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Abstract: The cardiovascular system and the central nervous system (CNS) closely cooperate in the 

regulation of primary vital functions. The autonomic nervous system and several compounds 

known as cardiovascular factors, especially those targeting the renin–angiotensin system (RAS), the 

vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several 

other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, 

learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood 

vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and 

OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with 

depression, Alzheimer’s disease, Parkinson’s disease, autism, and schizophrenia. The altered 

function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present 

evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in 

psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement 

of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The 

neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, 

vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for 

neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, 

VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from 

the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases. 

Keywords: cardiovascular disorders; neuropsychiatric/neurodegenerative disorders; 

cognition; emotions; stress; COVID-19; analogues of angiotensins; vasopressin; oxytocin 

1. Introduction

Cardiovascular diseases (CVDs), which are the leading causes of disability-adjusted 

life years (DALYs), morbidity, and premature death, are particularly challenging when 

they are associated with diseases affecting the central nervous system (CNS) [1–3]. Several 

studies point to the close cooperation of the CNS and the cardiovascular system (CVS) in 

the regulation of basic vital functions (Figure 1). The CNS requires a continuous supply 

of oxygen and nutrients, and the removal of metabolites by the circulating blood, whereas 

the blood flow needs to be precisely controlled by the autonomic nervous system and the 

cardiovascular brain regions of the CNS, located at several levels of the brain, including 

the cortex [4–6]. Neurons and glial cells release potent cardiovascular factors which 

regulate the function of neighboring cells and remote organs, while the heart, vessels, and 

kidneys, produce neuroactive factors, which are transported to the brain and modulate 

the function of the CNS [6–11]. Substantial evidence indicates that all classical 
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neurotransmitters and several neuroactive peptides, which transmit information between 

the cardiovascular regions of the brain and the spinal cord, are also engaged in the 

regulation of cognition, emotions, pain, and behavior at the molecular level [12–17]. 

Moreover, it has been shown that brain diseases are often associated with cardiovascular 

disturbances [15,18–21]. 

Several neuropeptides, initially known as the cardiovascular agents, such as 

angiotensins, vasopressin, and oxytocin, have been identified as effective modulators of 

cognitive functions, pain, stress, and emotions [16,17,22–24]. Moreover, these compounds 

frequently interact with other neuroactive agents and their interaction can be altered in 

cardiovascular pathologies [25–27]. It has been found that the effectiveness of second-

generation antipsychotics and antidepressive compounds may differ in patients with 

CVDs, but the reasons for these differences have not been satisfactorily determined 

[18,28]. 

 

Figure 1. The brain structures involved in the regulation of the cardiovascular, cognitive, emotional, 

and behavioral functions through actions exerted by the renin–angiotensin system (RAS), and the 

vasopressin (AVP) and oxytocin (OT) systems. Abbreviations: Ang II—angiotensin II; Ang-(1-7)—

angiotensin-(1-7); AP—area postrema; CVLM—caudal ventrolateral medulla, CVOs—

circumventricular organs; IML—intermediolateral column; NTS—nucleus of the solitary tract; 

OVLT—organum vasculosum laminae terminalis; PAG—periaqueductal gray; PFC—prefrontal 

cortex; PVN—paraventricular nucleus; RVLM—rostral ventrolateral medulla; SFO—subfornical 

organ; 3rdV—third ventricle. 

The purpose of the present review is to draw attention to the role of cardiovascular 

neuropeptides in neuropsychiatric and neurodegenerative disorders. We focused on 

neuropeptides forming the renin–angiotensin (RAS), vasopressin (VPS), and oxytocin 

(OTS) systems for several reasons. First, these peptides are essential multifunctional 

molecules when it comes to tuning up the excitatory and inhibitory processes in the brain. 

Second, the processes of synthesis, release, and the action of these peptides in the CVS and 

CNS are relatively well recognized. Third, in many instances, the RAS, VPS, and OTS are 
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activated jointly. Fourth, the release of angiotensins, vasopressin, and oxytocin, and the 

action of these peptides, are altered in CVDs, neuropsychiatric and neurodegenerative 

diseases. Fifth, some of the specific agonists and antagonists of the RAS, VPS, and OTS are 

commercially available and used for therapeutic purposes. 

2. Renin–Angiotensin System 

2.1. A Brief Overview of the RAS 

The main components forming the RAS are shown in Figure 2. Circulating renin is 

mainly synthesized in the juxtaglomerular cells of the renal afferent arterioles. Renin is 

necessary to detach angiotensin I (Ang I) from angiotensinogen. Subsequently, Ang I is 

converted either to Ang II, a potent vasoconstrictive octapeptide, by angiotensin 

converting enzyme 1 (ACE), or to a vasodilatory peptide angiotensin-(1-7) [Ang-(1-7)] by 

angiotensin converting enzyme 2 (ACE2). An alternative pathway for the formation of 

Ang-(1-7) involves the cleavage of Ang-(1-9) from Ang I by ACE2 and the subsequent 

detachment of Ang-(1-7) by ACE. Ang II can also be metabolized to Ang III and then to Ang 

IV [29–32]. ACE is expressed mainly by the endothelial cells of the pulmonary vessels, but 

it is also present in the brain, heart, and other organs. In addition to the classical hormonal 

(tissue-to-tissue) RAS, the local paracrine/autocrine (cell-to-cell) RAS and the intracrine 

(intracellular/nuclear) RAS have both been identified in various organs, including the 

brain and the heart. The local RAS systems are activated by topical stimuli [11,29,32]. 

 

Figure 2. The main components of the renin–angiotensin system (RAS) engaged in the regulation of 

cardiovascular, cognitive, emotional, and behavioral functions. Abbreviations: ACE—angiotensin 

converting enzyme; ACEI—inhibitor of ACE; Ang—angiotensin; APA, APB, and APN—

aminopeptidases A, B, and N; AT1R, AT2R—angiotensin receptors; AVP—arginine vasopressin; 

CNS—central nervous system; IRAP—insulin-regulated aminopeptidase; MasR—Mas receptor of 
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Ang-(1-7); NEP—neutral endopeptidase; OT—oxytocin; OTR—oxytocin receptor; V1aR, V1bR, 

V2R—vasopressin receptors. See also refrences [16,17]. 

The actions of Ang II and Ang III are mediated by the AT1 receptors (AT1R) and the 

AT2 receptors (AT2R). Stimulation of AT1R causes the activation of the nicotinamide 

adenine dinucleotide phosphate (NADPH)-oxidase complex and may promote 

inflammatory processes [33,34]. Stimulation of AT2R is associated with the activation of 

phosphotyrosine phosphatases, especially serine/threonine phosphatase 2A, protein 

kinase phosphatase, and SHP-1 tyrosine phosphatase. It also causes the inactivation of 

mitogen activated protein kinases (MAPK), specifically p42 and p44 MAPK [35]. The most 

prominent expression of AT2R has been found in the kidney, heart, blood vessels, and 

brain, especially in the soma and dendrites of the paraventricular nucleus (PVN) [36]. 

AT1Rs and AT2Rs may form heteromers, and the blockade of one of the components of 

this heterodimer increases the interaction of Ang II with the other component [37]. Ang 

IV stimulates the AT4 receptors (AT4Rs), identified as insulin-regulated aminopeptidase 

(IRAP) [38], but, in high concentrations, it can also stimulate AT1R. It has been shown that 

the Ang IV/AT4R pathway in the brain interacts with the hepatocyte growth factor/c-Met 

receptor system [39]. Ang-(1-7) activates the Mas receptors (MasRs) and the ACE2/Ang-

(1-7)/Mas axis [40–42]. 

2.2. Systemic RAS and Brain RAS 

Active elements of the RAS have been found in the kidney, lungs, adrenal glands, 

heart, vessels, carotid glomeruli, brain, and the spinal cord [16,31,43–45]. Among the 

stimulators of the RAS are hypoxia, hypovolemia, hypotension, sympathetic stimulation, 

stress, pain, and specific neuroendocrine factors [7,16,17,31,43,44,46–49]. The RAS is 

activated by inflammatory processes associated with tissue injury and oxidative stress. 

On the other hand, the components of the RAS intensify the inflammatory processes 

through cooperation with proinflammatory cytokines [10,24,27,50–54]. Acting via the 

AT1R, Ang II stimulates the NADPH-oxidase complex and NADPH-dependent oxidases 

that generate inflammatory processes involved in tissue degeneration [34,55]. 

Prorenin, renin angiotensinogen, angiotensin converting enzyme (ACE), 

angiotensins I-IV, ACE2, Ang-(1-7) and their receptors (AT1R, AT2R, and MasR) are 

present in multiple brain regions regulating blood flow, the water-electrolyte balance, and 

cognitive and emotional processes [31,44,56–58]. 

In the forebrain, components of the RAS have been found in the cortex, the 

hypothalamus, and the circumventricular organs (organum vasculosum laminae 

terminalis, OVLT, and the subfornical organ, SFO) [36,59–62]. They have been detected in 

the midbrain and hindbrain, specifically in the periaqueductal gray (PAG), the substantia 

nigra (SN), the dorsal raphe nucleus (DRN), the rostral ventrolateral medulla (RVLM), the 

caudal ventrolateral medulla (CVLM), the nucleus of the solitary tract (NTS), the nucleus 

ambiguous (NcAmb), the dorsal motor nucleus of the vagus (DMVNc), and the area 

postrema (AP) [40,63–70]. MasR mRNA and its protein have been identified in the brain 

stem cardiovascular regions encompassing the dopaminergic neurons of the substantia 

nigra [40,71]. 

In the brain, the central components of the RAS mediate sympathetic stimulation, 

which is particularly intensive during hypoxia [72,73]. In addition, they regulate the 

release of several factors involved in the generation of the final cardiovascular response. 

For example, the local application of prorenin into the supraoptic nucleus (SON) increases 

membrane excitability and the firing responses of magnocellular neurons, in addition to 

elevating plasma vasopressin (AVP), with all of these effects being mediated by the 

inhibition of A-type potassium channels [74]. RAS components have been found in the 

cranial and spinal cord ganglia. In the spinal cord, AT1R and AT2R have been detected in 

the regions involved in the regulation of pain and sympathetic outflow (intermediolateral 

cell column, lamina X and V) [17,56,75]. 
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2.3. RAS in Cardiovascular Disorders 

The cardiovascular actions of Ang II are exerted by the stimulation of the central and 

peripheral angiotensin receptors and are partly mediated by the stimulation of neurons 

regulating the autonomic nervous system or the secretion of cardiovascular hormones, 

cytokines, and other vasoactive factors acting in the brain or on the systemic circulation 

[24,27,52,63,64,76–84]. Experimental studies have shown that the administration of Ang II 

directly into the brain exerts a pressor action, which is significantly potentiated in 

hypertension and cardiac failure, and which is mediated by AT1Rs [24,46,85–87]. It is 

essential to note that Ang II upregulates its own receptors in the brain, specifically in the 

hypothalamus, the SFO, and the RVLM, and it is likely that, under chronic conditions, it 

can potentiate its own effects [63,88–91]. The central administration of AT1R antagonists 

significantly reduces the cardiovascular effects of the sympathetic stimulation in heart 

failure and suppresses the activation of the hypothalamic–pituitary axis during isolation 

stress [22,83]. In the mouse model, the deletion of the AT1aR gene in the paraventricular 

nucleus (PVN) has been shown to significantly reduce anxiety-like behavior, blood 

pressure elevation, heart rate variability, and, in addition, decreases the expression of 

proinflammatory cytokines in the hypothalamus during exposure to the elevated plus 

maze test [92]. In contrast, transgenic mice expressing the AT1R in the C1 neurons of the 

ventrolateral medulla manifested an exaggerated pressor response to aversive cage-

switch stress [93]. There is evidence that the central pressor action of Ang II is potentiated 

by cytokines, and that AT1Rs are involved in the pressor action of interleukin 1 beta (IL-

1β) and tumor necrosis factor α (TNF-α) [27,52,55,84]. In this context, it is worth noting 

that brain inflammation, induced by the systemic administration of lipopolysaccharide, 

elicits a significant release of the proinflammatory cytokines TNF-α, IL-1β, and interleukin 

6 (IL-6) to the systemic circulation and increases the expression of TNF-α, IL-1β, and IL-6 

mRNAs in the prefrontal cortex, the PVN, the SFO, the amygdala, and the hippocampus. 

The above effects can be significantly reduced by the systemic administration of centrally 

acting AT1R antagonist candesartan [94]. 

In many respects, the activation of the ACE2 → Ang (1-7) → MasR axis plays the 

opposite role in blood pressure regulation. An overexpression of ACE2 or the 

intracerebroventricular administration of Ang-(1-7) reduces the blood pressure in 

experimental models of hypertension and heart failure [56,70,95–97]. 

2.4. Inappropriate Function of RAS in Neuropsychiatric/Neurodegenerative Diseases 

The inappropriate functional actions of renin–angiotensin system in selected 

neuropsychiatric and neurodegenerative disorders are summarized in Table 1. 
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Table 1. Summary of the inappropriate functional actions of renin–angiotensin, vasopressin, and 

oxytocin systems in selected neuropsychiatric and neurodegenerative disorders. 

Neuropsychiatric/

Neurodegenrative 

Disorder 

Functional Action References 

Renin–angiotensin system (RAS) 

Cognitive 

disorders 

Human and rodent studies:  

 Ang II may impair cognitive processes, probably via AT1R; [98–102] 

Rodent studies:  

 Ang IV and Ang-(1-7) may improve learning and memory; [103–105] 

Alzheimer’s 

disease 

Human studies:  

 The enhanced activation of the RAS may inhibit acetylcholine release in the 

cortex and contribute to the development of AD dementia; 
[106–108] 

Human and rodent studies:  

 The excessive activation of the brain AT1R and insufficient activation of 

AT2R may induce excessive generation of ROS, and this may account for the 

prevalence of neurodegenerative processes over neuroprotective processes 

in the brains of AD patients; 

[109–113] 

Rodent studies:  

 The inappropriate activation of the Ang-(1-7)/Mas axis may play a role in the 

pathogenesis of AD; 
[114] 

Stress and pain Human and rodent studies:  

 Stress provoked by tissue injury, ischemia, hypoxia, inflammation, stroke, or 

myocardial infarction, as well as chronic mild stress, activates the RAS and 

increases expression of AT1R in the brain, heart, and kidney; 

[16,23,25,66,6

7,85,87,115] 

Rodent studies:  

 Ang II enhances the pressor response to stress by AT1R, while the 

tachycardic response to stress is enhanced by AT2R; 
[116] 

 The stimulation of AT1R and AT2R, and the activation of the Ang-(1-7) 

MasR pathway in the brain reduces pain; 
[117,118] 

Affective disorders Human studies:  

 A significant association between depression and the AT1R A1166C CC 

genotype; 
[119] 

 Ang (1-7) has an antidepressant effect; [120] 

Schizophrenia Human studies:  

 In patients with schizophrenia, missense mutations of angiotensinogen 

(AGTM268T, AGT235T) with replacement of valine by threonine are 

associated with the decline of cognitive functions and lower verbal memory 

scores; 

[121,122] 

 An association between ACE I/D (insertion/deletion) polymorphism and a 

disposition to schizophrenia was found; 
[123] 

 The AT1R antagonist telmisartan can alleviate the symptoms of 

schizophrenia; 
[124] 

Parkinson’s 

disease 

Rodent studies:  

 Increased expression of AT1R and NADPH oxidase activation; [51] 

 Endogenous Ang II potentiates the neurotoxic effect of MPTP on 

dopaminergic neurons, whereas ACE or AT1Rs antagonists exert their 

beneficial effects through the inhibition of microglial NADPH activation and 

the suppression of prooxidative and proinflammatory effects mediated by 

cytokines; 

[125–127] 
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 Chronic treatment with AT1R antagonists is associated with the formation of 

heterodimers of AT1R/AT2R; 
[37,125] 

Tardive dyskinesia Rodent studies:  

 The administration of candesartan and lisinopril reduces the release of 

proinflammatory cytokines (IL-1β, TNF-α) and glutamate in the rat model of 

haloperidol-induced tardive dyskinesia; 

[128] 

Psychiatric 

symptoms in 

COVID 19 

Human studies:  

 The inappropriate function of the RAS may contribute to the exaggeration of 

psychiatric symptoms in patients with COVID-19 
[129] 

 The excessive stimulation of AT1R influences microglial polarization and 

induces an active M2a proinflammatory state and may thereby initiate 

neurodegenerative processes; 

 

Vasopressin system (VPS) 

Affective disorders Human studies:  

 The increased expression of AVP mRNA in the PVN/SON in brains of 

patients with MDD; 
[130] 

 The association of V1bR gene polymorphism (haplotype associated with A-

T-C-A-G for the single nucleotide polymorphism (SNP) s1-s2-s3-s4-s5 allele) 

with a protective effect for recurrent MDD; 

[131] 

 The association of the V1bR SNPs (rs28676508, rs35369693) with child 

aggression; 
[132] 

 The linkage of the V1bR genetic variation SNP rs33990840 with suicidal 

behavior; 
[133] 

 Elevated copeptin (surrogate marker of AVP) in patients resistant to 

antidepressant pharmacotherapy; 
[134–136] 

 V1bR antagonists are currently being trialed for the treatment of MDD; [134,135] 

Rodent studies:  

 In rodent models of anxiety and depression, the antagonists of V1bR show 

anxiolytic- and antidepressant-like effects; 
[137–139] 

 The blockade of the central V1 receptors abolished anhedonia induced by 

chronic mild stress; 
[140] 

 The activation of brain VPS in stress; [26,140–145] 

 The blockade of V1bR induces anxiolytic actions in various models of 

depression; 
[146,147] 

Alzheimer’s 

disease 

Human studies:  

 Low concentration of AVP in the CSF; [148] 

 The reduced expression of AVP immunoreactivity in the hippocampus, 

nucleus accumbens, and the internal portion of the globus pallidus of AD 

patients in comparison with controls (post-mortem studies); 

[149] 

 A reduced number of AVP expressing cells in the suprachiasmatic nucleus 

in senescence and AD patients; 
[150] 

 Vasopressinergic innervation of the PVN, SON, and locus coeruleus in AD 

patients and non-demented controls do not differ; 
[151,152] 

Rodent studies:  

 The improvement of working memory and long-term memory in APP/PS1 

mouse model of AD after the intranasal application of AVP-(4-8); 
[153] 

 The improvement of social memory is enhanced by the stimulation of V1bR 

in the hippocampus in mice; 
[154] 

Schizophrenia Human studies:  
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 Lower AVP levels in the temporal cortex of schizophrenic patients (post-

mortem studies); 
[155] 

 Reduced AVP mRNA in the PVN of schizophrenic patients (post-mortem 

studies); 
[156] 

 In patients with schizophrenia, blood AVP levels are either elevated or not 

altered; 
[157–159] 

 A positive correlation between blood AVP level and severity of symptoms is 

found in female but not in male schizophrenia patients. 
[159] 

 Increased blood AVP levels, polydipsia, hypoosmolality, and hyponatremia 

are found in some patients with schizophrenia 
[160–162] 

 The intranasal application of DDAVP (synthetic analog of AVP) increases 

the effectiveness of risperidone in reducing the negative symptoms of 

schizophrenia; 

[163] 

 The associations between SNPs of the AVP gene and schizophrenia 

(chromosomal region 20p13, loci rs2740204 and rs3011589); 
[164] 

Rodent studies:  

 Schizophrenia-like symptoms with impairment of social behavior in AVP-

deficient (di/di) Brattleboro rats and V1aR knockout mice; 
[165–167] 

 The lower expression of AVP receptors in the prefrontal cortex and 

hypothalamus in the MAM model of schizophrenia in rats; 
[168] 

Autism spectrum 

disorder 

Human studies:  

 Lower AVP concentrations in CSF of children with autism, and AVP levels 

were associated with the severity of symptoms; 
[169–171] 

 AVP concentration in the CSF in neonates predicts a subsequent diagnosis of 

autism; 
[170] 

 A significant association between ASD with polymorphism of the V1aR and 

V1bR genes and autism (SNP rs35369693 and rs28632197); 
[172–175] 

 Intranasally applied AVP improves social abilities and reduces anxiety 

symptoms in children with ASD; 
[176,177] 

Oxytocin system (OTS) 

Alzheimer’s 

disease 

Human studies:  

 In AD patients, intranasally applied OT does not influence the activity of the 

brain regions affected by AD; 
[151,178–182] 

 In AD patients, magnetic resonance images show that the plasma OT 

concentration correlates with the right parahippocampal gyrus volume; 
[183] 

Affective disorders Human studies:  

 The increased activity of the central OTS in depressive mood disorders; [130,184–186] 

 Inconsistent data on the correlation between plasma OT levels and 

depression; 
[184,187–192] 

 Plasma OT levels positively correlate with help-seeking intentions, behavior, 

and estimation of happiness in patients with depression or anxiety;  
[184,193,194] 

 The positive associations between depression, MDD, and separation anxiety 

and single nucleotide polymorphism (rs53576; rs2254298; rs53576 genotype 

A allele) of the OTR gene and with G-protein genes (Gβ3 rs5443); 

[195–200] 

 Low plasma OT levels in the third trimester of pregnancy may predict 

postpartum depressive symptoms; 
[201] 

 The level of blood oxytocin is lower in mothers with post-partum depression 

than in nondepressed mothers; 
[202] 

Rodent studies:  

 Endogenous OTS decreases anxiety behavior in pregnant and lactating rats; [201] 
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Schizophrenia Human studies:  

 The association of schizophrenia with single nucleotide polymorphisms of 

the OT gene in chromosomal region 20p13 (rs4813626); 
[164] 

 Lower plasma OT concentrations in patients with schizophrenia; [158,203] 

 The negative correlation between OT levels and the severity of symptoms in 

patients with schizophrenia; 
[157] 

 The positive effects of the intranasally applied OT on social cognition in 

patients with schizophrenia; 
[204,205] 

 Clinical trials and meta-analyses do not support the significant therapeutic 

effect of OT in schizophrenia; 
[206–209] 

Rodent studies:  

 Reduced concentrations of OT and OTRs in the prefrontal cortex and in the 

hypothalamus of rats in the experimental MAM model of schizophrenia; 
[168] 

Autism spectrum 

disorder 

Human studies:  

 A strong association between OTR gene polymorphism (rs2254298, 

rs2268491, rs53576, rs237887, rs2268493, rs1042778 and rs7632287) and 

susceptibility to ASD; 

[210–217] 

 Lower plasma oxytocin levels in children with ASD; [218–221] 

 Intravenously infused or intranasally applied OT ameliorates repetitive 

behavior in adults with ASD and Asperger’s disorder; 
[222,223] 

 Randomized crossover trials show that in children with ASD, treatment with 

intranasal OT improves caregiver-rated social responsiveness and enhances 

learning in response to social targets and feedback; 

[176,224] 

 The lack of beneficial effects of OT in ASD; [225–227] 

 A systematic review and meta-analysis of tolerance of long-term intranasal 

application of OT in ASD. 
[228] 

2.4.1. RAS in Cognitive Disorders 

Both experimental and clinical studies have shown that the excessive activation of 

Ang II receptors may impair cognitive processes [98,99], whereas the blockade of AT1 

receptors by a specific AT1R antagonist exerts a neuroprotective action and improves 

cognitive functions [100–102]. In the caucasian population, exposure to ACE inhibitors 

protected carriers of the AA genotype of the GAG and the CC genotype of the M235T 

from mental decline [121]. In contrast, Ang IV and Ang (1-7) appear to exert positive 

effects on cognition and both of these peptides improve learning and memory capabilities 

[103–105,229]. In the brain, Ang-(1-7), Ang IV, and their receptors are present mainly in 

the neocortex, hippocampus, amygdala, and basal ganglia, and it is likely that these 

regions may be the main sites of their positive role in cognition [230,231]. 

2.4.2. RAS in Stress and Pain 

Stress provoked by tissue injury, ischemia, hypoxia, inflammation, stroke, or 

myocardial infarction activates the RAS and increases expression of the AT1R in the brain, 

heart, and kidney [16,23,25,66,67,85,87,115]. Twenty-four hours isolation stress increases 

AT1R binding in the PVN and the adrenal medulla and these effects can be abolished by 

the central or systemic administration of the AT1R antagonist candesartan [232,233]. 

Experiments on animal models of chronic mild stress have provided evidence for the 

significant increase of AT1R mRNA expression in the septal/accumbal, diencephalic, 

medullary, and cerebellar regions of the brain, and in the renal medulla [67]. Furthermore, 

studies on rats have shown that the cardiovascular responses to chronic mild stress and 

acute restraint stress are modulated by the RAS and the stimulation of AT1 receptors 

[86,234]. The effects of microinjections of ACE inhibitors and AT1R and AT2R antagonists 
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directly into the prelimbic cortex give rise to the assumption that Ang II enhances the 

pressor response to stress by means of the AT1R, while the tachycardic response to stress 

is enhanced by AT2R [116]. 

Pain, which is one of the stress-inducers and which is frequently experienced in 

cardiovascular and neuropsychiatric/neurodegenerative diseases, is a potent activator of 

the RAS. The specific components of the RAS play a complex role in the regulation of pain 

[17,235,236]. In the spinal cord, heart, and other organs, Ang II induces nociceptive action, 

whereas both stimulation of the AT1R and AT2R and the activation of the Ang-(1-7) → 

MasR pathway in the brain elicit analgesia [117,118]. 

2.4.3. RAS in Depression and Anxiety 

The clinical picture of depression manifests significant heterogeneity. Inappropriate 

dimensions, the activity and metabolism of the cortex, the subcortical limbic regions, the 

basal ganglia, and the brain stem may suggest that the pathogenesis of depression is 

associated with the improper function of these structures [237,238]. The role of the 

dorsolateral prefrontal cortex, the anterior cingulate cortex, the orbital frontal cortex, and 

the insula, appears to be particularly interesting. These regions have multiple connections 

with the amygdala, the thalamus, the lateral and medial orbitofrontal cortex, and the 

medial prefrontal cortex, which are all involved in the regulation of emotions [239–241]. 

Magnetic resonance imaging studies performed in patients with depression revealed 

reduced dimensions of the frontal and orbitofrontal lobes, and decreased metabolism and 

blood flow in the dorsolateral prefrontal cortex and the ventral region of the anterior 

cingulate cortex [237,242,243]. In addition, it has been found that a deficit in facial disgust 

recognition correlates with reduced grey matter volume in the insula, which is engaged 

in the regulation of emotions and blood pressure regulation [244]. 

Earlier studies could not confirm any associations between ACE I/D genotypes and 

depression [119,245]; however, the significant association between depression and the 

AT1R A1166C CC genotype, found by Saab et al. [119], suggests that the inappropriate 

synthesis of AT1R may contribute to the development of depression in patients. More 

recently, an analysis of haplotype-tagging single nucleotide polymorphism of angiotensin 

AT1R revealed significant differences between the cohorts of depressed and 

nondepressed patients with rs10935724 and rs12721331 htSNPs. The authors found 

significant associations between AT1R htSNPs and the volumes of the prefrontal cortex 

and the hippocampus [246]. 

Experimental studies on transgenic rats [TGR(ASrAOGEN)680] have shown that rats 

with low brain angiotensinogen manifest anxiety-related behavior and depressive-like 

behavior, which can be reversed by the ICV application of Ang-(1-7) [120]. The authors 

suggest that anxiety and depression in these rats may be caused by a deficit of Ang-(1-7), 

which is one of the derivatives of angiotesinogen (Figure 2). 

2.4.4. RAS in Alzheimer’s Disease 

The extracellular deposition of aggregated amyloid beta (Aβ) plaques and the 

formation of neurofibrillary tangles of hyperphosphorylated tau protein as well as the 

suppressed function of the brain cholinergic system are characteristic features of 

Alzheimer’s disease (AD), but the mechanism of Aβ toxicity is not yet fully understood 

[247,248]. Elevated concentrations of ACE, angiotensin II, and AT1 receptors in the 

cerebral cortex of patients with AD suggest that enhanced activation of the RAS may 

inhibit the release of acetylcholine in the cortex and contribute to the development of 

Alzheimer’s dementia [106–108]. Losartan and valsartan decrease Aβ peptide 

oligomerization in primary neuronal cultures and reduce cognitive impairment in Tg2576 

AD transgenic mice, expressing the human 695-aa isoform of the amyloid precursor 

protein gene (APP) [249]. In addition, captopril prevents Aβ-induced downregulation of 

some genes involved in neuronal regeneration and cognition [250]. Studies performed on 

animal models of AD and postmortem examinations of human brains has led 
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investigators to suggest that the excessive activation of the brain AT1R and insufficient 

activation of AT2R may induce excessive generation of reactive oxygen species (ROS), and 

this may account for the prevalence of neurodegenerative processes over the 

neuroprotective processes in the brains of AD patients [109–113]. 

Studies exploring the effects of ACE inhibitors and AT1R blockers on the cognitive 

abilities of AD patients have not yielded uniform results. Symptoms of dementia tend to 

be lower in patients treated with ACE inhibitors; however, the differences are not 

significant [98]. Similarly, a lack of the beneficial effects of RAS targeting compounds on 

dementia and AD symptoms was reported in the ONTARGET and TRANSCEND clinical 

trials [251], and in a quantitative meta-analysis [252]. However, in another study, a 

significantly slower progression of AD was found in patients treated with ACE inhibitors 

crossing the blood–brain barrier (captopril, perindopril) [253]. More recently, the memory 

improving effects of ACE inhibitors and AT1R blockers were found in a meta-analysis of 

patients with AD and cognitive impairment of aging [254,255], as well as in a cohort study 

in which AT1R blockers were applied together with statins [256]. 

It has been found that the Ang-(1-7) level is significantly reduced in the cerebral 

cortex and hippocampus of the senescence-accelerated mouse prone 8 (SAMP8) model of 

Alzheimer’s disease and that the inhibition is associated with an inverse correlation 

between the Ang-(1-7) level and tau hyperphosphorylation. Therefore, it has been 

suggested that the inappropriate activation of the Ang-(1-7)/Mas axis may play a role in 

the pathogenesis of AD [114]. 

2.4.5. RAS in Parkinson’s Disease and Tardive Dyskinesia 

Cardiac autonomic dysfunction, orthostatic hypotension, and ECG abnormalities 

belong to the most common non-motor symptoms of Parkinson’s disease (PD) and may 

even precede motoric disorders [19,257]. Parkinson’s disease is associated with a loss of 

dopaminergic neurons in the pars compacta of the substantia nigra. With the 

advancement of the disease, progressive degeneration and dysfunction occurs in other 

classical and nonclassical neurotransmitter systems, including the RAS [258]. The 

accumulation of α-synuclein, which has been proposed to be one of the cytotoxic PD 

factors inducing microglial activation, is associated with the increased expression of 

AT1Rs and NADPH oxidase activation. It has been shown that the blockade of AT1Rs by 

candesartan and telmisartan significantly reduces the negative effects of α-synuclein in 

microglia and dopaminergic neurons [51]. In the rat PD model produced by the 

administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the application 

of AT1R antagonists or ACE inhibitors significantly reduces neuronal cell death. Similar 

effects were obtained in primary mesencephalic cell cultures. It has been suggested that 

endogenous Ang II potentiates the neurotoxic effect of MPTP on dopaminergic neurons, 

and that the antagonists of ACE or AT1Rs exert their beneficial effects through the 

inhibition of microglial and NADPH activation and the suppression of the prooxidative 

and proinflammatory effects mediated by cytokines [125–127]. Later studies have shown 

that the administration of candesartan does not influence motor efficiency nor the 

dopamine and serotonin levels in the striatum, but it increases the expression of dopamine 

D1 receptors and decreases the expression of dopamine D2 receptors. Studies on the rat 

model of Parkinson’s disease have indicated that the neuroprotective effect of chronic 

treatment with AT1R antagonists is associated with the formation of heterodimers of 

AT1R/AT2R [37,125]. It is worth noting that the administration of candesartan and lisinopril 

reduces the release of proinflammatory cytokines (IL-1β, TNF-α) and glutamate in the rat 

model of haloperidol-induced tardive dyskinesia, which is another dopaminergic disorder 

resulting from damage of the striatal neurons [128]. 

To date, meta-analyses on human subjects have not provided explicit evidence for 

the association between ACE gene I/D polymorphism and PD risk [259]. 

2.4.6. RAS in Schizophrenia and Autism 
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Schizophrenia belongs to difficult neuropsychiatric disorders which affect human 

beings of different ages and sexes. Unfortunatelly, relatively little attention has been given 

to the regulation of the cardiovascular system in schizophrenic patients. 

In comparison with the general population, patients with schizophrenia are more 

predisposed to CVDs and have a greater risk of adverse cardiac events, such as stroke and 

heart failure [260–264]. On the other hand, patients with schizophrenia and myocardial 

infarction who receive secondary preventive cardiovascular treatment have a similar 

mortality rate as the general population [265]. 

It is only in a few studies that attempts have been made to find out whether there are 

relations between mutations of RAS genes and schizophrenia, and the results are not 

uniform. Studies on cardiovascular genomics and cognitive function in patients with 

schizophrenia revealed some missense mutations of angiotensinogen (AGTM268T, 

AGT235T). The mutations involved replacement of valine by threonine and were 

associated with the decline of cognitive functions and lower verbal memory scores 

[121,122]. An association between ACE I/D (insertion/deletion) polymorphism and a 

disposition to schizophrenia was found in the study of Gadelha et al. [123], but not in the 

earlier report of Gard et al. [245], nor in the meta-analysis collecting data from European, 

Asian, and Turkish populations [266]. The alleviation of schizophrenia symptoms in 

patients with the disorder via the AT1R antagonist telmisartan was found by Fan et al. 

[124]. The beneficial effects of AT1 receptor blockade with irbesartan in schizophrenic 

patients with psychogenic polidypsia may suggest that the inappropriate activation of 

some of the components of RAS may account for polidypsia in patients with 

schizophrenia [267]. 

Strong associations between DD genotype of ACE I/D and the D allele has been found 

in autistic patients and the authors suggest that genetic diversity of RAS may enhance the 

risk of autism [268]. 

2.4.7. RAS in Coronavirus Infections 

Growing evidence indicates that the inappropriate activation of RAS components 

may contribute to disturbances in brain function in coronavirus disease (COVID-19) and 

that survivors of COVID-19 manifest aggravated symptoms of neuropsychiatric disorders 

such as cognitive and attention deficits (i.e., brain fog), new-onset anxiety, depression, 

psychosis, seizures, and suicidal behavior [269]. A substantial body of evidence indicates 

that COVID-19 infection affects the RAS and that the imbalance of the local and systemic 

Ang II and Ang-(1-7) activities may play an essential role in the pathological processes 

developing in the lungs and other organs during SARS-CoV-2 infections [270,271]. 

Human ACE2 binds the virus S protein and plays a fundamental role in transmitting the 

original SARS-CoV and the new SARS-CoV-2 to the targeted cells [272]. Expression of 

ACE2 mRNA and its protein has been reported in the cortex, striatum, hippocampus, 

brain stem, and cerebrovascular endothelium of the rodent brain [273–275] and the human 

brain [276,277]. SARS-CoV-2 is expressed preferentially in cultured glial cells, specifically 

in astrocytes and radial glial progenitor cells [278,279]. Preclinical studies on transgenic 

mice suggest that SARS-CoV, very closely related to the SARS-CoV-2 coronavirus, can 

access the brain through the olfactory nerve and the olfactory bulb, and it may 

subsequently be transported transneuronally or spread via the Virchow–Robin spaces and 

along brain vessels causing extensive neuronal infection [280]. The SARS-CoV-2 spike 

protein, which readily crosses the blood–brain barrier, induces an inflammatory response 

within microvascular endothelial cells, leading to the dysfunction of the blood-brain 

barrier [276]. In the brains of infected patients, SARS-CoV has been detected almost 

exclusively in neurons [281,282]. The neuroinvasive capacity of the SARS-CoV-2 virus has 

also been reported. For example, autopsies of brains from patients who died of COVID-

19 made it possible to detect SARS-CoV-2 in the cortical neurons [283]. 

It is likely that the inappropriate function of the RAS may contribute to the 

exaggeration of psychiatric symptoms in patients with COVID-19, especially when 
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considering that the excessive stimulation of the AT1R influences microglial polarization 

and induces an active M2a proinflammatory state, thereby initiating neurodegenerative 

processes [42]. This assumption is highly feasible in view of the data showing a correlation 

between neuroinflammation, brain microvascular injury, and cognitive function 

impairment [129]. 

Some patients with COVID-19 infection may exhibit so-called “silent hypoxemia”, 

which is manifested by severe hypoxemia without dyspnea or tachypnea and suggests 

inadequate stimulation of the arterial chemoreceptors. Since carotid bodies possess local 

RAS elements, including ACE2, it has been hypothesized that the ACE2-mediated entry 

of SARS-CoV-2 into carotid bodies may contribute to the development of silent 

hypoxemia in COVID-19 infection [284–287]. This notion is further supported by evidence 

showing the expression of SARS-CoV-2 in carotid bodies from a patient with COVID-19 

[288]. Altogether, it appears that the inappropriate activity of RAS should be taken into 

account as an effective cause of brain dysfunction occurring in COVID-19 disease. 

3. Vasopressin and Oxytocin Systems 

In many instances, vasopressin and oxytocin are released jointly and engage similar 

cellular mechanisms, acting either synergistically or antagonistically [289]. 

3.1. Overview of Systemic and Peripheral VPS and OTS 

Vasopressin and oxytocin are synthesized mainly in the supraoptic, paraventricular, 

and suprachiasmatic nuclei of the hypothalamus and released to the blood in the 

neurohypophysis. They are also synthesized in some other cells of the central nervous 

system and in the peripheral organs [17,289]. The neuroregulatory and peripheral actions 

of vasopressin are mediated by three types of AVP receptors: V1a (V1aR), V1b (V1bR), 

and V2 (V2R) [289,290]. Oxytocin stimulates its own receptors (OXTR); however, in higher 

concentrations, it can also act by means of V1aR [291]. 

Current evidence indicates that cardiovascular and neuroregulatory processes are 

tuned up mainly by the V1 receptors [292–296]. AVP cooperates with the RAS through 

multiple actions exerted in the brain and in the peripheral organs, and its action is 

significantly altered in cardiovascular diseases [26,85,140,141,292,297–299]. The 

inappropriate functions of the VPS and OTS have been described in neuroregulatory 

disorders, and it has been suggested that they may play essential roles in the development 

of social, emotional, and cognitive dysfunctions, including dementia [300–307]. It has been 

shown that neurogenic stress provokes the release of AVP and oxytocin (OT) and that 

these two peptides are involved in the regulation of the cardiovascular, emotional, and 

behavioral responses, and in processing social information [26,140–145]. Studies on 

rodents indicate that the AVP → V1bR pathway plays an important role in the regulation 

of the hormonal and behavioral responses to stress and in the formation of social 

recognition memory. Experiments on Avpr1b-/-mice suggest that social memory is 

regulated by the V1bR located in the CA2 region of the hippocampus [154,300] and that 

the blockade of V1bR induces anxiolytic actions in various models of depression [146,147]. 

3.2. Vasopressin and Oxytocin in Depression 

The inappropriate functional actions of VPS and OTS in selected neuropsychiatric 

and neurodegenerative disorders are summarized in Table 1. 

3.2.1. Vasopressin and Depression 

Post-mortem examinations of human brains revealed the elevated expression of AVP 

mRNA in the PVN and SON and a significantly greater number of AVP and OT neurons 

in the PVN of patients with MDD (major depressive disorder) [130]. In rodent models of 

anxiety and depression, the application of orally active V1bR antagonists reduced 

hyperemotionality and elicited anxiolytic- and antidepressant-like effects [137–139]. 
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Furthermore, oral administration of a V1bR antagonist (TASPO390325) antagonized the 

elevation of adrenocorticotropic hormone levels induced by the joint application of 

corticotrophin-releasing hormone and vasopressin analog (desmopressin, dDAVP) [139]. 

In the rat model of depression, the blockade of the central V1 receptors abolished 

anhedonia elicited by chronic mild stress [140]. 

Indirect evidence for the engagement of the VPS in the pathogenesis of MDD and 

aggression comes from studies of the V1bR gene polymorphism [131,132]. The disposition 

to affective disorders was associated with the polymorphism of the V1bR gene, in 

particular, with the presence of the haplotype associated with A-T-C-A-G for the single 

nucleotide polymorphism (SNP) s1-s2-s3-s4-s5 allele. It appears that presence of this 

haplotype may protect from recurrent MDD [131]. A linkage between the V1bR genetic 

variation SNP rs33990840 and a predisposition to suicidal behavior was also reported 

[133], and clinical trials assessing the usefulness of V1bR antagonists for the treatment of 

MDD have recently started [134,135]. 

Earlier studies assessing the usefulness of blood AVP measurements in patients with 

depression or mania did not yield uniform results [308–312], and the meta-analyses did 

not find support to diagnose depression based on the estimations of AVP and OT levels 

in blood, saliva, urine, and the cerebrospinal fluid (CSF) [306,313]. However, 

measurements of copeptin, which is a surrogate marker of AVP, indicate that blood 

copeptin levels are elevated in patients who are insensitive to antidepressant treatment, 

and it appears that copeptin may be a useful biomarker for the early selection of non-

responders to specific antidepressant treatments [136]. 

3.2.2. Oxytocin in Depression and Anxiety 

A prevailing number of studies indicate a correlation between the altered function of 

the central oxytocinergic system and affective disorders, although the results of human 

studies are inconsistent. Most of the studies report lower levels of plasma OT in patients 

with MDD and bipolar affective disorder during depressive episodes than in the control 

subjects [184,187–189]; however, higher [190,191] or normal [192] levels were also found. 

It appears that plasma OT levels may be lower in MDD than in the control subjects 

[187,314] for women in particular, which may suggest the greater sensibility of the female 

OT system to disturbed signaling in affective disorders. Similarly, measurements of the 

OT level in the CSF did not give explicit results. Demitrack and Gold did not find 

significant differences in OT levels in the CSF between MDD patients and the control 

group [315]. Analogous results were obtained in other studies [316,317]. On the contrary, 

postmortem studies to assess the neuronal OT mRNA levels in MDD patients have 

indicated an elevated activation of the OT system in MDD patients. Namely, using 

immunocytochemical techniques on the post-mortem samples of the PVN collected from 

patients with MDD and bipolar affective depressive episode, Purba et al. [130] found 

significant elevation of OT-immunoreactivity in patients with depressive mood disorders. 

These results were supported by a case-control study, in which elevated OT-

immunoreactivity in the PVN was found in MDD and bipolar disorder patients [185]. The 

increased expression of OT mRNA in the PVN was also reported in melancholic MDD 

patients [186]. Recently, post-mortem estimations of OT receptor (OTR) mRNA expression 

have shown that patients with MDD and bipolar disorder have significantly higher OTR 

mRNA levels in the dorsolateral prefrontal cortex, a brain structure implicated in the 

pathophysiology of numerous psychiatric disorders including MDD and bipolar disease 

[318]. Altogether, the available data indicate the increased activity of the central OT 

system in depression. However, it should be emphasized that the intracerebral and 

peripheral release of OT in depression may occur either in a coordinated or independent 

manner depending on the quality or the strength of the stimulus [319]. 

It should also be noted that plasma oxytocin levels positively correlate with help-

seeking intentions and behavior in depressed patients [193]. Anderberg and Uvnäs-

Moberg found a negative correlation between the plasma OT concentration and the scored 
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symptoms of depression and anxiety [184]. They also reported a positive correlation 

between the estimation of happiness and the plasma oxytocin level. It has been suggested 

that plasma OT levels may help to predict whether a patient with chronic depression will 

respond to psychotherapy [194]. 

The involvement of OT in mechanisms underlying depression and anxiety has also 

been analyzed in studies based on genetic tests. In humans, a positive association between 

depression and separation anxiety was found for a single nucleotide polymorphism (SNP; 

rs53576) of the OTR gene [195]. Specifically, the GG genotype of this SNP has been linked 

to high levels of separation anxiety and insecure attachment in MDD patients [196]. Other 

authors found an interaction between another OTR SNP polymorphism (rs2254298) and 

the symptoms of depression and anxiety in adolescent girls, especially when the 

polymorphism occurred in association with an adverse parental environment [197]. More 

recent data indicate that variations in the OTR and G-protein (Gβ3 rs5443) genes are 

specifically associated with separation anxiety and depressive symptoms both in 

childhood and in adulthood [198]. Other authors reported the negative influence of the 

coincidence of the presence of the OTR rs53576 genotype A allele and environmental 

adversity in postnatal life (for example, maternal postpartum depression) on the mental 

health and social behavior of the child [199]. In addition, studies of a SNP of the OTR gene 

in depressed adults indicate the association of the A allele rs53576 with a history of suicide 

attempts [200]. 

Special attention should also be given to the correlation between the dysregulation 

of the OT system and postpartum depression (PPD). Data from animal models and human 

studies have suggested that disruptions in the activity of the OT system may account for 

the relationship between breastfeeding, stress coping, and mood [201,320]. It has been 

shown that responsiveness to stress is decreased in breastfeeding women (the stimulus 

for OT secretion) and that this is associated with a stress-induced rise in plasma cortisol 

[320]. Furthermore, it has been found that lowered plasma OT levels in the third trimester 

of pregnancy makes it possible to predict postpartum depressive symptoms [321]. In 

addition, OT levels were inversely correlated with depressive symptoms in mothers who 

intended to breastfeed in both the third trimester and at 8 weeks postpartum. During 

breastfeeding, OT release was lower in depressed mothers than in nondepressed mothers 

[202]. 

Despite promising results from experimental studies, clinical trials have yielded 

inconclusive results, with some reports supporting a significant positive effect and others 

suggesting a null effect in the treatment of anxiety and depression [322–325]. However, it 

has been found that oxytocin improves the therapeutic effects of other antidepressants, 

such as escitalopram [326]. Additionally, intranasally applied OT was shown to modify 

neural activity in the limbic regions of depressed patients [327]. In a group of Vietnam 

veterans suffering from post-traumatic stress, the intranasal administration of OT reduced 

physiological responses during personal combat imagery [328]. 

3.2.3. Vasopressin and Oxytocin in Alzheimer’s Disease 

Patients suffering from Alzheimer’s disease have a lower level of AVP in the CSF 

[148], and post-mortem studies revealed a reduced expression of AVP immunoreactivity 

in the hippocampus, nucleus accumbens, and the internal portion of the globus pallidus 

of AD patients in comparison with controls [149]. Other post-mortem studies of human 

brains provided evidence for the reduced number of AVP expressing cells in the 

suprachiasmatic nucleus in senescence and AD patients [150]; however, the 

vasopressinergic innervation of the PVN, SON, and locus coeruleus in AD patients and 

non-demented controls did not differ [151,152]. 

Recently, experiments on the APP/PS1 mouse model of AD have shown that the 

intranasal application of an AVP derivative [AVP-(4-8)] markedly improves working 

memory and long-term memory in this experimental model of AD [153]. 
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A number of studies have reported the impact of intranasally applied OT on human 

cognitive functions (see [178] for a review); however, most of the previous studies did not 

find significant changes in the activity of the central oxytocinergic system in different 

brain regions of patients with Alzheimer’s disease [151,179–182]. A trend for elevated 

hippocampal OT immunoreactivity in post-mortem brain samples of patients with AD 

was observed in one of the investigations [180]. More recent studies suggest that the OTS 

may be affected to some extent in AD patients. Lardenoije et al. found changes in the 

methylation of the OT gene in patients with AD [329]. Recently, an increase of the OT 

signal value and plasma OT concentration were correlated with the right 

parahippocampal gyrus volume in MRI images from the AD group but not in the images 

from the control group [183]. 

3.2.4. Vasopressin and Oxytocin in Autism 

A growing body of evidence indicates that AVP and OT may play a role in the 

etiology of autism spectrum disorder (ASD) [172,176,177,330,331]. AVP concentrations in 

the CSF were found to be lower in children with autism, and AVP levels were associated 

with the severity of symptoms. Moreover, the AVP concentration in the CSF in neonates 

made it possible to predict a subsequent diagnosis of autism. No such associations were 

found for oxytocin; however, both OTR and V1aR mRNA levels were lower in autistic 

patients [169–171]. Studies on gene polymorphism of AVP receptors in autistic patients of 

the Korean population showed a significant association of ASD with SNP RS1 and SNP 

RS3 in the 5′flanking regions of the V1aR receptor [173–175]. The association between 

polymorphism of the V1aR and V1bR genes and autism was also studied in the North 

American population [172]. The authors reported that there may be a significant link 

between ASD and polymorphism of the AVP V1bR in SNP rs35369693 and SNP 

rs28632197. An improvement of social abilities and a reduction of anxiety symptoms after 

4–5 weeks of intranasally applied AVP was reported by Parker et al. [176,177]. A 

systematic review and meta-analysis of the long-term intranasal application of OT in ASD 

showed that this type of treatment is well tolerated and safe [228]. The positive effects of 

AVP on social behavior in ASD have been shown in the studies of Hendaus et al. [332] 

and Parker et al. [177]. 

There is evidence for an association between OTR gene polymorphism and 

susceptibility to ASD. Based on a study encompassing 314 autism-affected families, 

Ylisaukko-Oja et al. suggested that the p24–26 region of chromosome 3 expressing the 

OTR gene may play a role in increasing susceptibility to the development of ASD [210]. 

In the Chinese population, polymorphism was present in the rs2254298 and rs53576 genes 

[211], in the Caucasian and Japanese populations, it was present in rs2254298 [212,213], in 

the European population, it was present in rs237887 [214], and in the North America 

population it was present in rs2268493, rs1042778, and rs7632287 [172,215]. Two meta-

analyses, encompassing 8 studies [216] and 10 studies [217], reported associations 

between ASD and OTR SNP polymorphism in rs2254298, rs7632287, and rs2268491. 

Lower plasma oxytocin levels have been observed in children with ASD [218–221]. 

Moreover, ASD subjects had lower levels of the bioactive amidated OT form and higher 

OT precursor levels, suggesting the altered processing of the OT peptide in the brains of 

children with autism [218]. Several studies have shown significant positive effects of OT 

application on autistic behavior. OT infusion was shown to ameliorate repetitive behavior 

in adults with ASD and Asperger’s disorder [222]. This finding was supported by a recent 

clinical trial based on a group of 106 ASD patients, in which intranasally applied OT 

reduced repetitive behavior and increased the time of gaze fixation on socially relevant 

regions [223]. In the same study, however, no improvement was found in the primary 

outcome, the Autism Diagnostic Observation Scheduled (ADOS)—a social reciprocity 

subscale with regard to the prevalence of adverse events [223]. Other randomized 

crossover trials performed on children with ASD showed that treatment with intranasal 

OT improved caregiver-rated social responsiveness [176,333]. In addition, intranasally 
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applied OT enhanced learning in response to social targets and feedback, and this was 

correlated with the activation of the nucleus accumbens detected by functional MRI [224]. 

Other studies failed to find beneficial effects in relation to OT in ASD [225–227]. Although 

the present evidence is promising, further clinical studies are necessary to provide better 

insight into the role of oxytocin in the pathogenesis of ASD and the potential utility of this 

peptide in the treatment of ASD in humans. 

3.2.5. Vasopressin and Oxytocin in Schizophrenia 

Experimental and clinical studies indicate that the dysregulation of the VPS and OTS 

may play a role in the pathogenesis of schizophrenia [302,303,306,334]. Schizophrenia-like 

symptoms with impairment of social behavior were described in vasopressin-deficient 

(di/di) Brattleboro rats [165,166] and V1aR knockout mice [167]. In addition, significantly 

lower concentrations of AVP receptors in the prefrontal cortex and hypothalamus were 

found in the rat model of schizophrenia induced by prenatal exposure to 

methylazoxymethanol acetate (MAM) [168]. 

Post-mortem studies revealed lower AVP levels in the temporal cortex of 

schizophrenic patients [155]. Similarly, reduced AVP mRNA expression was found in the 

PVN of schizophrenic patients [156]. The blood AVP levels in patients with schizophrenia 

were either elevated or not altered [157–159]. Interestingly, a positive correlation was 

found between the blood AVP level and the severity of symptoms in female patients but 

not in male patients [159]. Some schizophrenic patients with inappropriately high blood 

AVP levels manifested polydipsia, hypoosmolality, and hyponatremia, which were 

further potentiated by antipsychotic treatment [160–162]. The intranasal application of 

DDAVP—a synthetic analog of AVP—increased the effectiveness of risperidone in 

reducing the negative symptoms of schizophrenia [163]. 

Significant associations between single nucleotide polymorphisms of AVP and OT 

genes and schizophrenia were detected in the chromosomal region 20p13, specifically in 

the loci of rs2740204 of the shared promoter of AVP and OT, in rs4813626 of the 5′promoter 

of OT, and in rs3011589 of the second intron of the AVP promoter [164]. 

Plasma OT concentrations were found to be lower in patients with schizophrenia 

than in healthy controls [158,203], and there was a negative correlation between OT levels 

and symptom severity in patients with schizophrenia [157]. Experiments on rats with the 

MAM model of schizophrenia revealed reduced concentrations of oxytocin and OTRs in 

the prefrontal cortex (PFC) and in the hypothalamus of the MAM schizophrenic model 

[168]. 

Positive effects related to the intranasal application of OT on social cognition and 

interpersonal reactivity have been reported in patients with schizophrenia [204,205]; 

however, clinical trials and meta-analyses have not provided evidence for a significant 

therapeutic effect of OT in relation to schizophrenia [206–209]. 

4. Conclusions 

A survey of the literature shows that the RAS, VPS, and OTS, the classical endocrine 

systems regulating blood pressure and the water-electrolyte balance, are also potent 

regulators of other CNS processes through their actions on cerebral blood flow, the 

metabolism, and intercellular and intracellular signal transmission. Angiotensinogen, 

angiotensins, AVP, OT, and their respective receptors have been detected in the neurons, 

glial cells, and blood vessels of multiple brain regions regulating cardiovascular functions, 

pain, emotion, susceptibility to stress, as well as learning, memory, and cognitive 

processes. The RAS, VPS, and OTS innervate the same regions of the brain and in many 

instances are activated jointly and interact at the cellular level. The components of the 

RAS, VPS, and OTS have been identified in the forebrain (cortex, hypothalamus, 

circumventricular organs) and in the midbrain and hindbrain (PAG, DRN, RVLM, CVLM, 

NTS, NcAmb, DMVNc, AP). It has been shown that the RAS, VPS, and OTS act differently 

during stress, depression, and anxiety, as well as in neuropsychiatric and 
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neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, autism, and 

schizophrenia (Table 1). Mutations of angiotensinogen, AT1Rs, and ACE genes were 

detected in some patients with depression and schizophrenia. In addition, polymorphism 

of V1bR and OTR genes was demonstrated in patients with depression and autism. It 

appears that the RAS, VPS, and OTS form a multifunctional cooperating triad which may 

have a significant impact on the efficacy of therapies of neurodegenerative diseases and 

psychiatric disorders. Clinical trials and meta-analyses indicate that specific compounds 

interfering with the action of the RAS, VPS, or OTS may improve the effectiveness of the 

treatment of neuropsychiatric and neurodegenerative diseases; however, further 

investigations are needed to establish the guidelines for their use for medical purposes. 

The present study does not address the putative role of these systems in other essential 

neurological and psychiatric disorders, such as bipolar disorder, ADHD, epilepsy, 

migraine headaaches, and additional resaerch in this field should be conducted. Better 

knowledge of the mechanisms of the actions of these compounds should be helpful in 

programming the most efficient individually-tailored treatment for patients suffering 

from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular 

diseases. 
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List of Acronyms 

Aβ = amyloid beta, ACE = angiotensin converting enzyme 1, ACE2 = angiotensin converting 

enzyme 2, AD = Alzheimer’s disease, ADHD = attention deficit hyperactivity disorder, Agt = 

angiotensinogen, Ang = angiotensin, AP = area postrema, APA = aminopeptidase A, APB = 

aminopeptidase B, APN = aminopeptidase N, APP = amyloid precursor protein gene, ASD = autism 

spectrum disorder, AT1R = angiotensin receptor of type 1, AT2R = angiotensin receptor of type 2, 

AT4R = angiotensin receptor of type 4, AVP = arginine vasopressin, CNS = central nervous system, 

COVID-19 = coronavirus disease 2019, CSF = cerebrospinal fluid, CVDs = cardiovascular diseases, 

CVLM = caudal ventrolateral medulla, CVS = cardiovascular system, DALYs = disability adjusted 

life years, DDAVP = desmopressin, an analog of AVP, DMVNc = dorsal motor nucleus of the vagus, 

DRN = dorsal raphe nucleus, IL = interleukin, IRAP = insulin-regulated aminopeptidase, MAM = 

methylazoxymethanol acetate, MAPK = mitogen-activated protein kinase, MasR = MAS receptor for 

angiotensin-(1-7), MDD = major depressive disorder, MPTP = 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine, NcAmb = nucleus ambiguous, NADPH = nicotinamide adenine dinucleotide 

phosphate, NEP = neutral endopeptidase, NTS = nucleus of the solitary tract, OTR = oxytocin 

receptor, OVLT = organum vasculosum laminae terminalis, OT = oxytocin, OTS = oxytocin system, 

PAG = periaqueductal gray, PD = Parkinson’s disease, PFC = prefrontal cortex, PVN = 

paraventricular nucleus, PPD = post-partum depression, RAS = renin–angiotensin system, ROS = 

reactive oxygen species, RVLM = rostral ventrolateral medulla, SARS-CoV = severe acute respiratory 

syndrome coronavirus, SARS-CoV-2 = severe acute respiratory syndrome associated coronavirus 2, 

SFO = subfornical organ, SON = supraoptic nucleus, SNP = single nucleotide polymorphism, TNF-
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α = tumor necrosis factor α, V1aR = vasopressin receptor of type 1a, V1bR = vasopressin receptor of 

type 1b, V2R = vasopressin receptor of type 2, VPS = vasopressin system. 
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