and head and neck cancer, hepatoma, fibrosarcoma and
melanoma, have been used to explore the biodistribution and uptake of 64Cu as a diagnostic
or therapeutic agent [9]. Mouse copper transporter receptor 1 (mCTR1) plays the same role
as hCTR1 in the intracellular transport of radioactive copper in animal models [9]. PET
imaging and biodistribution studies demonstrated the correlation between tumor uptake
of 64Cu and the level of mCTR1 assessed by immunohistochemistry techniques [4]. Fur-
thermore, preliminary results confirmed that 64Cu is selectively concentrated in malignant
tissue and not in inflammatory tissues, suggesting the potential role of this radionuclide as
a specific tumor marker and its use as a theragnostic agent.

4. Cancer Imaging

As mentioned before, copper is a transitional metal required for the function of many
molecules involved in human processes [13,14] and in signaling transduction pathway
regulating cancer cell proliferation and tumor growth [15–17], giving rise to the possibility
to use it for metabolic PET imaging [18,19]. A high intracellular concentration of copper is
allowed by an elevated expression of hCTR1, and reduced tumor 64Cu uptake and tumor
growth inhibition caused by RNA-mediated hCTR1 knockdown have been shown, sug-
gesting that hCTR1 is a promising novel theragnostic target. Some clinical and preliminary
human studies have strongly supported these preclinical observations.

A pilot study was carried out by Capasso E. et al. to evaluate the possible role of
64Cu-PET in the staging of patients with prostate cancer (PCa) [20]. Seven patients with
PCa were prospectively enrolled, and three patients underwent adrenal deprivation. The
remaining patients underwent no therapy. The authors found prostate cancer lesions in
the pelvic area, thanks to the absence of urinary excretion of 64CuCl2. Uptake was higher
in the primary tumors of patients without ADT than in treated patients, while the nodal
uptake was variable, with focal concentration in normal size node and no significant uptake
in suspected lymphadenopathy. These preliminary results indicate the potential role of
64Cu-PET for the diagnosis of PCa.

Subsequently, Piccardo A. et al. prospectively evaluated the biodistribution, dosime-
try and lesion kinetics in 50 PCa patients with biochemical relapse after surgery or ra-
diation therapy [21]. This study compared the diagnostic performance of 64Cu-PET/CT,
18F-choline PET/CT, and multiparametric MRI (mpMRI). The results showed the effectiveness
of 64Cu-PET/CT in detecting local relapse along with bone and nodes metastases (Figure 2).
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Figure 2. 64CuCl2 PET/CT in prostate cancer relapse. (A) 64CuCl2 biodistribution with high activity
in the liver, and kidneys and lesser in the bowel. 64CuCl2 PET/CT image of pelvis from a old
man treated with radical prostatectomy with rising PSA level demonstrated copper-avid recurrence
in vescicourethral anastomosis (B) and nodes (C). Adapted from ref. [21] with (This research was
originally published in JNM. A. Piccardo et al. 64CuCl2 PET/CT in prostate cancer relapse. J. Nucl.
Med. 2018, 59, 444–451. ©SNMMI).

The detection rate (DR) of 64Cu-PET/CT was higher than the DR of 18F-choline
PET/CT and multiparametric MRI, particularly in patients with biochemical relapse and a
low PSA level [21]. The success of 64Cu-PET/CT can be related to the better biodistribution
than 18F-choline PET/CT; copper ions are not eliminated via the kidneys and do not
concentrate in the urinary tract, and this allows an accurate evaluation of the pelvic region
and prostatic bed with early visualization of pelvic lesions. Furthermore, dosimetry studies
showed that the dose absorbed by PCa recurrences and metastases is low, not considering
the therapeutic effect of Auger electrons [22]. More recently, it has been demonstrated
that 64Cu-PET/MRI shows a higher overall DR in the evaluation of PCa local recurrence
than the DR of 18F-Choline PET/MRI, 64Cu-PET/CT, 18F-Choline PET/CT and mpMRI
alone [23].

There are relevant findings on potential uses of 64CuCl2 PET/CT for the study of PCa,
but Cantiello F et al. suggested that 64CuCl2 PET/CT presents some limitations and is not
always able to overcome the current imaging methods in use for PCa [24]. In primary PCa
staging, there are no differences between mpMRI and 64CuCl2 PET/CT in metastatic node
detection, while in restaging, a significantly higher DR than for 18F-choline PET/CT in the
lesion-based analysis both for local and lymph nodal staging can be observed, but not in
the patient-based analysis. Furthermore, 64CuCl2 is mainly removed by the liver, and this
could result in a failure to detect liver metastases.

Mascia M. et al. evaluated the safety and efficacy of 64CuCl2 as a PET radiophar-
maceutical to image other urological malignancies [25]. In this prospective study, a total
of 23 patients were enrolled, including patients with renal cancer, bladder and penile
cancer. Obviously, PCa lesions showed the highest 64Cu uptake (SUVmax 11.5), while
it was relatively high for bladder cancer (SUVmax 6.2) when compared to penile cancer
(SUVmax 3.9) and renal cancer (SUVmax 5.0), suggesting that 64Cu-PET/CT might be
useful to evaluate primary and local recurrent bladder cancer lesions in view of a high 64Cu
target to background ratio. In contrast, a high background of 64Cu uptake in the kidneys
(SUVmax 10.4) could limit its use for the evaluation of primary renal cancer lesions.

Another pilot study has been conducted by Panichelli P. et al. who evaluated the
feasibility of 64CuCl2 PET/CT to image patients affected by glioblastoma (GBM) [26]. A
high tumor uptake of 64Cu was observed in all patients affected by GBM, in contrast to the
low tumor uptake of 64Cu in patients diagnosed with low-grade astrocytoma. Remarkably,
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in the same study, neoplastic tissue was rapidly and clearly detected with stable retention
of radioactivity over time. This study provides further evidence to support using 64CuCl2
as a radiopharmaceutical for PET imaging (Figure 3).
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Figure 3. Brain 64CuCl2 PET/CT scan of a cerebral glioblastoma collected at 1 h post injection
(injected activity, 13 MBq/kg). Adapted from ref. [26] with permission of Panichelli P et al. Imaging
of brain tumors with copper-64 chloride: Early experience and results. Cancer Biother. Radiopharm.
2016, 31, 159–167.

Similar results were obtained by Fiz F. et al., who evaluated the distribution and dosime-
try of 64CuCl2 dosimetry in pediatric patients affected by diffuse high-grade glioma [27].
64Cu-PET/CT presents favorable dosimetry and helps to identify tumor relapses in patients
that show unclear MRI results (contrast enhancement and necrosis).

García-Pérez FO et al. evaluated 64Cu uptake by non-small cell lung cancer in a
limited cohort of patients [28]. The authors observed a high 64Cu uptake in peripheral large
primary lung cancer lesion on PET/CT images, similar to FDG uptake. High uptake of
64Cu was detected in 36% of primary tumors and 27% of nodal metastases. Furthermore,
the patients with high tumor uptake of 64Cu presented partial response to chemotherapy,
while three patients with very low uptake of 64Cu displayed disease progression.

As said before, the 64Cu uptake is related to the expression of CTR1, thus selecting
patients who may benefit from platinum-based therapy, because this transporter could be
involved in cellular uptake or the retention of chemotherapy. So, 64Cu-PET/CT could be
used to avoid ineffective platinum-based chemotherapy in the patients with non-64Cu-avid
lung cancer lesions.

5. Theragnostic Aspect
64CuCl2 is currently the most actively investigated radiopharmaceutical for both diag-

noses and therapy. It has recently been proposed as a promising agent for PCa theragnostics,
based on preclinical studies in cells and animal models [29]. Guerreiro et al., using a panel
of PC cell lines in comparison with a non-tumoral prostate cell line, performed cytogenetics
and radio-cytotoxicity studies to obtain information about cellular consequences to the
exposure of 64CuCl2. In this work, PCa cells were found to exhibit increased 64CuCl2
uptake, which could not be attributed to an over-expression of copper CTR1 with respect to
non-tumoral cells. DNA damage and genomic instability were also high in PCa cells from
patients and in tumoral cell lines, exhibiting deficient DNA-damage repair upon exposure
to 64CuCl2.
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Pinto C et al. evaluated the potential therapeutic effect in a mouse model of PCa [30].
64CuCl2 has significant detrimental effects on cancer cells, being able to reduce their growth
and impair the viability. Likewise, the potential theragnostic role of 64CuCl2 has been
evaluated in GBM by Ferrari et al. [31]. The authors demonstrated that 64CuCl2 exhibits
increased affinity for GBM cells than normal cells, thus supporting its potential role as
a novel promising diagnostic PET probe for cerebral tumor imaging. Furthermore, their
results on therapy suggest that this radiopharmaceutical has great potential as a therapeutic
agent for GBM, as clearly shown by the survival curves in experiments carried out with
single- and multiple-dose treatments. Catalogna G et al. evaluated the combined effects
of 64CuCl2 and SI113, inhibitor of a serine/threonine protein kinase, on human GBM cell
lines [32]. The authors demonstrate that the co-treatment with SI113 leads to synergistic
effects on cell death.

At the end of this overview, one more aspect needs to be considered in relation to 64Cu
ions as radiopharmaceuticals: is the copper toxic?

Some calculations show that, when used as a radiopharmaceutical, 64CuCl2 is not
harmful to the patient. The total copper in the human body is about 100 mg and the daily
dietary intake is about 1–2 mg. It has been reported that the cytotoxic effects of copper ions
appear only at concentration ≥ 7.42 mg/L [33,34]. Considering this concentration as the
threshold limit, cytotoxicity effects are not considered when using 64Cu for PET imaging,
because for a PET study, 185–370 MBq of 64Cu is usually administered, equivalent to less
than 100 µg of Cu2+ ions (being the specific activity of 64Cu 3.7 MBq/µg−1) [20]. In the case
of therapy, a dose of 3700 MBq can be administered, being equivalent to 1 mg of Cu2+ ions,
which is still below the toxicity threshold.

Righi S. et al. [22] demonstrated that the mean dose absorbed by the prostate cancer
lesions would be 0.22 Gy for an administered activity of 3700 MBq, suggesting that the
therapeutic effect of 64Cu may depend on high-linear-energy-transfer (LET) Auger electron
emission rather than on the energy released by the beta radiation. Although 64Cu may have
limited efficacy for large PCa lesion treatment, due to the low average absorbed radiation
dose, it may be effective for the eradication of residual disease or for micro-metastasis
due to the lethal effect of the Auger electrons emitted by the internalized 64Cu in the
cell. Furthermore, 64Cu represents a potential tool for the radionuclide therapy of other
increased metabolic copper tumors including HCC [35], glioblastoma multiforme [31] and
malignant melanoma [36].

6. Conclusions

In summary, recent advances in clinical trials provide solid evidence to support
the potential role of radioactive copper-64 chloride as a useful radiopharmaceutical for
cancer imaging by PET. Dosimetric studies in humans demonstrated the safety of 64CuCl2.
Recently, 64CuCl2 was successfully used for PET imaging of prostate cancer, bladder cancer,
glioblastoma multiforme, and non-small cell lung carcinoma.

The potential theragnostic role of 64CuCl2, due to the high LET electron emission, has
been reported and more clinical data are required to confirm the therapeutic efficacy of this
radionuclide.
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