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Abstract: Background: More than one million people acquire sexually transmitted infections (STIs) ev-
ery day globally. It is possible that predicting an individual’s future risk of HIV/STIs could contribute
to behaviour change or improve testing. We developed a series of machine learning models and a
subsequent risk-prediction tool for predicting the risk of HIV /STIs over the next 12 months. Methods:
Our data included individuals who were re-tested at the clinic for HIV (65,043 consultations), syphilis
(56,889 consultations), gonorrhoea (60,598 consultations), and chlamydia (63,529 consultations) af-
ter initial consultations at the largest public sexual health centre in Melbourne from 2 March 2015
to 31 December 2019. We used the receiver operating characteristic (AUC) curve to evaluate the
model’s performance. The HIV /STI risk-prediction tool was delivered via a web application. Re-
sults: Our risk-prediction tool had an acceptable performance on the testing datasets for predicting
HIV (AUC = 0.72), syphilis (AUC = 0.75), gonorrhoea (AUC = 0.73), and chlamydia (AUC = 0.67)
acquisition. Conclusions: Using machine learning techniques, our risk-prediction tool has acceptable
reliability in predicting HIV /STI acquisition over the next 12 months. This tool may be used on clinic
websites or digital health platforms to form part of an intervention tool to increase testing or reduce
future HIV /STT risk.

Keywords: HIV; sexually transmitted infections; machine learning; risk prediction; behavioural
intervention

1. Introduction

HIV and sexually transmitted infections (ST1s) are global public health concerns [1,2].
The World Health Organization (WHO) estimates that more than one million people acquire
an STI every day. Given the rising rates of STIs, the WHO proposed the Global health sector
strategy on Sexually Transmitted Infections, 2016-2021, to end STI epidemics as public health
concerns by 2030, which included a 90% reduction in gonorrhoea incidence globally (2018
global baseline) and less than 50 cases of congenital syphilis per 100,000 live births in 80%
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of countries [3]. In 2018, the 2030 agenda for sustainable development called for an end
to the AIDS epidemic by 2030 [4]. One key strategy to reduce the incidence of HIV /STIs
is to increase testing [5-7]. Barriers to testing include poor perception of HIV /STI risk,
limited availability of testing, and cost [8]. Additionally, a delayed HIV diagnosis was also
a common problem and caused numerous adverse health consequences [9,10]. Web-based
apps for screening could effectively increase the uptake of health screening [11] and have
usability and acceptability among users [12]. Predicting an individual’s future risk of
HIV /STIs could contribute to behaviour change or improve testing. To the best of our
knowledge, no web-based prediction tool has yet been developed to predict an individual’s
risk of acquiring HIV /an STI over the next 12 months.

Machine learning algorithms have advantages for developing predictive models, such
as not requiring statistical inferences or assumptions, being data driven, automatically
learning from data that identifies complex nonlinear patterns, and exploiting complex
interactions between risk factors [13]. Machine learning models have been used to predict
the future risk of other conditions such as suicide [14,15], type 2 diabetes [16], Alzheimer’s
disease [17], and myocardial infarction [18]. Two studies using electronic health-record
data from the USA reported that machine learning could accurately predict future HIV
infection. A study in Massachusetts, USA, reported that models using routinely collected
data from electronic health records (EHR) and machine learning could accurately predict
the one-year risk of acquiring HIV [19]. Another study from Kaiser Permanente Northern
California, USA, reported that by using machine learning, EHR-based HIV-risk models
could accurately predict an incident HIV diagnosis within three years based on 81 predic-
tors [20]. However, none of these models have been translated into a risk-prediction tool
for predicting HIV over the next 12 months. Although a few studies have been conducted
on future HIV prediction, no research has been published using machine learning methods
to predict syphilis, gonorrhoea, and chlamydia acquisition over the next 12 months among
males and females.

The purpose of this study was to use machine learning models, including bagging,
boosting, and stacking algorithms [21], and routinely collected data in the clinical settings
to predict HIV and three common STIs (syphilis, gonorrhoea, and chlamydia) acquisition
over the next 12 months among males and females.

2. Materials and Methods
2.1. Study Data for 12-Month HIV/STI Risk-Prediction Tool Development

We used EHR data at the Melbourne Sexual Health Centre (MSHC) to develop and
validate the machine learning model. The MSHC is the largest public sexual health centre
in Melbourne, Australia. In the MSHC, individuals” demographic information, sexual
practices, overseas sexual contact, and history of engaging in sex work are recorded at each
visit using a computer-assisted self interview [22]. We used data from 2 March 2015 to
31 December 2019. We did not include data from 2020 because the COVID-19 epidemic
could have changed the re-testing patterns and sexual practices of those attending the
MSHC [23,24]. Transgender people and individuals aged below 18 years were excluded.
The study was approved by the Alfred Hospital Ethics Committee, Australia (Project
Number: 124/18). All methods were carried out following the relevant guidelines and
regulations of the Alfred Hospital Ethics Committee.

A new diagnosis of HIV was based on serology and required a previous negative
test. A diagnosis of syphilis was based on a clinician classifying the infection as early
syphilis (primary, secondary, and early latent (<2 years)) using serology or a polymerase
chain reaction (PCR). A diagnosis of gonorrhoea was based on a culture or a nucleic acid
amplification test (NAAT) at one or more anatomical sites. A diagnosis of chlamydia was
based on an NAAT at one or more anatomical sites. Our analysis included 65,043 consul-
tations that had tested for HIV, 56,889 consultations for syphilis, 60,598 consultations for
gonorrhoea, and 63,529 consultations for chlamydia. For the syphilis, gonorrhoea, and
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chlamydia analysis, the detailed inclusions and exclusions are in Tables S1a,b. Details of
the data-cleaning procedure are provided in the Supplementary File.

2.2. Predictors for 12-Month HIV/STI Risk Prediction

We extracted routinely collected data from the EHR, including self-reported questions
at the first visit for each visit interval (described below). The feature selection was informed
by the literature review, expert opinion, and previous work [25]. This baseline predictor
data for modelling included gender, age (>18 years old), country of birth, sexual practices
(e.g., had sex with a sex partner in the last 12 months, number of sex partners in the last
12 months), condom use with sex partners in the last 12 months, pre-exposure prophylaxis
(PrEP) use, presenting with STI symptoms, living with HIV (for STI prediction), and
reported sexual contact with partners with an STI (gonorrhoea, chlamydia, or syphilis)
(summarised in Tables 1 and S2).

Table 1. Characteristics (proportion or median value) of the included subjects stratified by HIV and
STIs over the next 12 months.

HIV Syphilis Gonorrhoea Chlamydia
Predictors No Yes No Yes No Yes No Yes
n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)
Gender
16,478 o 14,476 o 18,018 298 18,652 687
Female 54%) 1A% oggey  12(16%) (3790, (7.3%) BL6%)  (15.0%)
Male 48,499 65 41,663 738 38,521 3761 40,299 3891
(74.6%) (98.5%) (74.2%) (98.4%) (68.1%) (92.7%) (68.4%) (85.0%)
Men who have sex
with men
5797 o o o 5036 o 6713 403
No (12.0%) 1 (1.5%) 3854 (9.3%) 14 (1.9%) (13.1%) 55 (1.5%) (16.7%) (10.4%)
Yes 42,702 64 37,809 724 33,485 3706 33,586 3488
(88.0%) (98.5%) (90.7%) (98.1%) (86.9%) (98.5%) (83.3%) (89.6%)
Country of birth
Australia 30,473 29 25,887 355 25,587 2023 27,081 2112
(46.9%) (43.9%) (46.1%) (47.3%) (45.3%) (49.8%) (45.9%) (46.1%)
Overseas 31,978 34 28,099 367 28812 1900 29,684 2310
(49.2%) (51.5%) (50.1%) (48.9%) (51.0%) (46.8%) (50.4%) (50.5%)
Ly 0, o 0, 0, 0, 136 0, 156
Missing 2526 (39%)  3(45%)  2153(38%) 28(37%) 2140 (38%) (34 2186B7%) (370
Age at
consultation
Median [IQR] 29.0 30.5 29.0 30.0 29.0 29.0 29.0 28.0
(25.0,35.0) (27.0,43.0) (25.0,36.0) (26.0,37.0) (25.0,35.0) (25.0,34.0) (25.0,35.0) (24.0,34.0)
Current PrEP use
No 62,195 64 53,496 658 53,998 3656 56,519 4167
(95.7%) (97.0%) (95.3%) (87.7%) (95.5%) (90.1%) (95.9%) (91.0%)
o . . 92 o 403 o 411
Yes 2782 (43%)  2(3.0%) 2643 (47%) (1930,  2541@5%)  (gguy  2432(41%) (g0
Current sex
worker
No 57,383 65 49,068 736 49,458 3902 51,981 4418
(88.3%) (98.5%) (87.4%) (98.1%) (87.5%) (96.1%) (88.2%) (96.5%)
7594 o 7071 o 7081 157 6970 160
Yes (11.7%) LAS5%)  (oe%)  14A9%) (1559 (3.9%) (11.8%) (3.5%)

Note: IQR: interquartile range.
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2.3. Model Development and Training for Building a 12-Month HIV/STI Risk-Prediction Tool

We established a series of linear and nonlinear machine learning models that involved
Regression Algorithms, including Multivariate Logistic Regression (MLR) and Elastic-Net
Regression (ENR); Support Vector Machine Algorithms, including the Linear Support Vector
Machines (without kernel extensions) (SVM (Linear)), SVM with a Polynomial Basis Kernel
(Kernel SVM (Polynomial)), and SVM with a Radial Basis Function Kernel (Kernel SVM
(RBF)); Bagging Ensemble Algorithms, including the Bagged Flexible Discriminant Analysis
(Bagged FDA), Bagged Flexible Discriminant Analysis using Generalised Cross Validation
(Bagged FDA using gCV Pruning), Bagged Multivariate Adaptive Regression Splines using
Generalised Cross Validation (Bagged MARS using gCV Pruning), Random Forest (RF), and
Conditional Inference Random Forest (CIRF); Boosting Ensemble Algorithms, including
the Boosted Generalised Linear Model (Boosted GLM), Gradient Boosting Machines (GBM),
and eXtreme Gradient Boosting (XGBoost). Based on our unpublished work, we also built a
stacking model with 3 base models: ENR+GBM+RE. We also developed Naive Bayes (NB),
K-Nearest Neighbour (KNN), and multi-layer perceptron (MLP). MLR, ENR, GBM, RF, NB,
MLP, and the stacking ensemble learning model (ENR+GBM+RF) were built using the h2o
package. The bagged FDA, bagged FDA using gCV Pruning, and bagged MARS using
gCV Pruning was built using the earth package. CIRF was built using the party package.
The Boosted GLM was built using the mboost package. XGBoost was built using the xgboost
package. KNN was built using the kknn package. The SVM(Linear) were built using the
1071 package. The Kernel SVM (Polynomial) and Kernel SVM (RBF) were built using the
kernlab package.

We used random-forest-based imputation to handle the missing data. The random-
forest-based imputation was built using the mice package in R. Our machine learning
models used a one-hot encoding scheme on the category variables. We used the nested cross
validation (five outer folds, ten inner folds) method for the STI models to better estimate
the generalisation error and solve the overfitting and selection bias caused by using a single
dataset for the model selection and model training [26]. The external cross validation loop
was repeated five times to solve the variance caused by the choice of the dataset to split.
The prevalence of each of the four infections was below 10%, which means the data were
imbalanced. Imbalanced data may cause either over-fitted or under-performed prediction
results [27]. We used random under sampling in the training dataset to address the data
imbalance to solve the class imbalance problem. Furthermore, an inner 10-fold CV loop
was created for each model to select the tuning hyper-parameters for the maximised area
under the ROC curve (AUC) on the training fold [28]. For the HIV models, we used an
80:20 random under-sampling split based on the outcome (HIV infection status) to create
a training dataset and testing dataset for the analysis due to only 0.1% of consultations
having a positive HIV result. All of the HIV models were trained using the training dataset
with a ten-fold cross validation method and assessed the model performance on the testing
dataset. Considering our datasets had data imbalances, the performance of the machine
learning models was evaluated with the area under the receiver operating characteristic
curve (AUC) and F1 score. Besides, we used the variable importance analysis of HIV,
syphilis, gonorrhoea, and chlamydia to estimate the contribution of each of the predictors
for the four infections.

The machine learning models and statistical analyses were conducted with R 3.6.1 and
R Studio 1.2.5019. We used frequencies, percentages, the median, and the interquartile range
(IQR) to present the descriptive analysis. We used Poisson regression to calculate incidence
rates. We used MATLAB R 2019a (The Mathworks, Natick, MA, USA) to plot figures.

2.4. Twelve-Month HIV/STI Risk Estimate

We used the machine learning model output probability to calculate the HIV /STI
risk over the next 12 months. Our machine learning models predicted the probability
of HIV/an STI with a normalised distribution between the values 0 and 1. The model-
predicted probability was calibrated to the actual prevalence level of the HIV/STI in the
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following manner. First, we ranked the model-predicted probability for each individual in
ascending order for the best-selected model. Second, we divided the model testing datasets
into 200 probability subgroups. This generated 200 data points for each model-predicted
probability and infection prevalence. The choice of 200 was arbitrary but ensured at least
100 individuals were included in each subgroup. Third, we fitted the data using a logistic
function to provide a fitting curve for each model-predicted probability and infection
prevalence. The calibration process was performed in MATLAB R2019a (details in the
Supplementary Materials).

2.5. Establishment of the 12-Month HIV/STI Risk-Prediction Tool and Implementation of the Tool
on a Web Server

According to the results of the variable importance analysis for all the variables, our
final HIV /STI risk-prediction questionnaire was made up of the most important predic-
tors. We used the AUC sensitivity and specificity to re-evaluate the model’s performance.
Additionally, we also used the AUC to compare the performance between the best ma-
chine learning model using all predictors and the best machine learning model using
selected important predictors. Our machine-learning-based risk-prediction tool was de-
veloped as a web application using the Shiny R package. Details are in the Section 3 and
Supplementary Materials.

3. Results
3.1. Characteristics of the 12-Month HIV/STI Risk-Prediction Tool Development Data

The proportion of consultations that tested positive over the next 12 months for each in-
fection between 2 March 2015 and 31 December 2019 was: 0.10% (66/65,043) for HIV, 1.32%
(750/56,889) for syphilis, 6.70% (4059/60,598) for gonorrhoea, and 7.21% (4578/63,529) for
chlamydia. The median age of the individuals was 29.00 (IQR 24.00-43.00) for the four
infection datasets (Table 1). Further details are provided in the Supplementary Materials
(Table S2).

The incidence was 0.21 [95%CI: 0.17-0.27] per 100 person years (PY) for HIV, 3.42
[95%CI: 3.18-3.67] per 100 PY for syphilis, 17.56 [95%CI: 17.02-18.10] per 100 PY for
gonorrhoea, and 18.50 [95%CI: 17.97-19.04] per 100 PY for chlamydia (Table S3). The
Kaplan-Meier survival curves for each infection are shown in Figure S1.

3.2. Selecting the Best Machine Learning Model for 12-Month HIV/STI Risk-Prediction Tool

Of the 17 models, the receiver operating characteristic (ROC) curve that showed the
best prediction models for HIV was the Boosted GLM (AUC = 0.73), for syphilis was
the Boosted GLM (AUC = 0.76), for gonorrhoea was the ensemble Elastic-Net Regression
(ENR)+ Gradient Boosting Machines (GBM)+ Random Forest (RF) (AUC = 0.73), and for
chlamydia was the ensemble ENR+GBM+RF (AUC = 0.67). Details of the model-evaluation
metrics are shown in the Tables 54-519.

3.3. Selecting the Most Important Predictors for the 12-Month HIV/STI Risk-Prediction Tool

The results of the variable importance analysis showed the contribution of the pre-
dictors for HIV, syphilis, gonorrhoea, and chlamydia acquisition over the next 12 months.
The variable importance varies between 0 and 1, with higher values indicating a stronger
contribution to the prediction. We used the Boosted GLM variable importance analysis to
identify the top predictive factors for HIV and the GBM variable importance analysis for
syphilis, gonorrhoea, and chlamydia. Based on the variable importance analyses for HIV,
syphilis, gonorrhoea, and chlamydia, the factors that contributed the most to predicting
HIV /STIs over the next 12 months included age, gender, sex worker, men who had sex with
men in the past 12 months (MSM), country of birth, contact with a chlamydia case, contact
with a syphilis case, the number of casual male sexual partners in the past 12 months,
condom use with male partners in the past 12 months, condom use with female partners in
the past 12 months, drug use, PrEP use, sex overseas in the past 12 months, HIV infection,
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past chlamydia, past gonorrhoea, past syphilis, past hepatitis B, past genital warts, and
past other STIs (Figure 1).

a

Gender

Mden uho have sex with men

Drug use

Past hapatis B

Gontact with a chlamydia case|

Past othar 5Tl infections

Condoms use with male partners in the past 12 months|
Past gonorrhoeal

Condoms use with fermale partiers in the past 12 months

Number of casual female sexual partners in the past 12 months

b

HIV over the next 12 months syphilis over the next 12 months

Men who have sex with men

Gender

Pas! syphilis infection

Aga

Number of casual male sexual partners in the past 12 months
Condoms use with mals parmers in the past 12 months

Prep use

Sex overse in the past 12 months

Condoms use with female partners in the past 12 months|

o CHEEY

Past gonorhoss|

a 0z 03 09

0 o1 02 03 D04 05 08 07 08 08 1 0 o1 04 05 08 07 08 1
Relative Importance Relative Importance
C gonorrhoea over the next 12 months chlamydia over the next 12 months
Men whe have sex with men Men who have sex with man
Age Rge 4
Murniber of casual male sexusl partners in the past 12 months Humber of casual male sexual partners in the past 12 months
Condoms use with mals partners in the past 12 months
Gender| o Al :lil
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Past gonarhoeal
%l Condams use with female partners in the past 12 months [1]
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Past chiamytiaf] HIV intection |[]
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Figure 1. Variable importance analysis for predicting (a) HIV, (b) syphilis, (c) gonorrhoea, and
(d) chlamydia over the next 12 months.

3.4. Establishment of the 12-Month HIV/STI Risk-Prediction Model

We built a risk-prediction model for HIV /STIs over the next 12 months using the
most important predictors and the best model. Our risk-prediction model obtained an
acceptable performance for predicting HIV (AUC = 0.72), syphilis (AUC = 0.75), gonorrhoea
(AUC = 0.73), and chlamydia (AUC = 0.67), similar to its original model based on all the
predictors (Figure 2, Tables S20 and S21). Details are shown in the Supplementary Materials.

3.5. Twelve-Month HIV/STI Risk Estimates and User Interface

To estimate the risk of twelve-month HIV /STIs, we fitted the data using a logistic
function to provide a fitting curve for each model-predicted probability and infection
prevalence (see Figures S2-S5). Details are shown in the Supplementary Materials. Our
machine learning models were translated into a risk-prediction tool for predicting HIV /STIs.
Our machine-learning-based risk-prediction tool was developed as a web application using
the Shiny R package that creates the web-based tool named MySTIRisk. A prototype version
of the tool is available at https:/ /ystirisk.shinyapps.io/mystirisk, accessed on 1 March
2022. Figure 3 shows our proposed design for the user interface. The user interface has five
modules: (1) the questionnaire survey module, (2) data-processing module, (3) HIV/STI
risk prediction over the next 12 months, (4) testing recommendations, and (5) suggestions
for risk reduction (Figure 3). Details are provided in the Supplementary File.
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Figure 2. The area under the ROC curve (AUROC) of a risk-prediction tool for predicting HIV /STIs
over the next 12 months on testing datasets. STI: syphilis, gonorrhoea, and chlamydia.

MySTIRisk: HIV/STI Risk over the next 12 months

Predicting HIV, syphilis, gonorrhoea, and chlamydia with machine learning algorithms over the next 12 months

Displayed below are the risks of chlamydia, gonorrhoea, syphilis and 111V for a person and reports the risks as you have over the next 12 months.
Please remember your risk of HIV/STI may change over time.

PLEASE NOTE these may not be the same as your risks and will depend on your personal circumstances

A prototype version of the tool is available at, https://mystirisk.shinyapps.io/mystirisk

Welcome to My STI Risk

This machine learning program was
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similar to those attending our service. If you
are NOT similar it is likely the program will
overestimate your risk.
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having syphilis, gonorrhosa, chlamydia or HIV.
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these in the next 12 months.
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Figure 3. 12-month HIV /STI risk-prediction tool’s interface and output. STI: syphilis, gonorrhoea,

and chlamydjia.
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4. Discussion

This is the first risk tool we are aware of that uses machine learning algorithms and
routinely collects clinical data to predict the risk of acquiring HIV, syphilis, gonorrhoea, and
chlamydia over the next 12 months. Our results showed that machine learning techniques
could predict the risk of HIV and STIs over the next 12 months with acceptable reliability.
Given that this tool uses routinely collected data and provides an immediate future risk,
it has a number of potential applications. The potential applications include a web-based
program for the public to assess their own future risk or to help clinical services triage
high-risk individuals for further frequent screening or early public health interventions.
Additional validation in other populations will be needed to evaluate the usefulness of
this risk-prediction tool in other countries and regions. Future research should also focus
on how best to communicate infection-risk information to the public and use it effectively
to encourage them to increase testing or reduce risk and avoid over testing, anxiety, and
false reassurance.

Risk prediction tools have been used as a part of interventions in other conditions,
including COVID-19 [29,30], cardiovascular diseases [31,32], dementia [33], type 2 diabetes
mellitus [34,35], cancer risk [12,36,37], autism [38], and falls [39]. These tools are generally
well accepted by users in both public [31-36] and health professional domains, although
they have mainly been used by health care professionals [30]. The interventions can
result in an increased uptake of health information or services, such as screening [11].
For example, a large U.S. cohort used a web-based screening tool and substantially more
participants sought information for their mental health [40]. Similarly, a screening app
for mental health identified 159 patients from 733 users who were then advised to seek
specialised care, of whom 55% started seeing a specialist [41]. Screening risk-assessment
tools can also reduce unnecessary screening, as shown by a lung cancer tool that reduced
the screening description among those ineligible for screening [37]. The use of apps to assess
cardiovascular risk has been advocated as a method of identifying more at-risk individuals
who can then access treatment within populations as an ‘add-on’ tool to enhance primary
prevention [42]. These authors and others, such as the WHO, comment on the paucity
studies investigating the application of risk-assessment tools specifically directed to the
public [43,44]. The studies described here highlight the complexity of risk-assessment tools
for the public and suggest that improving an individual’s risk perception may lead to better
healthcare-seeking behaviour. In a similar vein, previous authors have confirmed that an
increase in the risk perception of an STI will likely improve subsequent healthcare use,
such as testing or screening [45].

Based on these previous works on risk-assessment tools for other conditions, it is
likely that our web-based HIV /STI risk-prediction tool may improve patient care, such
as by improving access to sexual health care and increasing uptake and frequency of
HIV/STI testing. For example, in California in the United States, a machine learning
approach has been used to identify individuals at high risk of HIV and maybe a potential
candidate for PrEP [20]. This information could be used to prompt clinicians to customise
their intervention for the high-risk population in the clinical setting. However, recent
reviews have indicated a relative lack of work relating to the use of Al in promoting HIV
testing, and have attributed this lack to limited communication across the many different
disciplines that are required for this type of research [46,47]. Individuals who use the
tool may increase their HIV /STI risk perception and enable early screening or testing
that is essential for HIV /STI prevention and control [48]. Our machine learning models
identified some important predictors for HIV/STI acquisition over the next 12 months,
consistent with previous studies. Previous research found various factors related to a high
risk of incident HIV /STI, such as MSM [49], age (older for HIV and younger for STIs) [50],
symptoms of or previous STIs [51], inconsistent condom use, PrEP use, and injecting drug
use [52]. Providing our risk-prediction tool to these high-risk populations may improve the
HIV/STI testing rate. However, we are also aware of the potential risk that an inappropriate
interpretation of the risk score may lead some high-risk individuals to reduce their testing
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or some low-risk individuals to possibly test inappropriately. It is also possible that the tool
may lead to an increase in anxiety about HIV/STIs in some individuals. However, even for
cancer risk assessment, this concern was relatively minor for the case of breast cancer risk
prediction [12].

Our web-based HIV /STI risk-prediction tool may offer a useful method for potential
sexual behavioural interventions to reduce future HIV /STI risk in addition to just promot-
ing testing [53]. An example of this exists in cardiovascular risk where researchers used
an individual’s risk as part of an intervention for better lifestyle behaviours, including
reducing smoking, more exercise, improving nutrition, and less stress [54]. The intervention
group in this trial was shown to have more than two times a reduction in the Framingham
scores for cardiovascular diseases than the control group over the next 12 months [54].
Therefore, in addition to potentially increasing testing, our HIV /STI risk-prediction tool
could be incorporated into other preventive interventions, such as using PrEP. Such an
addition would address one of the major challenges to increasing the PrEP update, which
is identifying individuals who may benefit from HIV PrEP [55]. Nevertheless, we are
aware of the possibility that providing risk scores and suggestions may not significantly
change the targeted behaviour, as demonstrated by a randomised controlled trial study
on cancer risk [56]. We recommend further controlled studies to examine if our HIV /STI
risk-prediction tool would alter both short- and long-term behaviours.

This study has several limitations. First, the validity of the results depends on the
accuracy of the self-reported information, which is subject to recall, non-response, and the
social-desirability bias. Substantial work has been undertaken on our computer-assisted
self-interviewing (CASI) system’s validity and accuracy to ensure it performs well [57].
Second, the biggest challenge in developing our HIV risk-prediction model was the low
incidence of HIV [19]. The HIV dataset had highly imbalanced data, with only 0.1% of
the consultations having a positive HIV result. To address the problem of the limited HIV-
positive samples in our machine learning training models, future machine learning models
may employ more sophisticated machine learning techniques (e.g., transfer learning) [58],
which may improve the accuracy of the models. In addition, the HIV data included a
very small proportion of females, so our findings may not be generalisable to female users.
Third, we used data from one clinic that services a population with a specific incidence
of infection and demographic characteristics. This may not be representative of other
population groups in the country or other global settings. Therefore, if users accessing
the tool are not similar to those attending our clinical services, the risk estimate may be
incorrect. However, one study comparing our clinic attendees and users accessing the
MSHC website demonstrated similar characteristics and behaviour [59]. Further validation
will be required if the prediction tool is used in other countries and regions. Fourth, the
risks of HIV have changed rapidly over time and may continue to change. For example,
the introduction of PrEP reduced HIV risk substantially, but condom use declined in the
pre-exposure prophylaxis era [6]. Fifth, our models did not include data among individuals
who tested positive on the day they conducted their questionnaire. This means that our
estimated risk may be lower than it would have otherwise been. We did so to ensure that
we measured the incidence of HIV /STI correctly. Sixth, the tool may be further improved
by including more detailed behavioural information. For example, kissing and sequential
sexual practices may contribute to gonorrhoea infection at more than one anatomical
site [60]. Future HIV/STI predictive models may include these factors to improve the
model’s accuracy.

5. Conclusions

Our study demonstrates that EHR-based machine learning can predict HIV/STIs over
the next 12 months. Based on the EHR in one of Australia’s largest sexual health clinics, our
web-based risk-assessment tool has an acceptable reliability in predicting the risk of HIV
and three recurrent and asymptomatic STIs over the next 12 months. The risk-assessment
tool can also be incorporated into a clinic to promote future HIV /STI testing or identify
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individuals for HIV pre-exposure prophylaxis or early interventions for the reduction in
future HIV/STI risk. Further validation studies in other countries can assess the usefulness
of this risk-assessment tool, which helps reduce HIV /STl incidence and the cost of HIV /STI
screening that requires expensive equipment and specialised expertise.
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