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Abstract: Background: Machine Learning (ML) in arthroplasty is becoming more popular, as it
is perfectly suited for prediction models. However, results have been heterogeneous so far. We
hypothesize that an accurate ML model for outcome prediction in THA must be able to compute
arthroplasty-specific data. In this study, we evaluate a ML approach applying data from two German
arthroplasty-specific registries to predict adverse outcomes after THA, after careful evaluations of
ML algorithms, outcome and input variables by an interdisciplinary team of data scientists and
surgeons. Methods: Data of 1217 cases of primary THA from a single center were derived from
two German arthroplasty-specific registries between 2016 to 2019. The XGBoost algorithm was
adjusted and applied. Accuracy, sensitivity, specificity and AUC were calculated. Results: For the
prediction of complications, the ML algorithm achieved an accuracy of 80.3%, a sensitivity of 31.0%,
a specificity of 89.4% and an AUC of 64.1%. For the prediction of surgery duration, the ML algorithm
yielded an accuracy of 81.7%, a sensitivity of 58.2%, a specificity of 91.6% and an AUC of 89.1%. The
feature importance indicated non-linear outcomes for age, height, weight and surgeon. No relevant
linear correlations were found. Conclusion: The attunement of input and output data as well as
the modifications of the ML algorithm permitted the development of a feasible ML model for the
prediction of complications and surgery duration.

Keywords: artificial intelligence; machine learning; hip surgery; total hip arthroplasty;
supervised learning

1. Introduction

Global trends indicate a rising prevalence of total hip arthroplasties (THA). Similarly,
revision arthroplasties will increase, which are more expensive and are associated with
poorer outcomes and more complications [1–3]. THA procedures in the United States are
estimated to grow by 174% until the year 2030, while the number of THA revisions will
double by 2026 [4].

These findings suggest that the identification of patients at risk for revision is crucial
for the individual patient as well as for health care providers in regard to the expected
unsustainable expenditures. Hence, risk stratification models have been developed to face
this problem. However, current risk analysis tools in arthroplasty have been moderately
accurate so far in predicting adverse outcomes [5]. A major problem with these existing
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risk stratification models is that they do not sufficiently include specific risk factors in
arthroplasty, which together may significantly contribute to the failure of the arthroplasty.
However, it is hard to quantify such a revision probability as multilinear correlations are
difficult to realize in conventional risk stratification models. Therefore, more comprehensive
and specific risk analysis tools are urgently needed.

Machine Learning (ML) evolved from learning theory and is capable of detecting
multilinear correlations in complex datasets [6]. ML applications in arthroplasty are gaining
popularity as they may potentially improve preoperative decision making [7].

Shah et al. investigated administrative data from 89,986 adults who underwent
primary THA to predict major complications after primary THA by comparing different
ML algorithms and logistic regression models [8]. Although the authors concluded superior
discriminative ability of a ML approach, they concluded that the predictive performance
was not sufficient for clinical applicability. They further indicated that the most important
variables for their algorithm were malnutrition, dementia and cancer. The investigated
administrative database, however, does not provide arthroplasty-specific variables. It
is therefore obvious that no arthroplasty-specific variables were considered relevant by
their algorithm. Hence, the relevance of malnutrition, dementia and cancer as the most
relevant parameters for major complications after primary THA must be further discussed,
especially in view of the clinical applicability of such prediction models. The prediction of
clinically relevant outcomes such as the occurrence of revisions or complications is intricate
as predicting seldom outcomes is not just limited by the amount, but also by the complexity
of the applied data. Hence, the prediction of rare outcomes such as adverse events in
arthroplasty might not be feasible using only administrative data. We therefore consider
the implementation of parameters specific to arthroplasty to be crucial.

Our hypothesis is that an accurate prediction model must have a balanced calibration
of specific input data, the algorithm and the outcome labels. We assume that a close collabo-
ration between data scientists and orthopedic surgeons is crucial in this context as extensive
knowledge of data science methodology and arthroplasty procedures is necessary. Hence,
in this study, we evaluate a ML approach applying data from two German arthroplasty-
specific registries to predict adverse outcomes after THA after careful evaluations of ML
algorithms, outcome and input variables by an interdisciplinary team of data scientists
and surgeons.

2. Materials and Methods
2.1. Data Source

The German Society for Orthopaedics and Orthopaedic Surgery (Deutsche Gesellschaft
für Orthopädie und Orthopädische Chirurgie) has established two national associations
to improve the quality of care in arthroplasty. The German Arthroplasty Registry (En-
doprothesenregister Deutschland (EPRD)) reports implant-related data of hip and knee
replacements and EndoCert monitors compliance with structural, process and outcome
quality standards in hospitals and certifies medical facilities accordingly. All patients
undergoing primary THA between 2016 to 2019 at our EndoCert-certified institution and
giving consent to participate in EPRD were included in this study (n = 1217).

2.2. Data Screening, Cleaning and Preparation

Before analysis, both datasets from EPRD and EndoCert were screened collaboratively
by a data scientist (F.H.) and an orthopedic surgeon (I.L.) regarding their relevance and
applicability for ML analysis. Twelve parameters were chosen to be relevant for the
prediction of two outcome variables (complications and irregular surgery duration), which
were classified by EndoCert (Table 1). In total, 6.1% (1053/17,038) of the data points
were missing and could not be retrieved from the clinical information system. In total,
28.8% (1053/3651) of the data points regarding weight, height and therefore BMI are
missing, because they were only added to the EPRD registry in 2017. The data samples
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were still kept for the final dataset, as a model which can cope with a limited number of
missing data points was chosen.

Table 1. Description of input parameters.

Parameters Source

Nominal Data, n (%)

Sex EndoCert/EPRD

Male 545 44.8%
Female 672 55.2%

Diagnosis EndoCert/EPRD

Primary osteoarthritis 817 67.1%
Dysplasia 129 10.6%
Femoral neck fracture 16 1.3%
Femoral head necrosis 80 6.6%
Posttraumatic osteoarthritis 46 3.8%
Tumour/metastasis 129 10.6%

Side EndoCert/EPRD

Left 590 48.5%
Right 627 51.5%

Implant type EPRD

Primary implant 932 76.6%
Revision implant 231 19.0%
Tumour implant 54 4.4%

Surgeon EndoCert

Surgeon 1 20 1.6%
Surgeon 2 1 0.1%
Surgeon 3 92 7.6%
Surgeon 4 317 26.0%
Surgeon 5 6 0.5%
Surgeon 6 1 0.1%
Surgeon 7 62 5.1%
Surgeon 8 43 3.5%
Surgeon 9 1 0.1%
Surgeon 10 2 0.2%
Surgeon 11 10 0.8%
Surgeon 12 8 0.7%
Surgeon 13 96 7.9%
Surgeon 14 216 17.7%
Surgeon 15 182 15.0%
Surgeon 16 89 7.3%
Surgeon 17 71 5.8%

Ordinal Data, n (%)

Experience Level of Surgeon EndoCert

1 Resident 17 1.4%
2 Fellow 111 9.1%
3 Attending-Junior 1 0.1%
4 Attending—Main Surgeon * 199 16.4%
5 Attending—Senior Surgeon * 889 73.0%

Year EndoCert/EPRD

2016 324 26.6%
2017 394 32.4%
2018 282 23.2%
2019 217 17.8%
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Table 1. Cont.

Parameters Source

Ratio Data, median (standard deviation)

Age 67 13.8 EndoCert/EPRD
Height (in cm) 170 88.0 EPRD
Weight (in kg) 80 17.4 EPRD
BMI 23 11.7 EPRD

* “Attending—Main Surgeon” corresponds to “Hauptoperateur” (>50 operation per year) and “Attending—Senior
Surgeon” corresponds to “Senior-Hauptoperateur” (>100 operation per year) as defined by Endocert; Body Mass
Index (BMI), Endoprothesenregister Deutschland (EPRD).

2.3. Input Parameters

The complete dataset consists of 1217 patient cases from our hospital undergoing
primary THA between 2016 to 2019. Input parameters and their sources are presented
in Table 1.

2.4. Outcome

After detailed substantive and methodological evaluation, two outcome labels were
classified as feasible on the basis of the input data: complications and irregular surgery
duration. Complications were derived from the EndoCert dataset, consisting of the follow-
ing postoperative events within 90 days after implantation: deviation of the mechanical
axis ±3◦, periprosthetic infection, dislocation, periprosthetic fracture, revision surgery,
thromboembolism, neurologic complications and mortality. As the total of complications
occurred in only 13.2% (161/1217) of cases, the outcome was translated in a binary classifi-
cation. Similarly, for prediction of surgery duration, the binary classification according to
EndoCert as regular or irregular (either <40 min or >100 min) was applied. An irregular
duration occurred in 21.9% (267/1217) (Table 2). To increase the quality of the presented
observational study and its prediction model, we reported in accordance with the Transpar-
ent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) guidelines [9] and the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) statement [10].

Table 2. Distribution of outcome labels.

Outcome Label, n (%) Source

Complications 161 (13.2%) EndoCert
Irregular duration of surgery 267 (21.9%) EndoCert

2.5. Statistical Analysis

Linear correlations in the dataset were searched using Spearman’s rank-order correla-
tion coefficient using Python 3.9.6. A |ρ| > 0.5 concludes a significant direct or indirect
correlation between two parameters.

2.6. Machine Learning Model

XGBoost [11,12], a state-of-the-art implementation of gradient boosting decision trees,
was chosen for the task at hand. It is capable of high performance and managing missing
data points. To obtain statistical significance, cross-validation was performed by splitting
the data into a specified number of folds. At least one fold is used exclusively for testing,
and the other folds are used for training. All folds must be disjointed to avoid cross-
contamination. After several runs, each data sample was used exactly once for testing.
Then, the results were averaged to obtain more realistic and stable metric values. For
this study, a hyperparameter search for the optimal number of folds (data split) was
performed, resulting in a split of eight folds (one for testing, seven for training) (Figure 1).
To counteract the significant class imbalance, loss weighting was applied: the loss of the
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entity with fewer samples (in this study, the occurrence of complications/irregular surgery
duration) was weighted higher than the dominant entity (no complications/regular surgery
duration). A feature importance was calculated to support a deeper understanding of the
algorithm’s predictions and to retrieve insight into data patterns. Feature importance refers
to a technique that assigns a relative score to input parameters based on how useful they
are in predicting a target.
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Implementation of the code for the ML model as well as for the statistical analysis
was realized with Python 3.9.6 (https://python.org, accessed on 6 April 2022) and the
Scikit-learn library (https://scikit-learn.org, accessed on 6 April 2022). The source code
for this study is provided on GitHub (https://github.com/FlorianH3000/ML_tabdata,
accessed on 10 April 2020).

3. Results

Overall, 1217 patients with a median age of 67 (13, 97) were included in this study. In
total, 672 (55.2%) patients were female and 545 (44.8%) were male. The median BMI was
at 23 with a standard deviation of 11.7. Indications for THA were classified as primary
osteoarthritis (817, 67.1%), dysplasia (129, 10.6%), fracture (16, 1.3%), femoral head necrosis
(80, 6.6%), posttraumatic osteoarthritis (46, 3.8%) and tumor/metastasis (129, 10.6%). The
surgeries were performed by 17 different main surgeons with a share of 0.1% up to 26.0% of
all surgeries. The experience level of surgeons specified by the EndoCert initiative was
distributed from 1.4% (level 1), 9.1% (level 2), 0.1% (level 3), 16.4% (level 4) to 73.0% (level 5).
In total, 225 complications in 161 cases occurred (41 cases with multiple complications):
inclination > 50◦ (66/29.3%), infection (41/18.2%), dislocation (8/3.6%), fracture of greater
trochanter (23/10.2%), periprosthetic fracture (22/9.8%), revision surgery 40/17.8%, throm-
boembolism (10/4.4%), mortality (8/3.6%) and neurologic complications (7/3.1%). Surgery
duration lasted from 38 to 339 min. The distribution of the outcome labels is summarized
in Table 2.

Within the dataset, the following linear correlations were found using classical statisti-
cal methods considering |ρ| > 0.5 as statistically relevant: BMI with each year (ρ = 0.68),
height (ρ = 0.75) and weight (ρ = 0.93), height with sex (ρ = −0.71) and weight with height
(ρ = 0.51) (Figure 2).

For ML, cross-validation with an 8-fold split was performed (training n = 1065, test
n = 152). The performance of the ML algorithm for predicting complications showed a
sensitivity of 31.0%, a specificity of 89.4%, an accuracy of 80.3% and an area under the
receiver operating curve (AUC ROC) of 64.1%. Feature importance was subsequently
calculated. The highest feature importance for predicting complications was patient age,
height and weight before surgeon (Figure 3).

https://python.org
https://scikit-learn.org
https://github.com/FlorianH3000/ML_tabdata
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Figure 3. AUC ROC and feature importance for complication prediction. (A) Machine Learning
algorithm for complication prediction (green), AUC ROC = 0.64, (B) feature importance of the
prediction model; AUC ROC = area under the curve receiver operating characteristics. BMI, body
mass index.

An 8-fold cross-validation was also performed for the prediction of irregular surgery
duration. The performance of the ML algorithm showed a sensitivity of 58.2%, a specificity
of 91.6%, an accuracy of 81.7% and an AUC ROC of 89.1%. Patient age, weight and height
before intervention had the highest significance for predicting complications (Figure 4).
The outcome metrics for both prediction models are summarized in Table 3.

Table 3. Outcome metrics for the prediction models of complications and irregular surgery duration.

Prediction of Accuracy Sensitivity Specificity AUC *

Complications 80.3 31.0 89.4 64.1
Irregular Duration 81.7 58.2 91.6 89.1

* AUC = area under the receiver operating curve.
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4. Discussion

Current risk stratification tools do not provide actionable intelligence in clinical prac-
tice as their results cannot be directly transferred to clinical cases. Therefore, ML approaches
capable of improving preoperative decision making are gaining popularity. However, no
clinically applicable models have been developed yet, as predictive performances were
heterogeneously reported [8,13,14]. The most important finding of this study is that a
feasible ML model was developed for the prediction of complications and irregular surgical
durations in primary THA with a high accuracy by using data from two arthroplasty reg-
istries. In this context, we highlight our novel methodological approach: input parameters,
algorithm and output variables were carefully balanced by an orthopedic surgeon and a
data scientist. The most immediate consequence for everyday clinical practice is that a data
scientist should be involved in clinical processes.

ML models have predictive power, meaning they can correctly predict outcomes
over the course of time as they respond and adapt to complex data inputs. The aspect of
learning is achieved by function optimization: the algorithm seeks to determine the best
parameter constellations that will minimize the error when confronted with a novel dataset.
This training process relies on sufficient data that are complex enough to reveal specific
parameter constellations. In data science, the lack of data complexity may be countered
by large data volumes. Hence, most of ML applications in orthopedics utilize imaging
data [6]. Conversely, data concerning the outcomes of THA are stored in tabular form which,
however, has a significantly lower information density than imaging data, even compared
to extensive administrative data available in registries and hospital information systems.

Hence, the outcome to be predicted and the ML algorithm should be suited to the
applied dataset. Current tabular data volumes concerning THA forbid more complex
applications such as deep learning. Hence, even if arthroplasty-specific data are considered,
it does not necessarily imply that the prediction of multifactorial events such as revision
must be feasible. We assume that simpler surrogates are easier to predict with less extensive
datasets. Furthermore, the selection of a ML algorithm has a significant influence on the
model performance [15]. A variety of algorithms for specific tasks exists and the choice of a
suitable algorithm is difficult.

Noteworthy, a high number of different input parameters do not necessarily improve
the performance of a ML algorithm. Quite the contrary, feature selection techniques exist
to avoid overfitting and improve model performance by restricting the amount of input
parameters (i.e., cross-validation, data augmentation, L1/L2 regularization or removal
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of layers) [16]. From these methodological considerations, we hypothesized that a ML
application intended to predict specific outcomes based on tabular data in orthopedics
requires well-considered, specific input data. Hence, we assume that the methodological
and substantial discussion regarding the outcomes a priori to the computation of the ML
algorithm is mandatory in order to obtain meaningful results that seem clinically and
methodologically plausible. For this reason, complications in total were chosen as the
outcome label, since in our dataset single complications as listed by EndoCert occurred
too rarely. Hence, a representative prediction of specific complications was not technically
feasible. Similarly, the low data density for irregular surgery durations forbids the defini-
tion of a cut-off value applying continuous variables. Hence, a binary classification into
regular and irregular durations was established, with which accurate results could finally
be derived.

Interestingly, the prediction of complications yielded worse AUC and sensitivity
compared to the duration prediction. This is most likely due to the fact that irregular
durations were found almost twice as often as complications (13.2% vs. 21.9%). Hence,
a greater class imbalance of cases with and without complications was present so that a
highly sensitive prediction in the limited test set of only 152 cases was not achieved.

A particular challenge in the application of ML is that the decisions made by the
algorithm are not intelligible in retrospect. Such algorithms are referred to as black box
models, whose predications are based on a combination of variables from complex func-
tions which cannot be reproduced from neither the code nor the results. Black box models
have high predictive power, but if black box models are superior to interpretable models is
currently the subject of scientific research in the field of data science [17]. In this context, the
feature importance indicates to which extent a variable has been weighted by the ML model
without indicating a causal relationship nor unbiased associations. An interpretation of
the results and an evaluation of significant correlations have to be performed subsequently.
In this study, the highest feature importance for both complication and duration predic-
tion was age, height and weight. Younger patient age and obesity have previously been
described as risk factors in primary THA [18–20]. However, a significant finding of this
study is that these results were derived from the ML algorithm and have not been found
by classic statistical analysis using a logistic function model in this dataset, indicating the
successful feasibility of this approach.

Interestingly, the particular surgeon showed the fourth highest feature importance
in both prediction models. It is reasonable to assume that the individual surgeon has an
impact on the success of the procedure. However, it has been difficult to incorporate a
surrogate for the individual expertise of a surgeon into more conventional risk stratification
models so far. One of the strengths of ML is its ability to compute such daily clinical data.
However, even if the results are clinically comprehensible, they must be analyzed with
a data scientist for confounding and systemic errors. In this study, out of 17 surgeons,
3 surgeons performed 58% of the operations. Ten surgeons performed less than 10% and
eight surgeons performed less than 2% of the operations, respectively, resulting in a relevant
class imbalance. Complications occurring in cases of the latter surgeons are weighted far
greater and therefore most likely contribute to the high feature importance. However,
whether this result means that an experienced surgeon contributes significantly to fewer
complications and regular surgery times or that the presence of various inexperienced
surgeons biases this result by raising the feature importance, cannot be finally assessed
as the inherent decisions of the ML algorithm cannot be retrieved. In this context, it is
interesting to note that the experience of the surgeon as classified by EndoCert has only
a poor feature importance in this study. However, this finding has clinical relevance as
the surgeon and his experience should be included in further clinical evaluations of risk
factors in THA. Hence, these results are reason to (1) further investigate this correlation
with conventional statistical models and (2) to tackle the problem of class imbalance in
ML applications in arthroplasty. The latter may be assessed by external validation of the
algorithm with larger datasets. However, it is highly unlikely that class imbalance will be
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fully resolved in medicine, since the occurrence of adverse events will naturally always
be more seldom than the number of successful treatments. This is a desirable scenario
from a statistical point of view, since it corresponds to a Gaussian distribution and does not
induce a bias to the dataset. From a data science perspective, however, a class imbalance
impedes an increase in the results and has to be tackled through larger datasets so that
the class imbalance becomes less impactful and the algorithm can still learn patterns from
the data at hand. We therefore conclude that a profound discussion of the dataset and the
derived outcomes is critical, especially regarding the outlook of possible ML applications
as decision support systems in orthopedics, where decisions are at high stakes and the data
basis is rather small from a data science perspective.

Interestingly, diagnosis and implant type had low feature importance, although we
assumed otherwise. Whether substantive or methodological causes account for the missing
impact of these parameters in both ML algorithms remains unclear due to the black box
model. The most common diagnosis was primary osteoarthritis with 67.1% and the most
common implant type was primary implants with 76.6%. A potential impact of these param-
eters for the outcome prediction has to be revaluated with either a more balanced dataset
or by a detailed analysis of the various diagnoses and implant types in separate datasets.

This study has several limitations. The first and utmost relevant limitation is the
low data volume from a data science perspective. The data preparation as described
above resulted in an aggregation of data in categorical variables. This results in the loss
of potentially relevant information through the simplification of the dataset. Elaborate
information such as implant components differentiated by a manufacturer could not be
adequately addressed by this approach because there simply were not enough separate
datasets available. The generalization of these data may have led to a selection bias. Second,
the availability of data in both arthroplasty-specific registries was restricted. Weight and
height were only available in the registry since 2017. As both parameters demonstrated
relevant results in this study, we did not exclude them from the analysis despite the missing
data points. For this reason, however, we chose a ML algorithm capable of handling
missing data points. Although no relevant deviations are expected in the missing weight
and height data, the results may theoretically differ after inclusion. Third, the results of
this study are not generalizable as the algorithm is not externally validated. However, we
applied several statistical measures (e.g., cross validation, data split) to provide significance.
In this context, we highlight that we aimed to conduct a feasibility study with single-center
data. The results must therefore be interpreted under these circumstances.

In conclusion, after thorough calibration of input and output data as well as the
definition of outcome labels by an orthopedic surgeon and a data scientist, we were able
to build an accurate ML model for the prediction of complications and irregular surgery
durations for primary THA. Age, height, weight and the performing surgeon showed
the highest feature importance for both complication and duration prediction. These
parameters, however, were not assessed by conventional statistical evaluations. Therefore,
we recommend assessing arthroplasty-specific data in future clinical practice to build an
in-depth database for the clinical application of ML prediction models. For the successful
implementation of these data in ML applications, a data scientist should be directly involved
in the clinical workflows. Interdisciplinary analysis by a data scientist and an orthopedic
surgeon to comprehend the significance of identified parameters outside the scope of the
presented ML model is crucial to allow for accurate prediction models.
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