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Abstract: Programmed death ligand-1 (PD-L1) is an immune checkpoint molecule widely expressed
on the surface of cancer cells and is an attractive immunotherapeutic target for numerous cancer
cell types. However, patients with endometrial cancer derive little clinical benefit from immune
checkpoint blockade therapy because of their poor response rate. Despite the increasingly important
function of PD-L1 in tumor immunology, the mechanism of PD-L1 localization on endometrial cancer
cell surfaces is largely unknown. We demonstrated the contribution of the ezrin, radixin, and moesin
(ERM) family, which consists of scaffold proteins that control the cell surface localization of several
transmembrane proteins to the localization of PD-L1 on the cell surface of HEC-151, a human uterine
endometrial cancer cell line. Confocal immunofluorescence microscopy and immunoprecipitation
analysis revealed the colocalization of all the ERM with PD-L1 on the cell surface, as well as their
protein–protein interactions. The RNA-interference-mediated knockdown of ezrin, but not radixin
and moesin, significantly reduced the cell surface expression of PD-L1, as measured by flow cy-
tometry, with little impact on the PD-L1 mRNA expression. In conclusion, among the three ERM
proteins present in HEC-151 cells, ezrin may execute the scaffold function for PD-L1 and may be
mainly responsible for the cell surface localization of PD-L1, presumably via the post-translational
modification process.

Keywords: programmed death ligand-1; ezrin; radixin; moesin; endometrioid adenocarcinoma;
immune checkpoint inhibitor; cancer immunotherapy

1. Introduction

Endometrial cancer is the most common cancer in the female genitalia, with 417,306 new
cases worldwide in 2020 [1]. Endometrioid adenocarcinomas represent 80% of endometrial
carcinomas [2]. The number of cases has been increasing rapidly in recent years and is
expected to double by 2040 [3]. Surgery, radiation therapy, and chemotherapy are the
first-line treatment modalities available for endometrioid adenocarcinomas. However,
treatment options are limited for recurrent and metastatic cases, with an extremely low
5-year survival rate in women with advanced or recurrent disease [4].

Recently, immune checkpoint blockade (ICB) therapy has been increasingly recognized
as an innovative treatment for cancer [5–7]. Programmed death ligand-1 (PD-L1), an
immune checkpoint molecule, is distributed in numerous cells, such as dendritic and
epidermal cells, and interacts with programmed death-1 (PD-1) expressed on T cells to
inactivate T cells and suppress excessive immune responses [8,9]. PD-L1 is also widely
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present in cancer cells and is involved in the evasion of immunity by cancer cells [8,10].
Immune checkpoint inhibitors targeting immune checkpoint molecules such as PD-L1
promote T cell activation and enhance cancer immunity by inhibiting the interaction
between immune checkpoint molecules [11]. The efficacy of ICB-based therapies has been
widely reported in numerous cancer cell types [7,11]. Notably, pembrolizumab, an anti-
PD-1 antibody (Ab), has recently provided survival benefits in patients with endometrial
cancer, leading to its approval as an ICB therapy [12,13]. However, the response rate is
insufficient [12,13]; thus, further exploration of therapeutic targets is warranted.

Accumulating evidence indicates a complex regulatory mechanism of PD-L1 expres-
sion involving diverse cellular events [14–16]. Since PD-L1 is a plasma membrane protein,
several post-translational modification factors for PD-L1 have received much attention
in recent years [14–18]. The family members of the ezrin, radixin, and moesin (ERM)
protein execute scaffold functions for the cell surface localization of several transmembrane
proteins, such as some drug transporters involved in multidrug resistance, epidermal
growth factor receptor (EGFR) 2, and cluster of differentiation (CD) 20 [19–25]. Intriguingly,
we recently reported that in a small number of human cancer cell types, the ERM family
proteins modulate the cell surface localization of PD-L1 in a different way by serving as
scaffold proteins. However, it is unclear whether the ERM family executes the scaffold
function to stabilize PD-L1 in the cell surfaces of uterine endometrial cancer cells.

Here, we demonstrated the contribution of ERM family proteins to the cell surface
localization of PD-L1 in HEC-151 cells, a human uterine endometrial adenocarcinoma
cell line.

2. Materials and Methods
2.1. Cell Culture

The human uterine endometrial cancer cell line HEC-151, established by
Kuramoto H. et al. [26], was obtained from the Japanese Collection of Research Biore-
sources Cell Bank (JCRB1122; Osaka, Japan). HEC-151 cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM), which contained 1500 mg/L glucose (FUJIFILM Wako
Pure Chemical, Osaka, Japan) supplemented with 10% heat-inactivated fetal bovine serum
(FBS) (BioWest, Nuaillé, France). During cultivation, cells were maintained at 37 ◦C in a
humidified atmosphere with 5% CO2 and cultured up to 70–80% of flasks.

2.2. siRNA Treatment

HEC-151 cells were seeded at a density of 2.0 × 104 cells/well in 24-well cell cul-
ture plates and incubated overnight to allow cell attachment. Small interfering RNAs
(siRNAs) targeting each human gene and nontargeting control siRNA were introduced
into cells at a concentration of 5 nM using the Lipofectamine RNAiMAX at doses of
0.10 µL/1.0 × 104 cells. After siRNA and the transfection reagent were added, the cells
were cultured continuously for 4 days without replacing the medium. All the reagents
used for siRNA treatment were purchased from Thermo Fisher Scientific (Tokyo, Japan).

2.3. Real-Time Reverse Transcription–Polymerase Chain Reaction

Total RNA was extracted from HEC-151 cells using an ISOSPIN Cell and Tissue RNA
kit (Nippon Gene, Tokyo, Japan) according to the manufacturer’s protocol. The total
RNA concentration and purity were evaluated using a NanoDrop Lite spectrophotometer
(Thermo Fisher Scientific). Subsequently, real-time reverse transcription (RT)–polymerase
chain reaction (PCR), followed by the calculation for relative quantification of each tran-
script, was performed as described previously [27,28]. The sequences of gene-specific
PCR primers are listed in Table S1. All the reagents and equipment used for the real-time
RT-PCR reaction were obtained from TaKaRa Bio (Shiga, Japan) and Bio-Rad Laboratories
(Hercules, CA, USA), respectively.
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2.4. Confocal Laser Scanning Microscopy Analysis

Confocal laser scanning microscopy (CLSM) analysis was performed as described
previously, with some modifications [27,29]. Single and double immunofluorescence
staining were performed to determine the intracellular localization of ezrin, radixin, moesin,
and PD-L1, or the colocalization of PD-L1 with ezrin, radixin, and moesin, respectively.

2.4.1. Single Immunofluorescence Staining

HEC-151 cells seeded at 2.0 × 105 cells on a polylysine-coated, 35 mm glass-bottom
dish (Matsunami Glass, Osaka, Japan) were incubated overnight to allow their attach-
ment. The cells were fixed with 4% paraformaldehyde and then permeabilized with 0.5%
Triton-X100, subsequently incubated in a blocking buffer containing Dulbecco’s phosphate-
buffered saline (D-PBS), which was supplemented with 0.3 M glycine, 10% normal goat
serum, 1% bovine serum albumin, and 0.1% Tween-20. After that, the cells were incu-
bated overnight at 4 ◦C with the respective primary Abs and then incubated with Alexa
Fluor 488-conjugated secondary Ab for ezrin, radixin, and moesin. Subsequently, the
plasma membrane was counterstained with a tetramethylrhodamine (TRITC)-conjugated
phalloidin, which is a high-affinity F-actin probe. The preserved cells were observed and
photographed at 0.5–1.5 µm intervals on the z-axis at an original magnification of ×20
with a Nikon Al confocal laser microscope system and NIS-Elements Ar Analysis software
(Nikon Instrument, Tokyo, Japan). All the Abs used in this study are listed in Table S2.

2.4.2. Double Immunofluorescence Staining

Cell fixation, permeation, and blocking before the Ab reaction were conducted in
the same way as described above. Then, the cells were incubated overnight at 4 ◦C
with the respective primary Abs against each ERM and then incubated with Alexa Fluor
594-conjugated secondary Ab. Thereafter, the cells were incubated overnight at 4 ◦C with
an Alexa Fluor 488-conjugated anti-PD-L1 Ab. The subsequent procedure was conducted
as described in the section on single immunofluorescence staining.

2.5. Western Blotting

HEC-151 cells were lysed in radioimmunoprecipitation assay (RIPA) buffer containing
a protease inhibitor cocktail on ice. Lysates containing equal amounts of proteins were
heated at 97 ◦C for 5 min in 2× sample buffer consisting of 0.125 M Tris-HCl, 4% sodium
dodecyl sulfate (SDS), 20% glycerin, 0.01% bromophenol blue, and 10% 2-mercaptoethanol.
Subsequently, the proteins were separated by SDS-polyacrylamide gel electrophoresis
(PAGE) and transferred to a nitrocellulose membrane. The membrane was blocked with 5%
skim milk in PBS-T and then probed overnight with the respective primary Abs at 4 ◦C.
The membranes were incubated with the respective HRP-conjugated secondary Abs and
visualized with an enhanced chemiluminescence system on a LuminoGraphII EM (ATTO,
Tokyo, Japan). All the original source images for immunoblots are given in Figure S1.

2.6. Immunoprecipitation

Immunoprecipitation assays were conducted as previously described [27–30], with
some modifications. Briefly, 500 µL of whole-cell lysates collected in RIPA buffer containing
a protease inhibitor cocktail was filtered through 50 µL of protein A beads (nProtein A
Sepharose 4 Fast Flow; Cytiva, Tokyo, Japan) for 1 h at 4 ◦C on a rotating wheel to eliminate
non-specific interactions. The pre-cleaned lysates were incubated on a rotating wheel at
4 ◦C overnight with an anti-PD-L1 Ab or control IgG Ab (1:30) and mixed with 50 µL of
protein A beads on a rotating wheel at 4 ◦C for 3 h. After incubation, protein A beads were
collected and rinsed three times with RIPA buffer, followed by heating at 97 ◦C for 5 min in
2× sample buffer (Nacalai Tesque) before immunoblotting.
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2.7. Flow Cytometric Assay

Flow cytometry analysis was performed as previously described [27–30], with some
modifications. Single-cell suspensions were incubated with an allophycocyanin (APC)-
conjugated anti-PD-L1 Ab (4.0 µg/tube) in a labeling buffer consisting of D-PBS, 5% normal
horse serum, and 1% sodium azide at 4 ◦C for 1 h. Thereafter, the mean fluorescence
intensity of APC-PD-L1 on the HEC-151 cell surfaces was analyzed using a Cell Analyzer
EC800 and EC800 Analysis software (Sony Imaging Products and Solutions, Tokyo, Japan).

2.8. Statistical Analysis

Data are expressed as mean ± standard error of the mean (SEM). Statistical analysis
was conducted using Prism version 3 (GraphPad Software, La Jolla, CA, USA). Statistical
significance was assessed using one-way analysis of variance (ANOVA), followed by multi-
ple comparisons using Dunnett’s test. Differences were considered statistically significant
at p < 0.05.

3. Results
3.1. Expression Profiles of PD-L1 and Each ERM at mRNA and Protein Levels in HEC-151 Cells

We thoroughly evaluated the expression patterns of ERM and PD-L1 at mRNA levels
in numerous human endometrial cancer cell lines by utilizing the database of the Cancer
Dependency Map (DepMap) portal [31–33]. The relative expression level of PD-L1 mRNA
in HEC-151 cells was higher than those in the other cells. Furthermore, HEC-151 cells have
abundant levels of ezrin, radixin, and moesin (Figure 1a). As shown in the amplification
curve obtained using real-time RT-PCR, ERM and PD-L1 were expressed at mRNA levels
in sufficient amounts (Figure 1b). In addition, Western blotting analysis indicated the
existence of ERM proteins and PD-L1 at the protein level (Figure 1c). These results implied
sufficient mRNA and protein expressions of ERM proteins and PD-L1 in HEC-151 cells.

3.2. Plasma Membrane Localization of PD-L1 and ERM in HEC-151 Cells

Intracellular localization of ERM and PD-L1 in HEC-151 cells was confirmed by im-
munofluorescence confocal laser scanning microscopy. In HEC-151 cells, all three ERM and
PD-L1 were primarily detected in the cell surface region labeled with F-actin (Figure 2a–d).
Furthermore, the results of immunofluorescence double staining indicated that the fluores-
cence signals of all three ERM were highly overlapped with those of PD-L1 (Figure 3a–c).
The results of confocal laser scanning microscopy indicated that ERM and PD-L1 were
colocalized on the surfaces of HEC-151 cells. This is the first report to demonstrate the intra-
cellular colocalization of PD-L1 with ERM in human endometrioid adenocarcinoma cells.

3.3. Protein–Protein Interaction between PD-L1 and ERM in HEC-151 Cells

We analyzed the protein–protein interaction between PD-L1 and ERM in HEC-151 cells.
The expression of PD-L1 and all three ERM was observed in the immune precipitates of
HEC-151 cells that were pulled down using an Ab against PD-L1 (Figure 4). In contrast, they
were not detected in samples that were pulled down using a control IgG Ab. The results of
the immunoprecipitation assay demonstrated for the first time that PD-L1 endogenously
interacts with all three ERM in HEC-151 cells.

3.4. Effect of siRNAs against ERM on the Expression Levels of PD-L1 in HEC-151 Cells

We checked the effects of ERM siRNA on the expression of PD-L1 at the mRNA level.
siRNAs against ezrin, radixin, and moesin strongly decreased each target mRNA expression
level (Figure S2). Treatment with moesin siRNA significantly upregulated PD-L1 mRNA
expression. However, no alterations in the mRNA expression of PD-L1 were observed
in the cells treated with ezrin and radixin siRNAs, even though siRNAs against PD-L1
strongly decreased the PD-L1 mRNA expression (Figure 5a). Finally, we examined the
effects of ERM knockdown on PD-L1 expression in the cell surface using flow cytometry.
The results showed that the cell surface expression of PD-L1 was significantly reduced by
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the gene silencing of ezrin but not by that of radixin and moesin (Figure 5b,c). Collectively,
ezrin may execute a scaffold function to stabilize PD-L1 on the surfaces of HEC-151 cells
with little impact on the transcriptional process of PD-L1.

1 
 

 

 

 
Figure 1 
  

Figure 1. Expression profiles of ezrin, radixin, moesin (ERM), and programmed death ligand-1
(PD -L1) at mRNA and protein levels in HEC-151 cells. (a) Violin plots showing the median gene
expression (log2 (TPM + 1)) of ERM and PD-L1 in numerous human endometrial cancer cells
obtained from the Cancer Dependency Map (DepMap) portal data explorer, DepMap 22Q1 Public.
(b) Amplification curves for each target gene in HEC-151 cells, as measured by real-time reverse
transcription–polymerase chain reaction. (c) Immunoblot images of each protein in HEC-151 cells.
Upper panels; ezrin, radixin, moesin, and PD-L1, lower panels; corresponding glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) shown in duplicate. Molecular weights; kDa.



J. Clin. Med. 2022, 11, 2226 6 of 13J. Clin. Med. 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Plasma membrane localization of ezrin, radixin, moesin (ERM), and programmed death 
ligand-1 (PD-L1) in HEC-151 cells. Three-dimensional reconstructions of optically sectioned HEC-

Figure 2. Plasma membrane localization of ezrin, radixin, moesin (ERM), and programmed death
ligand-1 (PD-L1) in HEC-151 cells. Three-dimensional reconstructions of optically sectioned HEC-
151 cells as analyzed by confocal laser scanning microscopy showed the intracellular localization
of (a) ezrin, (b) radixin, (c) moesin, and (d) PD-L1 (Alexa Fluor 488) counterstained with actin
(tetramethylrhodamine; TRITC), a typical plasma membrane marker. Scale bars: 50 µm.
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laser scanning microscopy. Scale bars: 50 µm. 
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Figure 3. Programmed death ligand-1 (PD-L1) was colocalized with ezrin, radixin, and moesin in the
plasma membrane of HEC-151 cells. Colocalization of (a) ezrin, (b) radixin, and (c) moesin (Alexa
Fluor 594) with PD-L1 (Alexa Fluor 488) in the plasma membrane as analyzed by confocal laser
scanning microscopy. Scale bars: 50 µm.
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Figure 4. Immunoblots for programmed death ligand-1 (PD-L1) co-immunoprecipitation in HEC-
151 cells. Immunoreactive bands of ezrin, radixin, moesin, and PD-L1 in the input and those
co-immunoprecipitated (IP) with a control IgG or an anti-PD-L1 Ab. Molecular weights; kDa.
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Figure 5. Effects of RNA-mediated interference of ezrin, radixin, and moesin on the expression
of programmed death ligand-1 (PD-L1) in HEC-151 cells. (a) Relative mRNA expression of PD-L1
normalized with β-Actin was determined via a reverse transcription–polymerase chain reaction. n = 3,
*** p < 0.001, * p < 0.05 vs. Lipofectamine. (b) The mean fluorescence intensities of allophycocyanin
(APC)-labeled PD-L1 relative to Lipofectamine alone; n = 3, *** p < 0.001, * p < 0.05 vs. Lipofectamine.
(c) Histograms for APC-labeled PD-L1 fluorescence in the surface of HEC-151 cells treated with
Lipofectamine (gray), ezrin siRNA (red), and PD-L1 siRNA (purple), as measured by flow cytometry.
All data were expressed as the mean ± SEM and analyzed by one-way ANOVA followed by Dunnett’s
test. Nontargeting control; NC.

4. Discussion

In the present study, we validated the detectability of all three ERM at mRNA and
protein levels in HEC-151 cells. Other studies have also indicated that ezrin and moesin
are highly expressed at mRNA and/or protein levels in human endometrioid carcinoma
tissues and several human endometrial epithelial cancer cell lines, such as RL-95, AN3CA,
Ishikawa, HEC-50, and HEC-1-A [34–40]. In contrast, no studies have examined the
expression of radixin in endometrioid cancers. Although the expression patterns of ERM
depend on the types of human endometrioid cancer cells, as shown in Figure 1a, HEC-151
cells contain sufficient levels of all three ERM proteins to evaluate the role of each ERM
in the cell surface localization of PD-L1. We also confirmed the PD-L1 expressions at the
mRNA and protein levels in HEC-151 cells, the results of which were in line with previous
findings which showed that PD-L1 is highly expressed in numerous human endometrioid
cancer cell lines, including Ishikawa, HEC-50, HEC-1-A, HOUA-I, and RL95-2 [41–43], as
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well as in clinical uterine corpus endometrial carcinoma [44,45]. Furthermore, our CLSM
data showed the colocalization of PD-L1 with ERM in the cell surface regions of HEC-151
cells due to the predominant subcellular distribution of these proteins on the cell surfaces.
Altogether, our present study demonstrated that in HEC-151 cells, ERM proteins and PD-L1
are expressed at sufficient levels and are highly colocalized in the cell surface regions.

PD-L1 expression is regulated by a number of intracellular events. Recently, much
attention has been paid to the post-translational modification process of PD-L1 to determine
its cell surface localization [15,16,46]. As some of the key players in this mode, ERM proteins
anchor numerous transmembrane proteins to the actin cytoskeleton, contributing to their
cell surface localization. Interestingly, we recently found that among ERM proteins, ezrin
modulates the cell surface localization of PD-L1 in human uterine cervical adenocarcinoma
(HeLa), choriocarcinoma (JEG-3), and colon adenocarcinoma (LS180) cells, in which the
expression levels of ezrin are higher than those of radixin and moesin, based on compre-
hensive gene expression analysis using DepMap and our RT-PCR experiments [28–30]. We
also demonstrated that as a predominant ERM protein, radixin primarily regulates the cell
surface localization of PD-L1 in human pancreatic ductal adenocarcinoma cells (KP-2) [27].
On the other hand, Meng et al. elucidated that in human breast cancer adenocarcinoma,
moesin protects PD-L1 against the proteasomal degradation system, leading to the stabi-
lization of the plasma membrane PD-L1, although the functions of ezrin and radixin have
yet to be examined [47]. Likewise, the results of immunoprecipitation showed the intrinsic
interaction of PD-L1 with ezrin, radixin, and moesin in HEC-151 cells, as is the case in
the results obtained from HeLa, JEG-3, LS180, and KP-2 cells [27–30]. Interestingly, the
RNA-mediated interference of ezrin, but not radixin and moesin, considerably suppressed
the cell surface expression of PD-L1 without altering its mRNA levels, implying that among
ERM proteins, ezrin predominantly modulates the cell surface localization of PD-L1 in
HEC-151 cells. The ERM proteins that predominantly modulate the cell surface expression
of PD-L1 may be determined by the expression pattern of ERM, depending on the cancer
cell type. Taken together, ezrin principally regulates the cell surface expression of PD-L1 in
HEC-151 cells, as shown in our previous findings [28–30].

Unpredictably, the RNA-mediated interference of moesin dramatically upregulated
the PD-L1 mRNA expression in HEC-151 cells. One possibility is that the inhibition of
moesin might produce the major inducers for PD-L1 mRNA, including interferon (IFN)-γ,
tumor necrosis factor (TNF)-α, and interleukin (IL)-6 [14,48,49]. In fact, knockdown of
moesin greatly increases the TNF and IL-6 mRNA expressions in LS180 cells, leading
to an increase in PD-L1 mRNA expression [29]. Additionally, others have reported that
a neutralizing Ab against moesin induced IFN-γ, TNF-α, and IL-6 release from several
human immune cells [50,51]. These previous observations might partly support the present
finding that the gene silencing of moesin induces the PD-L1 mRNA expression in HEC-151
cells. These complex questions should be addressed in future studies.

In summary, among the three ERM proteins present in HEC-151 cells, ezrin may be
primarily responsible for scaffolding protein for PD-L1. Therefore, new drug modalities
targeting ezrin may be effective for reducing the PD-L1 expression on the cell surface of
human endometrial adenocarcinoma and providing a novel therapeutic option to enhance
the response rate of ICB therapies. In vivo experiments using xenograft model mice should
be addressed in our future studies for potential translation into clinical applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11082226/s1, Figure S1: Original source images for immunoblots;
Figure S2: RNA-interference-mediated knockdown of target genes in HEC-151 cells; Table S1: List of
primers used in the present study; Table S2: List of antibodies used in the present study.
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