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1 Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
iwona.sidorkiewicz@umb.edu.pl (I.S.); ahsan.hameed@umb.edu.pl (A.H.); adamkretowski@wp.pl (A.J.K.)

2 Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok,
15-276 Bialystok, Poland

3 Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok,
15-276 Bialystok, Poland

* Correspondence: angelika.buczynska@umb.edu.pl (A.B.); monikazbucka@wp.pl (M.Z.-K.);
Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)

Abstract: Autosomal aneuploidies are the most frequently occurring congenital abnormalities and
are related to many metabolic disorders, hormonal dysfunctions, neurotransmitter abnormalities,
and intellectual disabilities. Trisomies are generated by an error of chromosomal segregation during
cell division. Accumulating evidence has shown that deregulated gene expression resulting from
the triplication of chromosomes 13 and 18 is associated with many disturbed cellular processes.
Moreover, a disturbed oxidative stress status may be implicated in the occurrence of fetal malforma-
tions. Therefore, a literature review was undertaken to provide novel insights into the evaluation
of trisomy 13 (T13) and 18 (T18) pathogeneses, with a particular concern on the oxidative stress.
Corresponding to the limited literature data focused on factors leading to T13 and T18 phenotype
occurrence, the importance of oxidative stress evaluation in T13 and T18 could enable the determi-
nation of subsequent disturbed metabolic pathways, highlighting the related role of mitochondrial
dysfunction or epigenetics. This review illustrates up-to-date T13 and T18 research and discusses
the strengths, limitations, and possible directions for future studies. The progressive unification of
trisomy-related research protocols might provide potential medical targets in the future along with
the implementation of the foundation of modern prenatal medicine.

Keywords: oxidative stress; trisomy 18 syndrome; trisomy 13 syndrome

1. Introduction

Trisomy 13 (T13), resulting in Patau syndrome, is a chromosomal condition with a
prevalence rate of 1/5000 to 1/20,000 [1–3]. Trisomy 18 (T18), causing Edwards syndrome,
is another frequent autosomal aneuploidy after Trisomy 21 (T21), affecting 1/6000 to 1/8000
live-birth fetuses [2,4]. The most frequent mechanism responsible for the apparition of com-
plete homogenous T13 occurrence is the complete triplication of chromosome 13, generally
resulted from maternal nondisjunction in meiosis. Additionally, less frequently, T13 occurs
as a result of an unbalanced Robertsonian translocation and mosaicism formation [5]. T18
occurs most frequently as a result of complete 18 trisomy due to a maternal meiotic nondis-
junction, which is the most common form (94%) [6]. Mosaic trisomy 18 is the second cause
corresponding to fewer than 5% of occurrences, and fewer than 2% of cases are caused
by an additional copy of long arm chromosome 18q [7]. These chromosomal aberrations
generate many congenital abnormalities such as heart defects, gastrointestinal defects, tra-
cheoesophageal abnormalities, endocrine disorders, vision and hearing disorders, and limb
and nervous system anomalies [8–10]. Following the complexity of existing comorbidities,
numerical chromosomal aberration, such as T13 and T18 are one of the main causes of
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miscarriage or stillbirth [11]. However, along with improvements in clinical management,
an increasing survival rate of patients with these syndromes has been reported [4,12–17].

Recently, a broad range of genetic diseases have been investigated for the implications
with oxidative stress and mitochondrial dysfunction in their pathogenesis [18]. Moreover,
a growing number of studies have recently demonstrated that oxidative stress formation
results from trisomy occurrence [19–23] and was observed to be responsible for the T21 phe-
notype [24–26]. T13 and T18 are the most frequently autosomal chromosome aberrations,
excluding T21, where the pathogenesis of this chromosomal aberration is largely known,
and numerous studies have been conducted [5,7,27–29]. The pathogenic changes related to
T13 and T18 may also be associated with oxidative stress with important causative genes
being primarily involved in the redox balance regulation. Comprehensive studies concern-
ing the evaluation of the trisomies’ pathomechanism could explain the development of
some malformations and the importance of oxidative stress, which can lead to a better
understanding of the effects of the occurrence of these trisomies [4,30,31]. Consequently, a
literature review was undertaken to provide novel insights into trisomy 13 and 18 patho-
geneses, with a particular emphasis on the effects of oxidative stress. We highlight that this
study may not meet the standards of a conventional literature review. However, our review
provides suggestions that support the development of prenatal medicine. Bearing in mind
the limited literature data, this hypothesis was supported with investigations performed in
the field of T21 oxidative stress described below.

2. Materials and Methods

The literature review was performed by searching different databases, including
MEDLINE, PUBMED, and the Cochrane Library, according to the PRISMA and EQUATOR
network guidelines [10–13], and was updated to December 2021, with no restrictions on
the date of publication. This literature review followed the registered PROSPERO protocol
(CRD42022298553) (Figure 1).
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For this study, a review of the current literature regarding T13 and T18 evaluation was
performed. The keywords used in the literature search were as follows: oxidative stress,
trisomy 18, trisomy 13, trisomy 21, Edwards syndrome, Patau syndrome, Down syndrome,
pathogenesis, antioxidant therapy, and potential therapy. Studies evaluating the latest
reports based on pathogenesis, the impact of oxidative stress, and potential therapeutic
target pathways were included. Moreover, the papers with inappropriate conclusions,
study design, or irrelevant reporting were excluded during revision process.

3. Oxidative Stress: An Overview

All biological processes constitute a redox equilibrium, i.e., balanced oxidation and
reduction reactions, to ensure convenient homeostasis [34]. Oxidative stress occurs due to
a reduction in antioxidant defense caused by defects in the defense mechanisms and/or in-
creased reactive oxygen species (ROS) synthesis [35]. ROS generation is directly associated
with oxidized damage in biological components such as proteins, lipids, and DNA [36].
These deteriorations are mostly caused by O2

− (superoxide radical), OH– (hydroxyl radi-
cal), and H2O2 (hydrogen peroxide) [37,38]. Recent studies have shown that mitochondrial
dysfunction caused by oxidative stress plays an important role in neuronal damage and neu-
rodegenerative diseases, which can be directly connected to the trisomic phenotype [36,39].
Mitochondrial respiratory chain complexes (MRCCs) play a key role in antioxidant defense
by acting through the electron transport chain to oxidize hydrogen from the oxidation
of organic acids with atomic oxygen to neutralize and expel hydrogen into water [36].
These complexes subsist as V cooperating units, which catalyze the phosphorylation of
adenosine diphosphate (ADP) to adenosine triphosphate (ATP). Complex I is composed
of nicotinamide adenine dinucleotide (NADH) coenzyme Q; complex II is composed of
succinate dehydrogenase coenzyme Q; complex III is composed of coenzyme Q-cytochrome
c reductase; complex IV is composed of cytochrome c oxidase; and complex V is composed
of ATP synthase [40]. The MRCC is mostly exposed to oxidative stress through an increase
in the possibility of oxidative damage caused to mitochondrial DNA (mtDNA), antioxidant
proteins, and enzymes such as superoxide dismutase, catalase, glutathione peroxidase,
and glutathione reductase in this complex, which may result in a subsequent additional
increase in the intensity of the oxidative stress [41].

4. Previously Established T13 and T18 Pathogenesis—An Indicator for Oxidative
Stress Testing

It has been shown that the composition of amniotic fluid, which is produced daily
by the fetal urinary and respiratory systems using products of fetal skin keratinization, is
similar to that of fetal plasma at the end of the second trimester [42,43]. Consequently, the
concentrations of fetal proteins in second-trimester amniotic fluid are directly correlated
with the concentrations in fetal serum, the analysis of which would facilitate the discovery
of trisomy 13 and 18 pathogeneses [44–47]. Due to this fact, amniotic fluid appears to
be the most useful material for analyzing abnormalities occurring in T13 and T18 fetal
development [48].

One of the first studies, performed by Vrachnis, focused on resistin and leptin evalu-
ations and showed that their deregulation may be implicated in T13 and T18 pathogene-
ses [31]. Resistin is a 12.5 kDa polypeptide secreted by adipocytes involved in insulin
resistance development. Moreover, resistin is a potential marker of chronic inflammation
associated with increased oxidative stress [49]. More interestingly, resistin can affect the
function of nitric oxide synthase (eNOS) systems, resulting in a significant decrease in
eNOS expression and nitric oxide (NO) production, thereby having antioxidative prop-
erties [31,50]. Leptin, a hormone released from the adipocytes, in addition to influenc-
ing the feeling of hunger, is also involved in antioxidant defense by decreasing ROS
production [51].

Another study, performed by Hsu et al., aimed to evaluate T18 pathogenesis and was
conducted on second-trimester amniotic fluid samples collected from six confirmed T18
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pregnancies. The other six euploid pregnancies were enrolled as the control group [30]. The
comparative proteomics analysis was performed using fluorescence-based two-dimensional
difference gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF/MS). The concentration of amniotic fluid
apolipoprotein A1 (ApoA1) was increased in the T18-delivered samples compared to the
euploid fluid samples [30]. Furthermore, the study demonstrated the deregulation of four
proteins in T18 pregnancies: alpha-1-antitrypsin (A1AT, also known as serpin 1), vitamin
D-binding protein (VDBP), insulin-like growth factor-binding protein 1 (IGFBP-1), and
transthyretin (TTR) [30] (Table 1). ApoA1 is frequently used as a biomarker to predict
cardiovascular diseases [45]. Its involvement in T18 could be associated with impaired lipid
metabolism due to cardiovascular and neurological comorbidities during T18 early fetal de-
velopment [46,52,53]. Moreover, the dysregulated ApoA1 expression could also correspond
to the oxidative damage observed in trisomy 21-based studies [22,54]. Concluding, ApoA1
plays a meaningful role in the pathogenesis of ES. A1AT is involved in the protection of
neurons and glial cells from oxygen and glucose deprivation [55]. VDBP is an important
component of many biochemical processes, including the transport of vitamin D and its
metabolites, ensuring proper homeostasis. VDBP also controls essential proteins for proper
bone metabolism, binding fatty acids, sequestering actin, and modulating oxidative and
immune defenses [56,57]. IGFBP-1 serves as a carrier protein for insulin-like growth factors
1 and 2 (IGF1 and IGF2)—important determinants of fetal growth during pregnancy [58].
TTR gene mapped on 18q12.1 encodes a serum- and cerebrospinal fluid-binding protein
for thyroxine and retinol implicated in fetal development [59]. Using a biological network
analysis of T18 pathogenesis, Hsu et al. showed that the protein expression profile is
associated with a lipid- and hormone-disturbed metabolic processes, improper immune
response mechanisms, and cardiovascular comorbidities potentially connected to increased
oxidative stress [30] (Table 1).

Table 1. Disturbances in protein concentrations related to T13 and T18 pathogeneses [30,31].

Material Protein Full Name Form of
Dysregulation Reference

Amniotic fluid T18 pregnancy A1AT alpha-1-antitrypsin down [30]
Amniotic fluid T18 pregnancy ApoA apolipoprotein A up [30]

Amniotic fluid T18 pregnancy IGFBP-1 insulin-like growth
factor-binding protein 1 down [30]

Amniotic fluid T13 and T18 pregnancy leptin - down [31]
Amniotic fluid T13 and T18 pregnancy resistin - down [31]

Amniotic fluid T18 pregnancy TTR transthyretin down [30]
Amniotic fluid T18 pregnancy VDBP vitamin D binding protein down [30]

T13, trisomy 13; T18, trisomy 18.

5. Genetic Basis of the T13 and T18 Pathogeneses

There are several genes mapped on chromosomes 13 and 18 recognized as the players
in the maintenance of redox balance [60]. Chromosome 13 mapping demonstrated the
presence of genes associated with copper transport (ATPase copper transporting beta;
ATP7B), tumor suppression (breast cancer 2; BRCA2), the inhibition of cell cycle processes,
chromatin remodeling (retinoblastoma transcriptional corepressor 1; RB1), chromosome
stability maintenance and regulations of chromosome segregation in mitosis (chromosome
alignment-maintaining phosphoprotein 1; CHAMP1), and oxidative mitochondrial pro-
cesses (mitochondrial intermediate peptidase; MIPEP), all of which are relevant in T13
pathogenesis [61–64]. The proper expression of the ATP7B gene is implicated in copper
homeostasis, the deregulation of which may result in the development of many pathologies,
especially those related to metabolic, cardiovascular and neurodegenerative diseases, and
cancer [65]. Interestingly, the proper expression of ATP7B is crucial for mitochondrial
protection against increased oxidative stress conditions, being an essential micronutrient
for proper SOD-1 and mitochondrial complex IV activities [66]. In this case, this gene
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triplication may lead to an increased possibility of mtDNA mutation, resulting in sub-
sequent oxidative stress disturbances according to the lack of mitochondrial antioxidant
defense [67]. The BRCA2 gene is also responsible for oxidative stress homeostasis; its
overexpression correlates with increases in oxidative stress-restricted mtDNA replication,
resulting in a disturbed mitochondrial oxidative balance [68]. Moreover, alterations in
MIPEP expression, involved in oxidative phosphorylation (OXPHOS)-related protein mat-
uration, may additionally indicate a connection between mitochondrial dysfunction and
T13 development [64,69]. Moreover, the study performed by Renaudin et al. showed that
BRCA2 deficiency impairs ribonuclease H1 (RNaseH1) function, which is required to ensure
mtDNA maintenance [68]. Interestingly, other genes, such as RB1 and CHAMP1, are also
related to oxidative-stress-related processes. It has been suggested that disturbances in
RB1 gene expression are involved in DNA damage sensor activity, forkhead box O (Foxo)
transcription factors, and p38 mitogen-activated protein kinase processes, for which a
disturbed expression affects cell-cycle progression, antioxidant capacity, mitochondrial
mass, and cellular metabolism [70–74]. CHAMP1 encodes a protein with a function in
kinetochore–microtubule attachment and in the regulation of chromosome segregation.
These properties are performed by their interaction and regulation of cell structure or-
ganization preceding mitosis, both of which are known to be important for proper fetal
development [75,76]. Moreover, proper MIPEP expression is essential to maintain the
normal level of mitochondrial sirtuin 3, which is considered a key regulator of oxidative
stress by the deacetylation of the substrates involved in both ROS production and detox-
ification [77–79]. These mechanisms link oxidative stress to mitochondrial dysfunction
and may be induced by the triplication of genes implicated in mitochondrial protective
processes [80]. Referring to the fact that mitochondrial dysfunction is assumed to be one of
the main T21-related symptoms [28,81], similar dysfunctions seem to be implicated in T13
development [61,68].

Furthermore, several important genes involved in intracellular cholesterol trafficking
(Niemann–Pick C1 protein; NPC1 gene), proper DNA transcription and signal transduc-
tion (mothers against decapentaplegic homolog; SMAD), and mitochondrial membrane
function (ferrochelatase enzyme, coded by ferrochelatase; FECH gene) are mapped on
chromosome 18 [82–84]. The NPC1 gene encodes a crucial protein and affects the excitabil-
ity of endosome and lysosome membranes, with characteristic mediation properties in
intracellular cholesterol trafficking through cholesterol binding [82,85,86]. Interestingly,
NPC1 deficiency is related to neurodegenerative disease development due to oxidative
damage. In this case, the NPC1 gene’s correct expression is essential for oxidative stress bal-
ance [87]. Moreover, SMAD proteins are signal transducers and transcriptional modulators
involved in multiple signaling pathways, such as cell growth, apoptosis, morphogene-
sis, and immune responses [83,88,89]. Research conducted by Xui et al. showed that
SMAD overexpression results in increased oxidative stress and a reduction in cell via-
bility with subsequent induction of apoptosis [90]. The FECH gene, which encodes the
ferrochelatase enzyme, essential for the proper catalyzation of the insertion of the ferrous
form of iron into the protoporphyrin heme synthesis pathway, is also related to oxidative
stress homeostasis [84,91–93] (Table 2).

The genes associated with additional chromosomes 13 and 18 are implicated in mi-
tochondrial function and oxidative status. Therefore, a detailed evaluation of disturbed
transcriptomic pathways related to T13 and T18 and the subsequent metabolic pathway
disturbances may result in novel findings regarding trisomy-related abnormalities. Un-
doubtedly, studies may highlight deregulated pathways, and their detailed identification
might become the basis for further research in T13 and T18 [47,94].
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Table 2. Gene expression related to T13 and T18 pathogeneses.

Gene Location Gene Full Name Function

Chromosome 13 ATP7B ATPase Copper Transporting Beta copper transport

Chromosome 13 BRCA2 Breast Cancer 2 tumor suppression

Chromosome 13 CHAMP1 Chromosome Alignment-Maintaining
Phosphoprotein 1

chromosome alignment maintenance
with zinc finger protein regulations of

chromosome segregation in mitosis

Chromosome 13 MIPEP Mitochondrial Intermediate Peptidase oxidative mitochondrial processes

Chromosome 13 RB1 Retinoblastoma Transcriptional Corepressor 1 inhibition of cell cycle processes,
chromatin remodeling

Chromosome 18 FECH Ferrochelatase mitochondrial membrane function

Chromosome 18 NPC1 Niemann–Pick C1 Protein intracellular cholesterol trafficking

Chromosome 18 SMAD Mothers Against Decapentaplegic Homolog transcription and signal transduction

6. Uncoupling Oxidative Stress from the Pathogenesis of Trisomies:
Future Perspectives

We strongly believe that comprehensive and extensive research can lead to a better
understanding of trisomy-related comorbidities and the corresponding phenotypes [95]. In
the following section, future perspectives are highlighted for T13 and T18 investigations
in connection with T21 pathogenesis [47,55,96–100]. It is worth noting that an in vitro
model for the study of trisomies other than T21 has not been reported in the literature.
The unavailability of animal models has resulted in a subsequent lack of potential medical
target evaluations. The combination of the current effective approaches shown during T21
research with additional relevant strategies proposed for T13 and T18 evaluations may
provide life-saving treatments to the patients.

6.1. Oxidative Stress and Lipid Peroxidation

The direct oxidative stress intensity measurement is complex following a short ROS
residence time [101]. Due to the lack of methods by which to directly measure the ox-
idative processes, indirect investigations considering the levels of DNA/RNA damage,
lipid peroxidation, and protein oxidation/nitration should be performed in this case [102].
Ischemia-modified albumin (IMA) generated by ROS has been found to be a sensitive and
early biochemical marker of ischemic processes and is useful as an important marker of
oxidative stress [103–105]. Importantly, neurons are highly sensitive to damage caused
by oxidative stress exposure [106]. Increased oxidative stress may lead to neuroinflamma-
tion and cell death, resulting in progressive neurodegeneration [107]. Considering that
reducing neurodegeneration is crucial for maintaining correct fetal development, aspects
of oxidative stress influence, such as mitochondrial dysfunction and epigenetics, should
be further evaluated in T13 and T18 studies [108]. In this case, other antioxidant proteins
and activities of enzymes such as superoxide dismutase, catalase, xanthine oxidase, glu-
tathione peroxidase, and glutathione reductase could be simply assessed in amniotic fluid
samples using commercially available kits to evaluate the detailed associations between the
oxidative stress and the phenotype of T13 and T18 trisomies [109–113]. To our knowledge,
no adequate comparison has been performed for different oxidative stress biomarkers,
mitochondrial dysfunction, and comorbidities. According to the literature data, deregu-
lated lipid metabolism and the lipid peroxidation product (LPO) concentration have been
observed as a result of mitochondrial dysfunction and elevated ROS formation [114]. LPOs,
such as 8-isoprostane, 4-hydroxy-2-nonenal (4-HNE), and malondialdehyde (MDA) have
been established as oxidative stress markers [35,115]. Moreover, they play a crucial role
as signaling molecules in post-translational protein modification [115]. Furthermore, as
highly reactive compounds, LPOs are also related to the generation of ROS and are capable
of DNA and protein damage induction [116]. Fatty-acid-binding proteins (FABPs) are in-
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volved in the binding of free fatty acids, cholesterol, and retinoids, as well as in subsequent
intracellular lipid transport [117–119]. Circulating FABP levels are physiologically low,
but in pathological processes, their deregulation can be used to indicate tissue damage
connected to improper epithelium function and ischemic processes [120,121]. Similarly,
selected LPOs and FABPs with other oxidative stress markers could be evaluated to provide
thorough information on lipid peroxidation and the involvement of oxidative stress in
fetal development [122]. Moreover, recent studies highlight the interconnections between
mitochondrial dysfunction and DS phenotype [95,123,124]. Following the promising results
obtained in a T21 group based on an in vivo study, possible strategies to restore mitochon-
drial function and, therefore, to exert protective effects against the impact of increased
oxidative stress on trisomy-associated pathologies can be discussed [28]. Thus, it can be
assumed that oxidative stress is one of the leading causes of comorbidities in patients with
T13 and T18 [55].

6.2. Mitochondrial Dysfunction

Mitochondrial dysfunction potentially constitutes a valuable component in T13 and
T18 development based on the triplicated genes mapped on chromosomes 13 and 18 [5,7].
The most valuable function of mitochondria is OXPHOS, the oxygen-dependent production
of ATP driven by MRCC. Notably, neurons are mostly dependent on OXPHOS, especially
under oxidative stress conditions [114,125–128]. More importantly, NADPH oxidase is the
main source of superoxide in first-trimester placentas [129]. A decrease in mitochondrial
NADPH can indicate increased NADH oxidation, decreased NAD+ reduction, or increased
NAD+ consumption, resulting in increased MRCC activity [126]. The correlation between
NADPH measurements performed in maternal serum and amniotic fluid could describe
the directions taken in oxidative stress development. Mitochondrial ribosomal protein L53
(MRPL53) is involved in the production of translational membrane proteins essential for
OXPHOS [130]. Additionally, increased MRPL53 gene expression has been associated with
the occurrence of orofacial clefting. [131,132]. The mitochondrial open reading frame of
12S rRNA-c (MOTS-c) was recently reported to regulate metabolic homeostasis with AMP-
activated protein kinase (AMPK) activation, considered to be a supervisor of metabolic
and mitochondrial oxidative stress homeostasis [133–136]. The importance of MOTS-c
measurement during pregnancy was demonstrated by Wojciechowska et al. [137]. They
showed an increase in the concentration of MOTS-c in the maternal blood and newborns of
obese subjects and a corresponding decrease in the mothers and newborns in the group
with hypothyroidism [137]. In this case, the disturbance in mitochondrial marker con-
centration, such as MOTS-c and MRPL53, may be one of the causes and an effect of an
additionally disturbed energy metabolic rate, which could be involved in improper fetal
development [137]. According to the fact that mitochondria also produce precursors for
the synthesis of macromolecules such as DNA/RNA, proteins, and lipids, the complex
evaluation of mitochondrial dysfunction during T13 and T18 development could describe
an association between increased oxidative stress and related comorbidities [138,139].

6.3. Oxidative Stress Meets Epigenetics: An Implication in Trisomy Development

Oxidative stress conditions impair the function of nicotinamide adenine dinucleotide
(NAD)-dependent deacetylases (HDACs) with a relevant sirtuin subgroup [140]. HDACs
are involved in the epigenetic control of gene expression and cell cycling via the induc-
tion of G1-phase cell cycle arrest in cooperation with the p53 protein [141,142]. Histone
deacetylases are responsible for increasing the positive charge of histone tails and stim-
ulating high-affinity binding between the histones and DNA. Increased DNA binding
condenses the DNA structure, inhibiting transcription [140,143–145]. Several studies have
indicated that DNA methylation and histone deacetylation are reciprocally connected [146],
resulting in the inhibition of transcription [147,148]. Global changes in methylation can be
quantified by measuring the plasma levels of 5-methyl-2′-deoxycytidine. An imbalance
between histone acetylation and deacetylation may cause inappropriate gene expression,
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was observed during T21 development and thus may have similar significance in other
trisomies [140,141,143,149–151]. Based on the evaluation of T21 methylation processes, T21
development is associated with genome-wide perturbations in gene expression, which may
contribute to a high frequency of health problems [143,145].

The sirtuin subfamily has also been linked to several oxidative-stress-related processes,
such as mitochondrial dysfunction, gene transcription, the deacylation of histones, and
DNA damage repair. Antioxidant processes are stimulated by the activation of various
transcription factors [116,152,153]. SIRT1 and HDAC enzyme 1 are also involved in protein
53 (p53) activation [154]. The reregulation of p53 combined with oxidative stress devel-
opment leads to the formation of oxidative DNA/RNA products such as 8-oxoguanine
(8-oxoG) and 8-hydroxy-2-deoxy guanosine (8-OH-DG), which originate especially from
mitochondrial DNA damage and related repair mechanisms, and can be quantified as
indirect markers of oxidative-stress-related impairment [154,155]. An accurate analysis
of the impacts of oxidative stress on SIRT1, HDAC enzymes, and p53 function with the
quantification of DNA/RNA damage in T13 and T18 pregnancies could enable the de-
tection of insufficient epigenetic pathways potentially leading to novel medical targets
discovery. Considering the future possibilities of conducting in vitro/in vivo studies, the
implementation of prenatal treatment could be introduced.

7. Perspectives

Omics data, obtained by applying advanced molecular biology techniques, could
provide large-scale data that can be used to evaluate particularly significant pathways
in the pathogenesis of trisomy development [156]. Prenatal diagnoses have witnessed
significant progress; however, clinical management can be further improved, and possible
medical treatment can be introduced [157,158]. The overexpression of genes mapped
on chromosomes 13 and 18 leads to many congenital anomalies [159]. Notably, studies
concerning T13 and T18 demonstrating metabolic changes closely related to oxidative stress
have been performed [8,160]. Thus, it can be hypothesized that oxidative stress is one of
the leading causes of comorbidities in patients with T13 and T18 [55]. As the pathogenic
changes generated by trisomy are unknown, since the currently available methods and
research models are insufficient, assessing the effects of trisomy, including the effects of
oxidative stress on homeostasis, is of utmost importance [30,41]. Referring to the promising
results of T21 pathogenesis evaluation, which establishes oxidative stress as one of the
main disturbed pathways, similar studies should be conducted in other trisomies.

Comprehensive research aimed at clarifying the relationship between transcription
and methylation processes would enable further understanding of T13 and T18 [43]. A
detailed evaluation of the influence of oxidative stress on cell-cycle processes could help
reduce the occurrence rate of oxidative-stress-related disorders affecting a developing
fetus [3].

Conceivably, the use of antioxidant nutrients to scavenge ROS may modulate congeni-
tal anomalies development in trisomic fetuses [27,161]. Unfortunately, prenatal treatments
for trisomy-related fetal malformations have not yet been introduced despite numerous
studies performed in T21 animal models [152,162–164]. It can be assumed that fetal brain
development is affected by T13 and T18 and can be improved by inhibiting ROS activity at
an early stage, resulting in similar outcomes to those in previous T21 studies [29,55,165–167].
To date, only in vivo animal therapeutic trials have been introduced [168]. Detailed T21
mouse model metabolic profiles showed oxidative stress (lipid peroxidation with protein
carbonylation) and mitochondrial functional defects in the hippocampus and cortex, which
resulted in neurobiological and cognitive T21 phenotypes [169,170]. TS mice supplemented
with antioxidants, such as α-tocopherol and vitamin E, showed reduced oxidative stress
and cholinergic neuron transmission degeneration, protected hippocampal morphology,
and advanced spatial acting memory [165]. Similar results were obtained following mela-
tonin supplementation [162]. Despite the promising results demonstrated in preclinical
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studies in the TS adult-stage mouse model, inconsistent research data have been reported
regarding pathogenic changes induced by chromosomal aberration [166].

Due to the lack of research investigating the pathomechanism of defect development in
cases of T13 and T18, we focused primarily on highlighting the directions for future research,
emphasizing the importance of trisomy-related oxidative stress aspect and indicating the
links to T21 research [30,55,60]. Comparable studies, such as those mentioned for T21, could
also be performed in T13 and T18 groups to increase our knowledge regarding chromoso-
mal aberration occurrence. Moreover, individuals receiving antioxidant supplementation
showed significant improvements in cognitive functioning and the stabilization of cognitive
decline [165]. These findings may allow the possibility of introducing prenatal treatments
and can highlight many congenital anomalies resulting from chromosomal aberrations.

8. Conclusions

Despite the limitations in unraveling trisomy pathogenesis, oxidative stress has been
suggested as a significant factor in T13 and T18 pathogeneses. The evaluation of oxidative
stress-based disturbances in T13 and 18 may have a beneficial impact on prenatal manage-
ment. Simultaneous pathogenesis profiling could increase the possibility of introducing
prenatal treatment.
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