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Abstract: Head and neck squamous cell carcinoma (HNSCC) has long been one of the most prevalent
cancers worldwide; even though treatments such as surgery, chemotherapy, radiotherapy and
immunotherapy have been proven to benefit the patients and prolong their survival time, the overall
five-year survival rate is still below 50%. Hence, the development of new therapies for better patient
management is an urgent need. External stimuli-responsive therapies are emerging therapies with
promising antitumor effects; therapies such as photodynamic (PDT) and photothermal therapies (PTT)
have been tested clinically in late-stage HNSCC patients and have achieved promising outcomes,
while the clinical translation of sonodynamic therapy (SDT), radiodynamic therapy (RDT), microwave
dynamic/thermodynamic therapy, and magnetothermal/magnetodynamic therapy (MDT/MTT)
still lag behind. In terms of preclinical studies, PDT and PTT are also the most extensively studied
therapies. The designing of nanoparticles and combinatorial therapies of PDT and PTT can be
referenced in designing other stimuli-responsive therapies in order to achieve better antitumor
effects as well as less toxicity. In this review, we consolidate the advancements and limitations of
various external stimuli-responsive therapies, as well as critically discuss the prospects of this type of
therapies in HNSCC treatments.

Keywords: stimuli-responsive; photodynamic; photothermal; sonodynamic; radiodynamic; microwave
dynamic; microwave thermodynamic; magnetothermal; magnetodynamic; nanotechnology

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), which accounts for approximately
90% of head and neck cancers, has long been one of the most prevalent cancers world-
wide [1]. Associated with high malignancy and poor prognosis, the HNSCC can affect
the oral cavity, nasal cavity, sinuses, pharynx and larynx [2]. Current mainstay treatments
for HNSCC include surgery, chemotherapy, radiotherapy and immunotherapy, which all
carry some disadvantages. For example, surgical excision can be a potential stimulator
that triggers the local invasion or distant metastasis of the tumor [3]; chemotherapies can
lead to hepatotoxicity, nephrotoxicity, gastrointestinal disturbance, bone marrow suppres-
sion or even carcinogenesis [4,5]; radiotherapy can result in dysphagia, xerostomia and
osteoradionecrosis of the jaw, which can negatively influence patients’ quality of life [6,7];
in terms of immunotherapy, though it looks promising and has a good synergistic effect
with chemotherapy, some patients still experienced hyperprogression while receiving the
anti-PD-1/PD-L1 treatment [8]. Despite receiving comprehensive treatments, about 65% of
the patients experience tumor recurrence or metastasis, while most of them are considered
incurable given palliative chemotherapies [2,9], and the overall five-year survival rate
of HNSCC is still unsatisfactory with a percentage of 40–50% [10]. Hence, novel treat-
ments with better tumor-controlling potency as well as safety are in urgent need, and
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thanks to the innovations of nanotechnology, we now possess many more weapons in our
‘antitumor toolkit’.

Nanotechnology provides us with various direct and indirect methods of treating cancer.
For example, a nanodelivery system can carry anticancer drugs directly to the cancer lesion
and reduce the blood drug concentration, thus minimizing the toxicity of anticancer drugs;
nanomaterials that can be excited by a stimulator (light, sound, radiation, etc.) can kill cancer
cells directly through producing reactive oxygen species (ROS) or energy (radiation and
heat) (Figure 1); some nanomaterials work as immunomodulators that trigger immune
reactions regionally or systematically and cause indirect anticancer effects [10–12].
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Figure 1. Demonstration of external stimuli-responsive therapies. External stimuli such as light,
radiation, microwave, alternative magnetic field (AMF) and ultrasound (US) induce the generation of
heat or reactive oxygen species (ROS), thus resulting in tumor death. Antigens are released upon
tumor death and captured by antigen-presenting cells, which further trigger cytotoxic immune cell
activation against metastatic tumors.

Several works have described the applications of nanotechnology in HNSCC, but
a review going through all types of potent stimuli-responsive nanotherapies is still in urgent
need [2,9–12]. Accordingly, this review summarizes and introduces mechanisms of various
stimuli-responsive nanotechnology-based therapies such as photodynamic therapy (PDT),
photothermal therapy (PTT), sonodynamic therapy (SDT), radiodynamic therapy (RDT),
microwave dynamic/thermodynamic therapy and magnetothermal/magnetodynamic
therapy (MDT/MTT), electrodynamic therapy (EDT) as well as their preclinical or clinical
development status. This review also introduces some novel nanotechnology-based thera-
pies that have not been studied in HNSCC in order to guide future research in this field.

2. Photodynamic Therapy (PDT)
2.1. Introduction to Photodynamic Therapy

PDT has been improved greatly since 1898, when Oscar Raab first established the basic
concept of photodynamic treatment [13]. PDT involves the systematic or local application
of a special photosensitizer, which is excited by illumination with visible light of an appro-
priate wavelength; the excited photosensitizer can generate reactive oxygen species (ROS),
thus damaging the adjacent biomolecules such as lipids, proteins or nucleic acids.
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2.2. Introduction to Sensitizers

Some photosensitizers such as Foscan have already been approved for palliative treat-
ment and have shown robust clinical benefits in HNSCC patients [14,15]. Photosensitizers
can be divided into two categories—porphyrin or non-porphyrin compounds; the first
clinically approved photosensitizers are hematoporphyrins (HpD), which are still being
widely used in clinical settings, but the skin toxicity of HpD is concerning physicians;
efforts to reduce the toxicity and to maximize the concentration in the tumor led to the
development of second-generation photosensitizers such as texafirins (Lutrin), phenyl-
porphyrins (m-THPP), pyropheophorbide (HPPH), aminolevulinic acid (5-ALA), chlorins
(mTHPC, talaporphin, Ce6), bacteriochlorins (Tookad, redaporphin) and porphyrazines
(Photosens) [16]. In order to further improve the selective enrichment of the photosensi-
tizers, researchers proposed the concept of the third-generation photosensitizer, which is
characterized by combining with a targeting vehicle for direct delivery to the tumor, thus
maximizing the antitumor effect while minimizing the systemic adverse effect.

2.3. Clinical Development of Photodynamic Therapy

Porphyrin sodium [17,18], mTHPC [15,19] and 5-ALA [20,21] are popular photosen-
sitizers that have been extensively studied both preclinically and clinically; those photo-
sensitizers all showed potent antitumor effects in HNSCC patients of various TNM stages.
Chlorin derivatives such as HPPH [22,23] and talaporphin [24] are relatively newer and
less studied in HNSCC, but they also have shown good clinical outcomes as well as low
incidence of phototoxicity [22,25]. So far, there has been only one clinical study investigat-
ing the use of talaporphin in HNSCC patients with different TNM stages; the outcome of
talaporphin treatment in this study was prominent, with a complete response of 75%, but
the result needs to be further examined and confirmed in large clinical trials due to the fact
that the sample size was too small in this study [24].

2.4. Preclinical Development of Photodynamic Therapy

The recent trend in preclinical photodynamic therapy development mainly lies in
two fields; one is by modifying the biomaterials or combining them with other materials in
order to improve their tumor affinity or to enhance the antitumor effect, and the other one
is to modify the tumor microenvironment and supply oxygen for ROS generation.

A recent study on phthalocyanine photosensitizer IR700DX showed that the conjuga-
tion between the photosensitizer and EGFR-targeting antibody cetuximab can significantly
improve the tumoral tissue accumulation of the photosensitizer [26]. The conjugated
IR700DX also showed significantly improved long-term tumor control in a mouse EGFR-
overexpressing human head/neck OSC-19-luc2-cGFP tumor model, which indicated that
the targeting drug conjugation can be an effective way of improving the specific delivery of
photosensitizers in the future PDT development for HNSCC. Efforts have also been made
in potentiating the PDT effect inside the tumor by creating a more favorable microenvi-
ronment for photosensitizers. For instance, Tao et al. encapsulated Ce6 together with the
hypoxia regulator resveratrol into a small-sized micelle with EGFR targeting ligand GE11;
the resveratrol inhibits cellular oxygen consumption, thus providing sufficient oxygen for
PDT [27]. Such a combination showed superior antitumor effects in an orthotopic oral
squamous cell carcinoma model and is inspiring for future nanoparticle designs. Another
interesting nanoparticle design in glioblastoma treatment, which offers new insight into
developing dark PDT (dPDT: PDT without external light stimulation) for HNSCC. Lu et al.
combined Ce6 with lactate oxidase (LOX), hemoglobin (Hb) and Bis 2,4,5-Trichlorophenyl-
6-Carbopentoxyphenyl Oxalate (CPPO). LOX converts the lactate, which is the tumor
metabolite, into pyruvic acid and H2O2, the H2O2 reacts with the CPPO, thus releasing
energy and exciting the Ce6, and the hemoglobin works as an oxygen donor for both
lactate catabolism and PDT. All four materials are assembled into nanoparticles made from
U251 glioma cells for specialized delivery to the tumor [28]. Such a synergistic system
demonstrated a strong therapeutic effect in animal models, the success of this design offers
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new insights into tumor metabolite utility, chemiexcited PDT and delivery particle design.
Moreover, perfluocarbon [29], MnO2 [30] and hemoglobin-based nanostructures [31] have
been explored in altering the hypoxic tumor microenvironment and all achieved ideal
effects to a certain extent in various types of cancer.

Nanotechnology-based drug delivery systems are a research hotspot in recent years;
they can carry and deliver anticancer drugs directly into tumors, thus enhancing the
antitumor effect. The most commonly used active targeting ligands include transferrin [32],
folic acid [33] and Arg-Gly-Asp [34], but none of them showed specific affinity towards
HNSCC [35]. Song et al. used a novel approach by combining Ce6 with polyethylene glycol
diamine (PEG) and integrated them into the shell of the nanoparticles that encapsulate
cisplatin and metformin. Laser stimulation leads to the deformity of the shell, thus releasing
the drugs in situ. The PDT and PTT triggered by lasers showed synergistic effects with the
chemotherapy; additionally, this combination therapy showed significantly lower systemic
toxicity than free cisplatin [35]. The same study design can be repeated using different
chemotherapy combinations or probably immunotherapy medications.

3. Photothermal Therapy (PTT)
3.1. Introduction to Photothermal Therapy

PTT was first used by Goldman in 1966 by ablating a melanoma with heat generated
by laser [36]. The PTT in modern days uses photothermal conversion agents (PTAs) to
generate heat under near-infrared (NIR) light irradiation to ablate tumor cells [36]. It was
reported that a temperature of 41 ◦C can cause vasodilation, thus increasing the blood
perfusion to the tumor as well as causing heat shock response of cells; temperatures above
46 ◦C can lead to irreversible cell death [37].

3.2. The Current Clinical Development of Photothermal Therapy

However, disappointingly, the clinical development status of PTT is considerably be-
hind that of PDT even though it has shown great potential in preclinical tumor models [36].
There is only one PTT clinical trial concerning head and neck cancer that did not demon-
strate preferable results; in it, among 11 enrolled patients, 3 of them died within 6 months,
and 6 of them did not complete the entire treatment (NCT00848042).

3.3. Introduction to Sensitizers

In the study of HNSCC, the most commonly used PTT agents were noble metals
such as Au [38], Ag [39], Pd [40] and Pt [41], and they were usually combined with certain
biomaterials such as polyethylene glycol (PEG) to increase their water solubility and to
reduce their immunogenicity in vivo [42]. Au nanoparticles are one of the most explored
and promising PTT agents among noble metals due to their outstanding photothermal
conversion [43]; the Au nanoparticles used in PTT have different morphologies including
nanorods, nanospheres, nanostars and nanoflowers [12]. Carbon-based nanomaterials
carry better biocompatibility than metal-based nanomaterials, but they have relatively
poorer NIR light absorption ability and water solubility. Morphologies of carbon-based
PTT agents are mainly graphene [44] or carbon nanotubes [45]. Other materials such as
metal compounds [46–48] and organic nanoparticles [49,50] have also been extensively
studied preclinically in HNSCC cell models and have shown promising efficacy.

3.4. Preclinical Development of Photothermal Therapy

Efforts have been made in improving the innate disadvantages of each type of PTT
agent. In noble metal nanomaterial agents, it is challenging to deliver them specifically
to the tumor tissue while ensuring efficient biodegradation and biosafety. Various tumor-
targeting coatings have been fabricated on nanomaterials to facilitate the accumulation
in tumor tissues and cells. Sun et al. coated gold nanorods with a cancer cell membrane
(GNR@Mem), which showed preferable homotypic targeting to cancer cells in vitro [51].
The in vivo study also showed a preferable accumulation of gold nanorods inside the
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tumor, which were mostly excreted via feces and urine three days after injection. Another
way of improving the noble metal nanoparticles is to conjugate them with targeting agents.
Melancon et al. conjugated gold nanoshells with an anti-EGFR monoclonal antibody C225
(cetuximab); C225-SPIO@Au NS showed strong selective accumulation in EGFR-positive
SCC cell lines both in vitro and in vivo, and the selective accumulation of PTT agents also
potentiated a therapeutic effect in subsequent experiments [52].

Concerning carbon-based nanomaterials, the photothermal conversion ability and
water dispersibility have long been concerning the researchers; an efficient method of
increasing the overall photothermal conversion ability is to conjugate or combine it with
other materials with photothermal ability. For example, Wang et al. used single-walled
carbon nanotubes to encapsulate hyaluronic acid-5β-cholanic acid nanoparticles-bound
indocyanine green (IHANPT); they exhibited superior synergistic photothermal effect and
showed good outcomes in SCC7 cell line animal models, tumors were mostly ablated and
no recurrence was observed in the IHANPT group. Such a combination also showed good
selective delivery due to the CD44-targeting behavior of hyaluronic acid-5β-cholanic acid
nanoparticles [45]. Graphene and its derivative have been attracting people’s attention in
biomedicine research due to its special surface properties, excellent photo-thermal conver-
sion efficiency and the potential for extra engineering. Conjugating graphene with other
materials with stronger photothermal conversion ability is the method of choice to achieve
the ideal photothermal effect in preclinical studies. Gao et al. seeded gold into graphene to
achieve a synergistic effect [44], while Shakerian Ardakani et al. further investigated the
combinational effect of PTT and radiodynamic therapy (RDT) by using Fe3O4@Au/reduced
graphene oxide nanostructures as the photo- and radiosensitizers [53]. Graphene-based
photosensitizers all showed good in-vivo antitumor effects as well as good biocompat-
ibility in healthy cells. The water dispersibility of carbon-based materials is currently
being addressed by chemists; some carbon materials with good water dispersibility have
already been developed and may have the potential of being used in future photothermal
conversion agent development [54].

Metal compounds have also attracted much attention due to their good biocompat-
ibility, high photothermal conversion effect, low cost, good photothermal stability and
low cytotoxicity. Iron, copper and molybdenum are the most-used metal substrates in
PTT agent development. Fe3O4 nanoparticles can induce hyperthermia under NIR laser
radiation due to their unique magnetism; efforts have been made in modifying the serum
dispersibility and improving the cellular uptake, thus minimizing the cytotoxicity [46].
Copper sulfide (Cu-S) nanomaterials are one of the most promising copper-base agents with
strong photothermal conversion, low cytotoxicity and low cost [55]. The main ideas of mod-
ifying copper sulfide agents are to either conjugate them to target nanomaterials in order to
facilitate specific delivery [56] or to combine them with certain materials and study the com-
binational therapy [57]. Molybdenum (Mo) is an emerging metal that carries great potential
in PTT agent development. Qian et al. found that MoP2 nanorods can achieve an ideal
photothermal effect in vivo and can enhance chemodynamic therapy [58]. Chen et al. syn-
thesized chiral molybdenum (Cys-MoO3-x) nanoparticles, which was proven to have low
cytotoxicity and showed a good PTT effect in OSCC treatment [48]. Despite the excellent
photothermal conversion ability and biocompatibility, the insolubility is limiting the use of
molybdenum compounds, which requires further research; moreover, targeted delivery of
molybdenum-based PTT agents should also be further explored in future research [59].

In terms of organic nanoparticles, their advantages are excellent biocompatibility
and biodegradability, which have overcome one of the biggest obstacles that is keeping
PTT from clinical use. Though this seems promising, the rapid degradation is limiting
their photothermal conversion ability, thus undermining their therapeutic effect. Thus, the
majority of studies on organic PTAs use combinational therapies to achieve better treatment
effects in HNSCC. NIR dyes are the most extensively studied organic PTAs. Dyes such as
indocyanine green possesses both photodynamic and photothermal effects, which exhibited
synergistic antitumor effects in experiments [49]. NIR dyes also showed good synergistic
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effects with doxorubicin, cisplatin or docetaxel chemotherapy [12,60–63]. Another type of
organic PTA is conductive polymers such as polypurrole and hydroxyapatite, which also
carry preferable photothermal conversion efficiency and have been proven to possess good
synergistic effects with doxorubicin chemotherapy [64–66].

There is another disadvantage limiting the efficacy of PTT—the physical limitation of
the light penetration depth. The traditional NIR used by PTT usually has a skin penetration
of less than 1 cm, leaving the deep-tissue tumor unaffected. Thus, NIR-II laser-responsive
PTAs need to be paid more attention to in order to achieve better therapeutic effects in
deep-situated tumors [67].

So far, there have not been many published clinical studies on PTT due to the long-
term biological behavior of metal-based nanomaterials despite their outstanding antitumor
efficacy. The difficulty in biodegradation will lead to accumulation in organs and cause
potential toxicity. Thus, further investigation should be conducted concerning biodistri-
bution, pharmacokinetics and toxicity as well as biodegradation in order to facilitate the
future clinical use of PTT.

4. Sonodynamic Therapy (SDT)
4.1. Introduction to Sonodynamic Therapy

SDT was first derived from PDT by Yumita et al. in 1989, who found that several
hematoporphyrin derivatives can also be activated by ultrasound, thus causing cell dam-
age [68]. The general mechanism of SDT is that when excited by low-intensity ultrasound,
the sonosensitizer generates ROS from the molecular oxygen, thus initiating cell death;
other than that, SDT was also indicated to have an inhibitory effect on cancer growth with
an unknown mechanism [69,70].

4.2. Introduction to Sensitizers

The categories of sonosensitizers include porphyrin-based, xanthene-based, non-
steroidal anti-inflammatory drug-based and other sonosensitizers. Among those, the
porphyrin-based sonosensitizers (HMME [71], PpIX [72], Ce6 [73]) are the most extensively
studied agents due to their good biocompatibility; they also have a good PDT effect, which
can work synergistically with SDT in antitumor therapy. Xanthene-based sonosensitizers
(Erythrosin B, rose bengal) are featured with very high sonodynamic efficiency under
ultrasound, but some disadvantages that are concerning the researchers are their low accu-
mulation in tumor tissues, rapid sequestration in the liver and subsequent clearance [74].
Non-steroidal anti-inflammatory drugs such as tenoxicam [75] and piroxicam [76] can
have a strong sonodynamic effect under ultrasound stimulation and exhibited preferable
antitumor effects in preclinical studies. Other than the agents mentioned above, there are
also some less-studied sonosensitizer candidates such as some traditional photosensitiz-
ers (curcumin [77], indocyanine green [78], hypocrellin B [79] and 5-ALA [80]) or some
metal-based nanoparticles such as TiO2 nanoparticles [81] and SiO2 nanoparticles [82].

4.3. The Current Clinical Development of Sonodynamic Therapy

So far, there have not been any clinical studies on SDT in HNSCC patients yet, and
only two human subject studies using SDT were identified in an extensive literature
search. Wang et al. used the combinational therapy of SDT and PDT (Sonoflora 1 as the
agent) for metastatic breast carcinoma treatment in three patients and all three patients
showed partial or complete responses [83]. Kenyon et al. used Sonnelux 1 SonneMed,
LLC, Winchester, MA, USA, as the sonosensitizer and photosensitizer to treat 115 cancer
patients with advanced metastatic states, and the median survival time was extended
for most of the patients according to the report, which is very encouraging [84]. Clinical
studies of SDT in HNSCC patients are encouraged since there are some sonodynamic
agents such as 5-ALA [20,21] that have already been extensively tested in human subjects
and have shown good biocompatibility and biosafety; combinational therapy of SDT and
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PDT can be conducted in HNSCC patients with deep tissue involvement that is limiting
the efficacy of phototherapy alone.

4.4. Preclinical Development of Sonodynamic Therapy

Protoporphyrin IX is the most extensively investigated sonosensitizer in HNSCC. Lv
et al. discovered an ideal antitumor effect of PpIX-based SDT in SAS cell lines both in vitro
and in vivo; they also concluded that the PpIX-based SDT has the potential of inducing
G2/M phase arrest as well as apoptosis of SAS cells [85]. 5-ALA-based sonosensitizer also
showed great potential in inducing apoptosis in SAS cell lines according to some recent pre-
clinical studies [86,87]. A study on HMME-based SDT showed that the therapy decreased
the tumor cell survival rate by 27% and the apoptotic cells were significantly increased
in the SDT treatment group [88]. TiO2-based sonosensitizer activated by high-intensity
focused ultrasound (HIFU) also demonstrated a preferable effect in HSC-2 cell line models.
Some more recent studies focused on developing new SDT agents or synthesizing new
nanoparticles that can enhance the SDT effect. Pourhajibagher et al. found that nano
emodin transfersome (NET) has the potential of generating ROS as well as inducing apopto-
sis in HNSCC cell lines [89]. Sun et al. combined sulfide dioxide (SO2) and 5-ALA together
and then co-assembled them with methoxyl poly(ethylene glycol)-b-poly(l-lysine) (mPEG-
b-PLL) in order to consume the overproduced glutathione in the tumor microenvironment,
thus enhancing ROS generation; such an SDT therapy showed preferable antitumor effects
in both melanoma and squamous cell carcinoma in mouse models [90]. The use of son-
odynamic therapy in HNSCC is relatively less-studied, unlike that in photodynamic or
photothermal therapies; future studies can pay more attention to combinational treatments
such as SDT + PTT [56], SDT + PDT [91] and SDT + chemotherapy [92]. Additionally, novel
nanoparticle designs from PDT and PTT research can be referenced in developing more
potent SDT agents in order to achieve better tumor affinity or a more favorable tumor
microenvironment, thus enhancing SDT efficacy [93,94].

5. Radiodynamic Therapy (RDT)
5.1. Introduction to Radiodynamic Therapy

RDT, also known as X-ray photodynamic therapy, was first introduced in the mid-
1950s [95]. RDT is based on X-ray-induced excitation of special X-ray-sensitive photosen-
sitizers or UV-vis-emitting radioluminophores/quantum dots/semiconductors coupled
with photosensitizers [95]. The antitumor mechanism of RDT is similar to that of PDT,
as it also generates ROS to damage the cancer cells, but RDT is superior to PDT in cer-
tain types of tumors that involve deep tissues, since the X-rays can efficiently penetrate
and reach the deep-situated tumor tissue. X-ray photosensitizers can be roughly classi-
fied into three major categories—rare-earth element-based sensitizers (Tb [96], Gd [96],
Ce [97], La [98], Eu [99]), transition metal-based sensitizers (Zn [100]) and other metal-based
sensitizers (Au [101], Ti [102], Hf [103]).

5.2. Introduction to Sensitizers

So far, there is no clinical application or study on radiodynamic therapy in HNSCC;
in addition, preclinical study on RDT application in HNSCC cell lines is still lacking.
Nanoparticles from previous studies on other types of cancer can be referenced to develop
RDT designs for HNSCC treatment. The most basic design of the nanoparticles includes
scintillating particles combined with photosensitizers; for example, Zou et al. synthesized
the LaF3:Ce(3+)/DMSO nanoparticle and combined it with PpIX and achieved preferable
antitumor effects in prostate cancer models [104]. Novel radiosensitizers can be designed
by attempting either different combinations or utilizing other metals with X-ray absorption
ability. For example, a very recent study carried out by Ni et al. proposed a bismuth-based
metal-organic framework as a new radiosensitizer that carries great antitumor potential
in pancreatic and prostate cancer models and showed a preferable synergistic effect with
immunotherapy [105].
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5.3. Preclinical Development of Sonodynamic Therapy

To improve the accumulation of the radiosensitizers in the tumor tissue, the nanoparti-
cles can be conjugated to a certain targeting moiety to facilitate specific delivery [106]. Some
novel nanocarrier designs in PDT studies can also be referenced to synthesize nanoparticles
with preferable tumoral accumulation, thus enhancing the antitumor effect [27]. Other
than the specific delivery, the modification of the hypoxic tumor microenvironment can
also effectively enhance the antitumor effect of radiosensitizers since they also require
oxygen molecules to generate ROS. By combining Hemoglobin [31] or H2O2 catalysts such
as MnO2 [30] into the nanoparticle, the ROS generation in the tumor region is likely to be
increased, thus enhancing the antitumor effect.

6. Microwave Dynamic and Microwave Thermodynamic Therapy
6.1. Introduction to Microwave Therapy

Microwaves have long been utilized in clinical settings for tumor ablation, which is
known as microwave thermal therapy. The mechanism of its antitumor effect is similar to
that of photothermal therapy; while a temperature of 41 ◦C can cause vasodilation, thus
increasing the blood perfusion to the tumor as well as causing heat shock response of cells,
temperatures above 46 ◦C can lead to irreversible cell death [37]. Various sensitizers have
been developed to enhance the thermogenesis of microwave treatment [107,108], and en-
hanced microwave thermal therapy was subsequently named ‘microwave thermodynamic
therapy’ [109]. Some microwave heating sensitizers such as ionic liquid have the ability to
generate ROS under stimulation, which is known as ‘microwave dynamic therapy’ [110].

After an extensive literature search, we failed to find any studies on HNSCC both
clinically and preclinically. Nanoparticle designs for other types of cancer can be referenced
and adapted for HNSCC treatment development. Here, we introduce some representative
nanoparticle designs that showed great potential in other cell lines.

6.2. Introduction to Sensitizers and the Preclinical Development of Microwave-Based Therapies

Wu et al. synthesized the zeolitic imidazolate Frameworks-8 (ZIF-8) and coated it
with bovine serum protein, and the BSA@ZIF-8 exhibited favorable microwave thermal
conversion and demonstrated a preferable antitumor effect in H22 xenograft models [107].
Chen et al. encapsulated microwave-sensitive ionic liquid with zirconia (ZrO2) nanopar-
ticles that were co-decorated with mitochondrial-targeting molecules of triphenylphos-
phonium (TPP) and tumor cell-targeting peptide iRGD; the nanoparticle complex showed
an ideal targeting effect and sufficient accumulation in tumor tissue, and thus achieved
preferable antitumor effects in an H22 tumor model [108]. A very recent study carried
out by Zhu et al. used a brand-new nanoparticle design; they synthesized a Ca2+-surplus
alginate hydrogel, which demonstrated preferable microwave-thermal conversion and the
immunostimulatory effect. Such a hydrogel also carries favorable biocompatibility, which
gives it great potential in future clinical translation [111]. This study also suggests to us
that in situ-formed metallo-alginate hydrogel would have great potential as a microwave
sensitizer and immunostimulatory agent in treating various cancers including HNSCC;
metallo-alginate hydrogel can be further designed or modified to better potentiate the
microwave-thermal conversion as well as improving the focal accumulation.

7. Magnetothermal and Magnetodynamic Therapy
7.1. Introduction to Magnetic Therapy

Magnetothermal therapy is a hyperthermia therapy mediated by an alternating mag-
netic field (AMF) and magnetic nanoparticles. The alternating current magnetic fields
activate the nanoparticles and produce heat via magnetic hysteresis losses or Néel relax-
ation [112]. There is another type of magnetic therapy named ‘magnetothermaodynamic
therapy’ that generates heat and ROS, thus producing a combinatorial antitumor effect [113].
Iron oxide and ferrite are the most commonly used substrates in magnetic nanoparticle
synthesis, and colossal magneto-resistive materials such as manganese-based perovskite
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oxides are relatively less used but they also have good magnetothermal conversion ability
and carry great potential in future biomedical applications [114].

7.2. Introduction to Sensitizers and Preclinical Development of Magnetic Therapies

Though hyperthermia treatment has long been used for HNSCC treatment [115], mag-
netothermal or magnetodynamic therapy have not been applied clinically yet, and several
preclinical researches on HNSCC all showed good responses. Su et al. used superparam-
agnetic iron oxide nanoparticles as the magnetothermal agents and modified them with
anti-CD44 antibodies for targeted delivery (CD44-SPIONPs). The CD44-SPIONPs exhibited
good biocompatibility and good inhibitory effect in the cancer stem cells of Cal-27 cells
(human oral squamous cell carcinoma) [116]. Legge et al. used a similar design, in which
the iron oxide nanoparticles were encapsulated into a silica coating in order to improve the
biocompatibility, and the complex was subsequently conjugated to an antibody targeting
αvβ6 integrin to ensure specific delivery. The magnetothermal therapy showed good
cell killing in cultured VB6 cell lines [117]. Tsai et al. also utilized targeting antibodies
to improve the targeted delivery of the magnetothermal agents, and the MMP-1-FeAu
nanoparticles conjugate triggered 89% HSC-3 cellular death [118].

In future studies of magnetic therapies for HNSCC, colossal magneto-resistive ma-
terials can probably be attempted due to their high magnetic transition temperature, TC
(≥360 K) [119]. Magnetodynamic therapy can also be tested for its efficacy in HNSCC
since no relevant studies were found in HNSCC treatment [113,120]. Efforts in improving
biocompatibility and targeted delivery as well as reducing cytotoxicity should be made in
future studies.

8. Electrodynamic Therapy (EDT)
8.1. Introduction to Electrodynamic Therapy and Sensitizer

Electrodynamic therapy has a similar mechanism as other dynamic therapies; the main
mechanism is the generation of reactive oxygen species (ROS) using platinum nanoparticles
(PtNP) under the stimulation of an alternating electric field. The ROS subsequently triggers
cell apoptosis and immune reactions [121]. Unlike PDT or SDT, the mechanism of ROS
production is completely different in EDT; it does not rely on O2 or H2O2 in the tumor
microenvironment to generate cytotoxic hydroxyl radicals. Instead, it decomposes water
and generates ROS with the assistance of chlorine ions [122]. Moreover, owing to the
physical property of electricity, the EDT is able to ablate tumors with relatively larger
dimensions, which makes it a therapy with great potential in treating various solid tumors.

8.2. Preclinical Development of Electrodynamic Therapy

So far, there has not been much research on EDT, and its clinical development is also
preliminary. In terms of HNSCC, we did not find any preclinical or clinical studies on
it even after an extensive literature search. Within all of the available research papers,
BALB/c mice bearing 4T1 tumors are the most frequently studied animal model. Gu et al.
tested the antitumor efficacy of PtNP in 4T1 tumor cells and achieved preferable antitumor
effects both in vitro and in vivo [121], which is regarded as pioneering research in EDT. The
following studies all focused on combining certain substances with PtNP in order to achieve
better antitumor effects than plain PtNP. Lu et al. incorporated glucose-oxidase (GOx)
into porous platinum nanospheres; GOx can catalyze the oxidation of glucose to generate
H2O2 in the tumor microenvironment, and the H2O2 is subsequently decomposed by the
platinum nanospheres and generates O2 to facilitate the glucose consumption by GOx.
The combination of GOx-mediated tumor starvation and EDT exhibited good antitumor
effects both in vitro and in vivo [122]. Similarly, Chen et al. combined the glutamine
antagonist 6-diazo-5-oxo-l-norleucine (DON) with PtNP in order to eliminate the anti-ROS
glutathione [123]. Another study by Chen et al. incorporated Fe3O4 into PtNP to facilitate
ROS generation as well as GSH depletion [124].
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So far, most of the studies on EDT have focused on modifying the tumor microen-
vironment; future studies can lay more emphasis on targeted delivery or combinatorial
therapies. In addition, clinical translation is encouraged, since Pt has been indicated to
possess lower cytotoxicity and stronger stability in the physiological environment [122].

9. Conclusions and Future Perspectives

The recent development of various stimuli-responsive treatments and nanomateri-
als has attracted many researchers with different academic backgrounds. Some clinical
studies have already indicated the potential and clinical efficacy of certain types of stimuli-
responsive therapies such as photodynamic and photothermal therapies in head and neck
squamous cell carcinoma treatment, while a large number of preclinical studies have
provided us with various novel nanoparticle designs with better biocompatibility, better
targeting effects, lower cytotoxicity and promising future clinical applications.

Photodynamic treatment has been used clinically for quite a long time and has been ex-
tensively studied both clinically and preclinically. Hence, the research progress of photody-
namic treatment is far ahead of the remaining types of stimuli-responsive treatments. Thus,
the recent progress in photodynamic nanoparticle designs such as tumor microenvironment
modification, targeted delivery, more favorable biodegradability, boosted photodynamic
effects and external stimuli-free design can all be referenced and applied in other less
extensively studied therapies such as sonodynamic treatment, radiodynamic treatment,
magnetodynamic treatment, etc.

Various preclinical studies especially on photodynamic and photothermal therapy
have indicated that the stimuli-responsive therapies have shown a very good synergistic
effect with chemotherapy, immunotherapy, and other types of stimuli-responsive ther-
apy. Thus, combinatorial treatment should be paid more attention especially in those
less extensively studied therapies such as sonodynamic, radiodynamic, magnetodynamic,
electrodynamic and microwave dynamic therapy. Additionally, some agents with the char-
acteristic of being excited by more than one type of external stimuli are natural candidates
for combinatorial treatment.

More translational studies are also required since the clinical studies lag far behind
the preclinical studies; the synthesized nanoparticles are getting more complex and more
multifunctional, making their preclinical results better. Though the newer generation of
stimuli-responsive nanoparticles is more potent in preclinical research, manufacturing
complexities are hindering its clinical translation. In order to facilitate future clinical
translation, efficacy, ease of use, inexpensiveness and ease of synthesis should be paid
more attention to. More prompt clinical trials are encouraged when the safety of the
agent can be ensured and the therapeutic effect is proven to be superior to the current
treatment regimen. Considerable room exists for the preclinical and clinical expansion of
various stimuli-responsive treatments with nanotechnology innovations and therapeutic
strategy improvements.
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