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Supplementary Materials 

1. eGFR Calculation 
The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) formula was used to calculate 

eGFR except for donors under 19 years old [1,2]. CKD-EPI eGFR = 141 × minimum(sCr/κ, 1)α× 
maximum(sCr/κ, 1)−1.209× 0.993age× 1.018 (if female), where κ is 0.7 for females and 0.9 for males, α is −0.329 
for females and −0.411 for males, and sCr is serum creatinine (mg/dL). The Schwartz formula was applied 
to donors under 19 years old, in which eGFR = 0.413 × (Height/sCr), where height is in centimeters, and sCr 
is serum creatinine (mg/dL). 

2. TPOT 
TPOT builds 100 random models, and chooses the best model using cross-validation. Then, genetic 

programming, for example, offspring crossover or random mutation, is used to alter the chosen model's 
hyperparameters. This evaluate–select–crossover–mutate process was repeated through 100 generations, 
and the model with the best set of hyperparameters was selected [3]. The following hyperparameters of 
XGBClassifier were tuned by TPOT: the number of boosting rounds ("n_estimators"), boosting learning rate 
("learning_rate"), maximum tree depth for base learners ("max_depth"), minimum sum of instance weight 
needed in child ("min_child_weight"), minimum loss reduction required to make new branching from a 
node ("gamma"), subsample ratio of the training instance ("subsample"), subsample ratio of columns 
("colsample_bytree"), L1 regularization term ("reg_alpha"), and L2 regularization term ("reg_lambda"). The 
hyperparameters can be classified into four subgroups: tree constraints (tree numbers, tree depth, 
minimum leaf weights, minimum improvement to loss), shrinkage (learning rate), random sampling 
(subsampling rows and columns), and penalized learning (L1 and L2 regularization) [4]. 

To control the imbalance between positive and negative classes for the model outcome, 
"scale_pos_weight" was set as the ratio of the number of negative cases to the number of positive cases. The 
parameter "objective" was set to "binary:logistic," logistic regression for binary classification. Then, 
TPOTClassifier evaluated models using AUC ("roc_auc"). The number of iterations to run the classifier 
optimization process ("generations"), and the number of models in each iteration ("population_size") of the 
TPOTClassifier, were set to 100. 

3. Extreme Gradient Boosting (XGBoost) and Feature Selection Using the Boruta 
Algorithm 

Gradient boosting algorithms build multiple decision trees to exploit data, and XGBoost is one 
implementation [5]. With the best hyperparameter set for the XGBoost classifier found by TPOT, the 
Boruta-SHAP library for Python was applied to feature selection using the following process [6,7]: (1) 
Create and append randomly permutated features, that is, shadow features, to original data. (2) Calculate 
the feature importance in the SHAP value of original and shadow features. (3) Repeat (1) and (2) for 100 
iterations. From multiple measurements, distributions of SHAP for each feature are estimated. (4) Compare 
SHAP values of an original feature and its shadow feature. The original feature is selected if its mean SHAP 
value is statistically greater than the mean value of the shadow feature (t-test). Then, the final model is 
trained with selected features, and the model AUC is compared with the AUC of the model before feature 
selection. 

4. Survival Analysis 
We predicted eGFR < 45 mL/min/1.73 m2 of 1-year renal allograft for each case of the development 

data, and performed leave-one-out cross-validation using the "LeaveOneOut" class in scikit-learn tools [8]. 
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During the leave-one-out cross-validation, each sample was used once as a test case, whereas the remaining 
samples formed the training set [9]. We used "KaplanMeierFitter" and "CoxPHFitter" of lifelines packages 
for Python to fit the Kaplan–Meier estimate for the survival function and Cox's proportional hazard model, 
respectively. 

5. Multiple Logistic Regression and Network Graph 
We performed multiple logistic regression using the "glm" function of R with "binomial" for the 

"family" argument. For network analysis, we calculated a correlation matrix using the "cor" function of the 
R stats package with "pearson" for the method argument, and drew a network graph using the "qgraph" 
function on the qgraph package of R with "glasso" and "spring" for the graph and layout arguments, 
respectively [10]. The node size was proportional to the odds ratio if the node was a risk factor, and 1/odds 
ratio if it was a protective factor.  

6. Scikit-learn Tools 
We used the following scikit-learn tools: "IterativeImputer" class with the "ExtraTreesRegressor" 

estimator for multivariate imputation; "KBinsDiscretizer" class to discretize a variable into three bins where 
values have the same nearest center of a 1D k-means cluster in each bin; "StandardScaler" for 
standardization; "roc_curve" and "roc_auc_score" for sensitivity, specificity, threshold, and AUC 
calculations [8]. 
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