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Abstract: Predicting the mortality risk of patients with Coronavirus Disease 2019 (COVID-19) can
be valuable in allocating limited medical resources in the setting of outbreaks. This study assessed
the role of a chest X-ray (CXR) scoring system in a multivariable model in predicting the mortality
of COVID-19 patients by performing a single-center, retrospective, observational study including
consecutive patients admitted with a confirmed diagnosis of COVID-19 and an initial CXR. The
CXR severity score was calculated by three radiologists with 12 to 15 years of experience in thoracic
imaging, based on the extent of lung involvement and density of lung opacities. Logistic regression
analysis was used to identify independent predictive factors for mortality to create a predictive model.
A validation dataset was used to calculate its predictive value as the AUROC. A total of 628 patients
(58.1% male) were included in this study. Age (p < 0.001), sepsis (p < 0.001), S/F ratio (p < 0.001),
need for mechanical ventilation (p < 0.001), and the CXR severity score (p = 0.005) were found to be
independent predictive factors for mortality. We used these variables to develop a predictive model
with an AUROC of 0.926 (0.891, 0.962), which was significantly higher than that of the WHO COVID
severity classification, 0.853 (0.798, 0.909) (one-tailed p-value = 0.028), showing that our model can
accurately predict mortality of hospitalized COVID-19 patients.

Keywords: COVID-19; chest X-ray; severity score; predictive model; mortality

1. Introduction

The unprecedented spread of Coronavirus Disease 2019 (COVID-19) infection across
the world has strained our society with significant morbidity and mortality. Its clinical
manifestations range from minor flu-like symptoms to severe pneumonia that can lead to
acute respiratory distress syndrome, multiple organ dysfunction syndrome, and death [1].
The role of imaging has evolved through the pandemic, with radiologic studies playing
an important role in the diagnosis and determination of disease severity [2]. Even though
Computerized Tomography (CT) scans have the highest sensitivity for the characterization
of pulmonary involvement in COVID-19 disease [3–5], factors such as easy accessibility,
higher logistical costs, time management, radiation considerations, and compliance with
infection control measures are barriers to its widespread use as the primary imaging
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modality in the setting of a pandemic [2,6,7]. As an alternative, a chest X-ray (CXR) has
been shown to play an essential role in the initial evaluation and risk stratification of
patients, with some variability in its reported sensitivity, which is influenced by the timing
of the onset of symptoms [7,8]. Compared to a CT scan, this imaging modality is widely
available, is cheaper, exposes the patient to less radiation, and can be obtained in a timely
manner at bedside with quicker and easier disinfection procedures [9–11].

One of the main problems with using imaging modalities as diagnostic tools for
COVID-19 is that all radiological findings in this disease are generic and have significant
overlap with other infectious processes. Findings such as reticulonodular or ground-glass
opacities, patchy infiltration, and consolidation can be identified on CT scans as early as the
fifth day following onset of symptoms, while changes in CXRs are expected to appear on
days 10 to 12 [2,12]. CXRs of patients with moderate COVID-19 pneumonia demonstrate
patchy opacities and reticulonodular infiltration. In severe or critical infections, patients
develop patchy alveolar infiltrations that confluence over time, forming consolidations
that correlate with acute respiratory distress syndrome [13]. Multiple retrospective studies
have evaluated the association between an initial CXR and clinical outcomes in patients
with COVID-19 pneumonia. Orsi et al., presented a scoring system based on the extent
of lung involvement on CXRs ranging from 0 to 8 and, although they did not evaluate
the correlation of their scoring system with patient outcome, they showed a significant
positive correlation with C-reactive protein, lactate dehydrogenase, and fever duration,
and a negative correlation with oxygen saturation [14]. Toussie et al., developed a CXR
scoring system based on the opacities in six separate lung zones, ranging from 0 to 6, with
scores >2 associated with hospitalization and >3 associated with intubation [15]. Using a
similar scoring system, Borghesi et al., showed that CXR findings correlated with mortality
in a large Italian cohort [16]. The radiology assessment of lung edema (RALE) is another
scoring system ranging from 0–48, based on CXR findings. In their study on COVID-19
patients, Cozzi et al., showed that with each unit increase in the RALE score, the hazard for
death increased by 1.23 [17].

Considering our unique patient population in the South Bronx is predominantly com-
posed of minorities with the highest prevalence of chronic diseases such as hypertension,
diabetes, obesity, and COPD among the five boroughs of New York City [18], we aimed
to develop a simplified scoring system based on baseline CXR findings and assess its
predictive value for the mortality of hospitalized COVID-19 patients.

2. Materials and Methods
2.1. Study Design and Sample Population

This single-center, retrospective, observational study was reviewed and approved by
the institutional review board (IRB# 20-007), and the requirement for obtaining written
consent from the participants was waived. Consecutive adult patients admitted to the
hospital from 5 March to 16 April 2020 with a positive RT-PCR test for SARS-CoV-2
on nasopharyngeal swab samples (Bio-Reference Laboratories, Inc., Elmwood Park, NJ,
USA) and a chest X-ray performed in the emergency room were included in the study.
Radiological findings better explained by non-COVID-19 causes such as acute congestive
lung markings, effusion, abscess, white-out lung, or pneumothorax were excluded from
our study. Subjects with documented pulmonary diseases such as interstitial lung disease,
sarcoidosis, tuberculosis, lung cancer or metastasis to lung, or prior pneumonia within the
last 3 months were also excluded (Figure 1).
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Figure 1. Flow chart of the study population.

2.2. Data Collection

Baseline characteristics, comorbidities, clinical data on admission, and clinical course
were collected from electronic medical records for each patient. Collected data included
age, gender, race, body mass index, smoking, medical comorbidities, symptoms on ad-
mission (fever, cough, shortness of breath, gastrointestinal symptoms, and altered mental
status/seizures), and the number of days from the onset of symptoms to admission. Oxygen
requirement data were taken from the first encounter in the emergency department, includ-
ing pulse oximetric saturation (SpO2), fraction of inspired oxygen (FiO2), the SpO2/FiO2
ratio (S/F ratio), and the need for mechanical ventilation. Sepsis syndrome on admission
was assessed based on the quick Sequential Organ Failure Assessment (qSOFA) score [19].
COVID-19 severity based on the Chinese CDC criteria [10], intubation during hospital
course, intubation duration, length of stay, and outcome at discharge were also recorded
for each patient.

2.3. Imaging and Analysis

Chest radiographs acquired in the anteroposterior (AP) view using a portable X-ray
machine during their emergency department stay were examined retrospectively. These
were read by three radiologists with 12, 15, and 15 years of experience in thoracic imaging,
who were blinded to the patients’ clinical history and condition. They were asked to give a
consensus reading of two radiologic features: distribution and characteristics of the lung
opacities. They assigned a score from 0 to 4 for the distribution of lung opacities: 0 for
normal; 1 for unilateral–unilobar; 2 for unilateral–multilobar; 3 for bilateral–not diffuse;
and 4 for diffuse bilateral (Figures 2–7). They also scored the characteristics of the lung
opacities from 0 to 2: 0 for normal; 1 for hazy or interstitial; 2 for dense opacities or any
opacities with dense component (hazy–dense, interstitial–dense). A CXR score was then
derived from the product of these two radiologic features, with the final score ranging from
0 to 8.
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Figure 7. Dense infiltrate in the right upper lobe.

2.4. Statistical Analysis

Categorical variables were summarized as frequency (percentage) and continuous
variables were presented as either mean (standard deviation—SD) or median (interquartile
range—IQR) according to their distribution.

Binary logistic regression analysis was used to assess the correlation between possible
confounders and outcome at discharge to identify independent predictive factors for in-
hospital mortality in these patients. The results are presented as odds ratios (ORs) and 95%
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confidence intervals. The dataset was then randomly split into derivation and validation
datasets with a ratio of 70:30, respectively. Binary logistic regression analysis was used on
the derivation dataset to develop a model with the identified factors to predict in-hospital
mortality. The model was then tested on the validation dataset. Its predictive value was
calculated as the area under the receiver operating characteristic curve (AUROC) and
then compared to that of the COVID severity using Hanley and McNeil’s method [20],
acknowledging that the COVID severity score was not specifically designed as a predictive
factor for the mortality of COVID-19 patients.

All the analyses were performed using IBM SPSS statistical software version 25 (IBM
SPSS Corp., Armonk, NY, USA). A p-value less than 0.05 was considered statistically
significant.

3. Results

A total of 628 patients admitted with a confirmed diagnosis of COVID-19 were in-
cluded in this study. Patients’ baseline characteristics, underlying comorbidities, and
clinical course are shown in Table 1. The majority of the patients were male (58.1%), His-
panic (65.1%), and obese (50.3%). The mean age was 60 ± 16 years old. The most prevalent
comorbidity was hypertension (44.6%) followed by diabetes (42.8%). Regarding symptoma-
tology, 71.2% reported a cough, 69.3% reported shortness of breath, and 65.0% reported a
fever. The median S/F ratio was 303.3 (IQR, 102.1–447.6). Sepsis syndrome was present on
admission in 30.1% of patients. In terms of the severity of COVID-19 pneumonia, 41.2%
were classified as moderate, 28.3% as severe, and 30.4% as critical according to the Chinese
CDC criteria as described in the Section 2. Some 134 patients (21.3%) required intubation
on admission, and 117 patients (18.7%) required intubation during their hospital course.

Table 1. Descriptive statistics of the variables included in the study.

Variable Total (N = 628)
Status at Discharge

Alive (N = 402) Expired (N = 226)

Age * 59.6 (16.0) 55.4 (15.7) 67.1 (13.9)

Gender
Female 263 (41.9%) 174 (43.3%) 89 (39.4%)

Male 365 (58.1%) 228 (56.7%) 137 (60.6%)

Race

Hispanic 409 (65.1%) 252 (62.7%) 157 (69.5%)

African American 165 (26.3%) 112 (27.9%) 53 (23.5%)

White 21 (3.3%) 16 (4.0%) 5 (2.2%)

Asian 13 (2.1%) 9 (2.2%) 4 (1.8%)

Other 20 (3.2%) 13 (3.2%) 7 (3.1%)

Smoking 37 (6.0%) 27 (6.8%) 10 (4.6%)

BMI

Underweight 7 (1.2%) 3 (0.8%) 4 (1.9%)

Normal 95 (16.3%) 62 (16.7%) 33 (15.7%)

Overweight 187 (32.1%) 126 (33.9%) 61 (29.0%)

Obese 293 (50.3%) 181 (48.7%) 112 (53.3%)

Past Medical History

Asthma/COPD 112 (17.8%) 67 (16.7%) 45 (19.9%)

Hypertension 280 (44.6) 182 (45.3%) 98 (43.4%)
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Table 1. Cont.

Variable Total (N = 628)
Status at Discharge

Alive (N = 402) Expired (N = 226)

CHF 47 (7.5%) 23 (5.7%) 24 (10.6%)

CKD 76 (12.1%) 40 (10.0%) 36 (15.9%)

DM 269 (42.8%) 152 (37.8%) 117 (51.8%)

Rheumatological Diseases 22 (3.5%) 10 (2.5%) 12 (5.3%)

Cirrhosis 7 (1.1%) 6 (1.5%) 1 (0.4%)

Transplant 4 (0.6%) 2 (0.5%) 2 (0.9%)

Immunosuppression 14 (2.2%) 8 (2.0%) 6 (2.7%)

HIV 16 (2.5%) 11 (2.7%) 5 (2.2%)

Cancer 39 (6.2%) 15 (3.7%) 24 (10.6%)

Symptoms

Fever 408 (65.0%) 275 (68.4%) 133 (58.8%)

Cough 447 (71.2%) 302 (75.1%) 145 (64.2%)

Shortness of Breath 435 (69.3%) 254 (63.2%) 181 (80.1%)

Gastrointestinal Symptoms 141 (22.5%) 110 (27.4%) 31 (13.7%)

Altered Mental Status/Seizures 80 (12.7%) 32 (8.0%) 48 (21.2%)

Days from Onset of Symptoms ** 4.0 (2.0, 7.0) 5.0 (3.0, 7.0) 4.0 (2.0, 7.0)

Sepsis Syndrome 189 (30.1%) 53 (13.2%) 136 (60.2%)

S/F ratio ** 303.1 (102.1, 447.6) 342.9 (263.9, 457.1) 102.2 (97.0, 266.7)

COVID Severity

Moderate 259 (41.2%) 247 (61.4%) 12 (5.3%)

Severe 178 (28.3%) 112 (27.9%) 66 (29.2%)

Critical 191 (30.4%) 43 (10.7%) 148 (65.5%)

Length of Stay ** 6.0 (3.0, 11.0) 5.0 (2.0, 10.0) 7.0 (4.0, 11.0)

Mechanical Ventilation on Admission 134 (21.3%) 28 (7.0%) 106 (46.9%)

Mechanical Ventilation 251 (40.0%) 67 (16.7%) 184 (81.4%)

Days to Intubation ** 0.0 (0.0, 3.0) 3.0 (0.0, 8.0) 0.0 (0.0, 2.0)

Duration of Mechanical Ventilation ** 7.0 (4.0, 12.0) 11.0 (4.0, 26.0) 7.0 (4.0, 10.0)

CXR Severity Score ** 3.0 (1.0, 4.0) 3.0 (0.0, 3.0) 3.0 (3.0, 6.0)

BMI: Body Mass Index, COPD: Chronic Obstructive Pulmonary Disease, CHF: Congestive Heart Failure, CKD:
Chronic Kidney Disease, DM: Diabetes Mellitus, HIV: Human Immune deficiency Virus, CXR: Chest X-ray; * Mean
(Standard deviation); ** Median (25th percentile, 75th percentile).

Abnormal CXR findings on admission were observed in 70.6% (479) of our cohort.
Common CXR findings included hazy or interstitial infiltrates in 74.5% (357), while dense
consolidation was seen in 22.5% (122). In terms of distribution, diffuse bilateral infiltrates
were predominant and seen in 69.1% (331), followed by unilateral–unilobar in 13.4% (64),
and bilateral—not diffuse in 13.2% (63) of cases. The median CXR severity score for our
cohort was 3 (IQR, 1–4). More than half of the patients (53.4%) had diffuse bilateral changes
with hazy opacities, which corresponds to a CXR score of 4, followed by diffuse bilateral
with dense opacities in 15.7% (75), which corresponds to a CXR score of 8. The distribution
and frequency of radiographic findings are shown in Table 2.
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Table 2. Distribution and frequency of radiographic findings.

N (%)

Radiology Findings
No 149 (23.7%)
Yes 479 (76.3%)

Radiologic Characteristics
Distribution

Unilateral Unilobar 64 (13.4%)
Unilateral Multilobar 21 (4.4%)
Bilateral—not diffuse 63 (13.2%)

Diffuse Bilateral 331 (69.1%)
Opacity

Hazy or Interstitial Opacities 357 (74.5%)
Dense Opacities 122 (25.5%)
Specific Patterns

Diffuse-Bilateral with hazy opacities 256 (53.4%)
Diffuse-Bilateral with dense opacities 75 (15.7%)

Unilateral-Unilobar with Hazy opacities 49 (10.2%)
Bilateral with predominance with hazy opacities 37 (7.7%)
Bilateral with predominance with dense opacities 26 (5.4%)

Unilateral-Multilobar with Hazy opacities 15 (3.1%)
Unilateral-Unilobar with dense opacities 15 (3.1%)

Unilateral-Multilobar with dense opacities 6 (1.3%)

Binary logistic regression analysis was used to identify independent predictors for
in-hospital mortality in our cohort. The results of this analysis, presented in Table 3, found
age (p < 0.001), sepsis on admission (p < 0.001), S/F ratio (p < 0.001), mechanical ventilation
on admission (p < 0.001), and the CXR severity score (p = 0.005) to be independent predictive
factors for the in-hospital mortality of patients.

Table 3. Binary logistic regression analysis of the independent factors predicting mortality in COVID-
19 patients.

Variables Adjusted OR (95% CI) p-Value

Age 1.063 (1.043, 1.083) <0.001
Gender 1.433 (0.865, 2.374) 0.162

Smoking 0.962 (0.330, 2.799) 0.943
Asthma/COPD 1.045 (0.552, 1.977) 0.893

CHF 0.864 (0.345, 2.165) 0.755
CKD 0.886 (0.426, 1.842) 0.745
DM 1.238 (0.757, 2.023) 0.395

Cancer 1.579 (0.618, 4.037) 0.340
Days from Onset of Symptoms 0.991 (0.936, 1.050) 0.766

Sepsis Syndrome 7.353 (4.434, 12.194) <0.001
S/F ratio 0.995 (0.993, 0.997) <0.001

Mechanical Ventilation on Admission 5.389 (2.931, 9.908) <0.001
CXR Severity Score 1.184 (1.054, 1.330) 0.005

OR: Odds Ratio, CI: Confidence Interval, COPD: Chronic Obstructive Pulmonary Disease, CHF: Congestive Heart
Failure, CKD: Chronic Kidney Disease, DM: Diabetes Mellitus, CXR: Chest X-ray.

The dataset was then randomly split into two derivation (N = 439) and validation
(N = 189) datasets with a ratio of 70:30, respectively. According to the binary logistic
regression analysis results, a model was developed on the derivation dataset and included
the following variables: age, sepsis syndrome on admission, S/F ratio, mechanical ven-
tilation on admission, and CXR severity score. The specifics of the model are presented
in Table 4. The model was then tested on the validation dataset, yielding an AUROC of
0.926 (95% CI: 0.891, 0.962). The AUROC of COVID severity was also calculated using
the same dataset (N = 189) as 0.853 (95% CI: 0.798, 0.909). Hanley and McNeil’s method
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was used in a one-tailed setting, testing to see if the AUROC of our predictive model was
more significant than that of the WHO COVID severity. The results showed our model to
have a significantly higher predictive value compared to COVID severity, with a one-tailed
p-value of 0.028 (Figure 8). Although COVID severity score was not specifically designed
as a predictive factor for the mortality of COVID-19 patients, it showed a relatively high
predictive value for in-hospital mortality in our patient population, even compared to
the AUC values reported in the literature for models designed specifically for predicting
mortality.

Table 4. Predictive model developed in the derivation dataset (N = 439).

Model Coefficient p-Value Adjusted OR (95% CI)

Age 0.052 <0.001 1.053 (1.032, 1.074)
Sepsis Syndrome 1.865 <0.001 6.459 (3.667, 11.379)

S/F ratio −0.005 <0.001 0.995 (0.993, 0.997)
Mechanical Ventilation on Admission 1.606 <0.001 4.981 (2.519, 9.850)

CXR Severity Score 0.132 0.046 1.141 (1.003, 1.299)
Constant −3.867 <0.001 0.021

OR: Odds Ratio, CI: Confidence Interval, CXR: Chest X-ray.
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4. Discussion

Considering the limited medical resources available during the COVID-19 pandemic
surge, the accurate prediction of patients with COVID-19 who are particularly at risk for
poor outcomes can be very valuable in determining how to best allocate resources and
optimize care. Accordingly, numerous studies have used clinical data, lab results, and
information obtained from imaging to develop statistical and machine-learning models to
predict the mortality of COVID-19 patients [5–8]. In the present study, we defined a simple
CXR severity scoring system based on the extent of lung involvement and density of lung
opacities and combined it with four readily available clinical variables on admission (age,
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qSOFA score ≥ 2, S/F ratio, and need for mechanical ventilation on admission) to develop
a linear regression model in our derivation cohort of 439 patients. We then tested the model
in our validation dataset (N = 189), yielding an AUROC of 0.926 (95% CI: 0.891, 0.962) for
predicting mortality in hospitalized COVID-19 patients.

Although prior studies have introduced comparable CXR scoring systems, to our
knowledge, this study is one of the first to have incorporated a CXR severity scoring
system in a multivariable model to provide an accurate predictive tool that can be used
at bedside on admission. For instance, Toussie et al., designed a scoring method in which
each lung was divided into three zones and each zone was given a score of 0 if opacity
was absent or 1 if opacity was present. The sum of these scores constituted the final
score, with scores greater than 2 associated with hospitalization and those greater than 3
associated with intubation. In their cohort of 338 patients, only 7% expired throughout
the study and—although most of these patients had more extensive lung opacification—a
meaningful relationship could not be demonstrated [15]. In another study, Borghesi et al.,
introduced their “Brixia” CXR scoring system in which they similarly divided the lungs
into six zones on frontal chest projection, but instead of giving a binary score to each zone,
they gave a score of 0 to 3, with 0 representing no lung abnormalities, 1 for interstitial
infiltrates, 2 for interstitial and alveolar infiltrates with interstitial predominance, and 3 for
alveolar predominance. Their univariable analysis in a sample of 100 hospitalized patients
showed a significantly higher CXR score in patients who expired compared to those who
were discharged [16]. In a subsequent study, they incorporated their Brixia score in a
multivariable regression model on a sample population of 302 patients and found the Brixia
score, age, and conditions that induced immunosuppression to be independent predictive
factors of in-hospital mortality. Their study had considerable statistical limitations as
they used the same population to identify relevant covariates, develop their model, and
test its predictive value [21], as opposed to the current study, in which we divided our
sample population into two subsets for derivation and testing. They also used the chest
radiograph of the patients with the highest Brixia score, which limits the application of their
model at presentation of the patients to the hospital. Garrafa et al., used the Brixia score in
developing and testing a machine-learning model based on the random forests classification
algorithm for predicting in-hospital mortality. Based on their results, their model of age,
Brixia score, and multiple blood analytes had an AUC of 0.78 for predicting in-hospital
mortality in their testing dataset of 676 patients [22]. Although they used a larger sample
population for both developing and testing their model, and included patients from both
the first and second waves of the COVID-19 pandemic, the predictive performance of their
model was much lower than our logistic regression model with an AUC of 0.93, which may
be attributed to the fact that they did not use important clinical variables such as oxygen
requirements, sepsis syndrome, or the need for mechanical ventilation. The Radiographic
Assessment of Lung Edema (RALE) score, initially proposed by Warren et al., in 2018 [23],
was another tool that was adapted, modified, and used for the prediction of different
outcomes in COVID-19 patients. In their study on 90 COVID-19 patients, Homayounieh
et al., reported a significantly higher RALE score in deceased patients (N = 21) compared to
the surviving subjects (N = 69) [24]. Joseph et al., used a modified RALE scoring system
(scores assigned to each lung instead of four quadrants) and reported higher scores being
associated with a higher risk of composite adverse clinical outcome of intubation, ICU
admission, or death [25]. Neither of these studies provided a measure of accuracy for their
CXR scoring systems in predicting the mortality of patients, nor did they include their
scoring methods in a multivariable model to develop a predictive model.

Later, Balbi et al., used the Brixia score in their study conducted on a sample of
340 COVID-19 patients. They ran a binary logistic regression analysis and found that
the Brixia score, age, PaO2/FiO2 ratio, and cardiovascular diseases were independent
predictive factors for death in these patients [26]. They did not present the results of this
analysis as a combined predictive model, so no direct comparison can be made between our
findings and theirs, but the independent variables in both studies were comparable. In a
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more comprehensive study performed on a sample of 356 hospitalized COVID-19 patients,
Schalekamp et al., proposed another method in which the chest radiograph was divided
into four zones and the extent of lung involvement was scored as 0 for no involvement; 1
for estimated involvement of lung parenchyma 0–50%; and 2 for estimated involvement
>50%. The final score ranged between 0 and 8. They further combined this CXR score in a
multivariable model including variables of sex, chronic obstructive lung disease, symptom
duration, neutrophil count, C-reactive protein level, lactate dehydrogenase level, and
distribution of lung disease (diffuse vs. peripheral) and introduced the “Dutch COVID-19
risk model” for predicting critical illness. Their model yielded an AUROC of 0.77 (95% CI:
0.72, 0.81; p < 0.001) [27]. In comparison, our model has a higher predictive performance for
in-hospital mortality rather than critical illness, includes readily available clinical variables
rather than lab values, was developed using a larger sample population, and was tested
on a validation dataset different from the derivation cohort. On the other hand, our study
was conducted in a single center, while the data for the Dutch COVID-19 risk model came
from two Dutch community hospitals. It should also be kept in mind that there was a
notable difference between the two sample populations with a 36.0% death rate in our
cohort compared to 27.2% in their population. This could be attributed to the differences in
the baseline comorbidities of the patients.

To summarize the strengths of our work compared to other similar studies, we had
a larger sample population, we developed an accurate predictive model for in-hospital
mortality in COVID-19 patients and validated it in a smaller sample of patients admitted
to our center, we used easily accessible clinical variables along with information obtained
from CXRs making it suitable for bedside use, and our model had a considerably high
predictive value for the outcome, which was superior or comparable to other statistical and
machine-learning models [28–32].

There were also several limitations to this work. Our prediction model was only
internally validated, and it is based on a retrospective cohort of patients from one hos-
pital providing healthcare to a particular population with a high prevalence of baseline
comorbidities contributing to a higher death rate due to COVID-19, which limits its gen-
eralizability. Additionally, the data for this study were collected during the first wave
of the COVID-19 pandemic, and since then, multiple new variants have emerged, which
raises concerns about the performance of our model on new COVID-19 patients afflicted
with the new variants. However, the variables we included in our model are conceptually
general indicators of poor outcome in any acute respiratory disease, or even non-respiratory
acute conditions. Another limitation was that all clinical parameters and laboratory values
known to be associated with worse outcomes were not included in our model, mainly
because they were not available for all patients. Moreover, the three radiologists reading
the CXRs reached a consensus and provided us with a final score, which does not reflect
the actual clinical workflow, and consequently, inter-rater variability could not be assessed
in the setting of our study.

In summary, we found that basic clinical information and a simple assessment of lung
involvement on a CXR—which are available in the first few hours of hospital admission—
can provide complementary information for the prognosis of hospitalized patients with
COVID-19. We demonstrated that a simple model composed of age, sepsis syndrome on
admission, S/F ratio, mechanical ventilation on admission, and a CXR severity score were
predictive of in-hospital mortality among these patients.
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