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Abstract: Obesity is a chronic disease in which abnormal deposition of fat threatens health, leading to
diabetes, cardiovascular diseases, cancer, and other chronic illnesses. According to the WHO, 19.8%
of the adult population in Italy is obese, and the prevalence is higher among men. It is important
to know the predisposition of an individual to become obese and to respond to bariatric surgery,
the most up-to-date treatment for severe obesity. To this purpose, we developed an NGS gene
panel, comprising 72 diagnostic genes and 244 candidate genes, and we sequenced 247 adult obese
Italian patients. Eleven deleterious variants in 9 diagnostic genes and 17 deleterious variants in 11
candidate genes were identified. Interestingly, mutations were found in several genes correlated to
the Bardet–Biedl syndrome. Then, 25 patients were clinically followed to evaluate their response
to bariatric surgery. After a 12-month follow-up, the patients that carried deleterious variants in
diagnostic or candidate genes had a reduced weight loss, as compared to the other patients. The
NGS-based panel, including diagnostic and candidate genes used in this study, could play a role in
evaluating, diagnosing, and managing obese individuals, and may help in predicting the outcome of
bariatric surgery.

Keywords: obesity; next generation sequencing; target sequencing; bariatric surgery

1. Introduction

Obesity is a complex disease, with a significant genetic component, characterized
by an excessive fat deposition [1–4]. It has a global prevalence of 12% and is associated
with an increased risk of co-morbidities, such as metabolic syndromes, cardiovascular
diseases, and cancer [5–7]. Individuals are defined obese when their body mass index
(BMI) is over or equal to 30 [8]. Severe obesity is found in 2–6% of the world population
and is diagnosed when BMI ≥35 kg/m2 plus at least one obesity-related comorbidity or
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BMI ≥ 40 kg/m2 [9]. Obesity is managed with two main types of therapies: nonsurgical
and surgical [10]. Nonsurgical methods aim at correcting the imbalance between food
intake and energy expenditure, in order to change the body composition and the metabolic
status [10], while surgical methods include different bariatric surgery procedures, including
laparoscopic sleeve gastrectomy, intragastric balloon, and Roux-en-Y gastric bypass [10].
Nonsurgical methods are usually ineffective in case of genetic and severe obesity; indeed,
bariatric surgery is considered the most effective treatment for patients with severe obesity,
while it can also be considered a last-resort treatment option in selected genetic obesity
patients [10–13].

Obesity is usually due to an imbalance between energy consumption and energy
expenditure, but it can also be caused by genetic, environmental, psychological and eco-
nomic factors [14]. The genetic etiology of obesity is a deeply researched topic, and the
genetic analysis of obese patients has shown that rare polymorphisms should also be
considered for understanding molecular etiology [15–19]. Due to genetic heterogeneity,
it can be difficult to identify genetic defects in patients with obesity. However, following
clinical diagnosis, a genetic diagnosis is important for selected obesity patients, since it
may provide them with personalized therapies, based on their own genetic state. Genet-
ically, obesity can be classified as: monogenic, primarily caused by mutations in several
genes involved in the leptin/melanocortin and adipogenesis pathways (such as MC4R,
LEP, LEPR, POMC and PCSK1) [20–22]; syndromic, associated with neurodevelopmental
abnormalities and/or other malformations due to chromosomal abnormalities or single
nucleotide variations affecting genes that encode pivotal proteins in the regulation of energy
balance [23]; polygenic, caused by the contribution of more than one genetic variant, whose
effect is amplified in a ‘weight-gain-promoting’ environment [24]. In the last ten years,
next-generation sequencing (NGS) approaches have greatly improved the rate of molecular
diagnosis because of their extremely high specificity, sensitivity, accuracy, and their time-
and cost-effectiveness [20,25–30]. To date, about 250 genetic variants associated with BMI
or waist-to-hip ratio have been identified through genome-wide association studies and
whole genome or exome sequencing [31].

A patient’s genetic risk score can be used to determine individual predisposition to
obesity [32]. Moreover, in the preoperative assessment phase of bariatric surgery, genetic
tests may be useful in identifying patients that will be responsive to bariatric surgery,
as well as in choosing the most suitable bariatric procedure [33–35]. Indeed, it has been
demonstrated that the variants causing monogenic obesity may be associated with re-
duced postoperative weight loss, especially variations in genes involved in the leptin–
melanocortin pathway [36,37]. Moreover, several international guidelines on bariatric
surgery intervention recognize the importance of genetics in obesity onset [38–40].

Here, we report the first Italian study and one of the first in Europe to evaluate the use
of NGS in predicting the outcome of bariatric surgery. We performed an analysis of 316
genes by target NGS, including 72 diagnostic genes and 244 candidate genes, in 247 adult
obese patients. Target sequencing of a panel of genes including diagnostic and candidate
genes may be useful in evaluating, diagnosing, and managing obese individuals, and may
predict the outcome of bariatric surgery.

2. Materials and Methods
2.1. Subjects and Samples

We analyzed obese Italian adults with BMI ≥ 30. All patients underwent pre-test
counselling, during which clinical data—including personal and family history—were
collected. The patients were informed about the significance of genetic testing. All of
them gave their written informed consent, in compliance with the Declaration of Helsinki.
Ethical approval and clearance were received from the Ethical Committee of Azienda
Sanitaria dell’Alto Adige, Italy (Approval No. 132-2020). Genomic DNA was isolated
from peripheral blood using a commercial kit (SaMag Blood DNA Extraction Kit (Sacace
Biotechnologies, Como, Italy)) according to the manufacturer’s instructions.
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2.2. Panel Design and Sequencing

We designed an NGS panel of 316 genes, comprising 72 diagnostic genes and 244
candidate genes that are linked to obesity, food intake regulation, energy homeostasis, and
lipid metabolism (Tables S1 and S2). The genes included in the panel were retrieved from
the Human Gene Mutation Database (HGMD Professional), Online Mendelian Inheritance
in Man (OMIM), Orphanet, GeneReviews, and PubMed. The custom DNA probes were
designed using Twist Bioscience technology (https://www.twistbioscience.com/ (accessed
on 1 September 2022)). Genes were divided into diagnostic and candidate genes, as
previously proposed by the laboratory [41]. Diagnostic genes are those that correlate to
obesity, as from OMIM or scientific literature (Table S1 reports the references for the
diagnostic genes-phenotype correlation [42–50]); candidate genes, on the other hand,
correlate to obesity, adiposity, and adipocytes function in in vivo and in vitro studies.
The panel included genomic targets, comprising coding exons and 15 bp flanking regions
of each exon. The cumulative target length of the gene panel was 560 kb. DNA samples
were processed before sequencing, as previously reported [51,52]. DNA sequencing was
carried out using a MiSeq personal sequencer (Illumina, San Diego, CA, USA).

2.3. Bioinformatics

Fastq (forward–reverse) files were obtained after sequencing. The sequencing reads
were mapped to the genome using Burrow-Wheeler Aligner (version 0.7.17-r1188) software.
Duplicates were removed using SAMBAMBA (version 0.6.7) and MarkDuplicates GATK
(version 4.0.0.0). The BAM alignment files generated were refined by local realignment
and base quality score recalibration, using the RealignerTargetCreator and IndelRealigner
GATK tools. Minor allele frequencies (MAF) were retrieved from the Genome Aggregation
Database [53]. In silico prediction of the deleteriousness of nucleotide changes was per-
formed using VarSome [54]. Each variant was classified as pathogenic, likely pathogenic,
variant of unknown significance (VUS), likely benign, or benign, according to American
College of Medical Genetics guidelines [55].

2.4. Statistics

Categorical data were expressed as absolute or as frequencies. Continuous variables
were presented as mean value and standard deviation. Differences between the two groups
were analyzed by using the independent samples t-test. The test was two tailed and a
p value < 0.05 was considered as statistically significant.

3. Results

We enrolled 247 obese patients (73% female and 27% male), with a median age of
48 ± 11 years, who were analyzed with a NGS panel of 316 genes, comprising 72 diagnostic
genes and 244 candidate genes. Twelve patients carried deleterious variants in diagnostic
genes. Another 21 patients carried at least one deleterious variant in candidate genes. In
particular, 11 heterozygous deleterious variants in 9 diagnostic genes (BBS1, BBS2, BBS5,
BBS9, C8orf37, CEP290, MC4R, MCHR1, MKS1), and 17 heterozygous deleterious variants
in 11 candidate genes (APOE, DNAAF1, ESR1, GHR, GUCY2C, NCOA2, NPC1, PDX1,
RYR1, STRA6, and ZNF423) were detected. The genetic variants identified in the diagnostic
genes are reported in Table S3. Those identified in the candidate genes are reported in
Table S4. Finally, the list of diagnostic and candidate genes for which genetic variants were
identified are reported in Table S5. Moreover, the Figures S1–S11 report the preliminary
molecular dynamics simulations that were carried out to study the effect of deleterious
genetic variants [56–63].

Following the genetic analysis, 25 patients agreed to undergo a follow-up of 6 and
12 months to evaluate their weight loss after bariatric surgery. All the 25 patients completed
the follow-up. Patients were subsequently divided in two groups, based on the pathogenic-
ity classification of the genetic variant identified by the NGS sequencing: Non-deleterious
(ND; patients in which only benign, likely benign or variants of uncertain significance
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were identified) and Deleterious (D; patients in which likely pathogenic variants were
identified, Table S6). The patients underwent different types of bariatric surgery: among
the ND group, 5/20 underwent sleeve gastrectomy, 3/20 underwent SADI-S, 11/20 un-
derwent gastric bypass and 1/20 underwent endoscopic sleeve gastroplasty; among the D
group, 2/5 underwent sleeve gastrectomy and 3/5 underwent gastric bypass. Percentage
of weight loss (%WL), calculated as (weight loss/weight pre-surgery) × 100, was evaluated
for the two groups (Figure 1). Weight loss and pre-surgery clinical data are presented in
Table 1. As it can be seen from Figure 1, at 6 months, patients of the two groups had a
similar %WL (28.1% for ND and 25.7% for D), while at 12 months, the %WL of ND patients
was higher (38.4%) than the %WL of D patients (23.7%). The %WL of the 25 patients
considered altogether was 35.7%. Moreover, the type of bariatric surgery did not affect the
%WL. Indeed, considering the two most represented types of bariatric surgery, the %WL of
patients that underwent sleeve gastrectomy (27.4%) was not statistically different compared
to the %WL of patients that underwent gastric bypass (26.4%). Finally, at 12 months, none
of the patients had a percentage of excess weight loss (%EWL) lower than 50%.
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Figure 1. Percentage of weight loss (%WL) after bariatric surgery in two groups of adults with
obesity. Patients were divided in two groups ND (Non-deleterious) and D (Deleterious), based on the
pathogenicity classification of the genetic variant identified with the NGS sequencing. Data were
analyzed with independent samples t-test analysis, with p ≤ 0.05.
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Table 1. Weight loss of bariatric surgery patients after 6 and 12 months since bariatric surgery.
Pre-surgery clinical data on weight, BMI, hyperphagia, glycemia and total cholesterol are reported.
Patients were divided in two groups, based on the pathogenicity classification of the genetic variant
identified with the NGS sequencing. Data were analyzed with independent samples t-test analysis.

Group Non-Deleterious Deleterious p-Value

N of patients 20 5 -
Females/Males 15/5 4/1 -

BMI 45.0 ± 7.5 36.5 ± 3.5 <0.05
Age 50.4 ± 10.7 49.4 ± 12.6 >0.05

Height (m) 1.7 ± 0.1 1.8 ± 0.2 >0.05
Glycemia (mg/dL) 96.5 ± 21.1 91.5 ± 26.8 >0.05

Total cholesterol (mg/dL) 188.2 ± 36.5 119.3 ± 42.4 <0.05
Pre-surgery weight (kg) 129.4 ± 25.4 118.6 ± 19.3 >0.05

Hyperphagia (%) 50.0 100.0 -
BMI after 6 months 31.9 ± 4.0 27.2 ± 15.0 <0.05

Weight loss after 6 months (kg) 36.4 ± 13.3 30.5 ± 6.2 >0.05
BMI after 12 months 28.4 ± 2.8 28.4 ± 2.9 >0.05

Weight loss after 12 months (kg) 49.7 ± 19.7 28.2 ± 3.8 <0.05
%EWL after 12 months (%) 81.6 ± 10.3 84.3% ± 12.3 >0.05

4. Discussion

The global rise in obesity contributes to a significant number of diseases with high
morbidity [20,27,28]. Indeed, obesity increases the risk of cardiovascular and metabolic dis-
eases, resulting in a huge social impact and economic cost for national health systems [64].
Obesity can be caused by genetic mutations, a kind in which pharmacological and non-
surgical treatments are usually not available or poorly efficient [10]. Currently, bariatric
surgery is the most effective treatment for patients with severe obesity [65], and it is now
clear that several single nucleotide polymorphisms may be associated with poor response
to it [66,67]. However, at the moment there are no reliable biomarkers for evaluating
individual responses to bariatric surgery.

In this study, we sequenced the genome of 247 patients with severe obesity before
they underwent bariatric surgery. Among them, 25 were evaluated for their weight loss
at 6 and 12 months after surgery and were divided in two groups. Considering that the
weight and BMI of the two groups were not similar, we evaluated the %WL instead of
the absolute weight loss. As can be seen from Figure 1, at 6 months, patients of the two
groups had a similar %WL, which was slightly higher for ND patients. At 12 months,
however, %WL of D patients was slightly reduced, while %WL of ND patients increased:
thus, at 12 months, the difference in %WL between the two groups was much higher and
statistically significant (p < 0.05), suggesting a role of genetic variants in bariatric surgery
outcome [68].

Moreover, many of the diagnostic genes that were found mutated are correlated
to the Bardet–Biedel Syndrome (BBS). BBS is an autosomal recessive syndrome that is
characterized by several symptoms, among which are intellectual disability and obesity [69].
Among the eleven variants identified in diagnostic genes, eight deleterious mutations in
nine patients were in genes related to BBS: BBS5, BBS2, BBS9, BBS1, C8orf37, CEP290, and
MKS1 (Table S3). Thus, remembering that clinical observations are needed as a first step
to distinguish between syndromic and non-syndromic obesity, we propose the genetic
screening of patients with severe obesity as a useful tool to be used systematically to identify
underlying genetic causes. Moreover, a typical symptom of ciliopathies such as BBS is
hyperphagia [70], and all the patients of the LP group were hyperphagic. The outcome of
bariatric surgery in hyperphagic patients is variable and less efficacious [71]. Therefore,
genetic screening of patients with severe obesity and hyperphagia could be critical in
evaluating the best therapeutic procedure.

All the genes in which likely pathogenic variants were identified are correlated to the
onset of obesity [72–77]. Thus, we decided to perform preliminary molecular dynamics
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simulations, in order to functionally characterize some of the genetic variants identified. As
it was reported in the Supplementary Materials, the molecular dynamics studies on APOE,
BBS9 and GHR suggested that the variants partly disrupted the structure of the proteins of
interest. Indeed, all of them replaced amino acids of different physicochemical properties.
In APOE, proline at 102 was replaced by arginine, in GHR, tyrosine at 240 was replaced by
histidine, and in BBS9, serine at 88 was replaced by leucine. The replacement of proline
by arginine (APOE) gave rise to local fluctuations of the structure (indicated by the RMSF
plots), while the replacement of tyrosine by histidine, and serine by leucine in GHR and
BBS9, respectively, disrupted the hydrogen bonding network in the neighboring residues.
Molecular dynamic studies were not carried out for ZDF423 and PDX1 variants because
only predicted structures were available online and the variants resided in positions with
low prediction confidence.

Our results support already published scientific articles [36,37], and indicate that
genetic testing could be useful to predict the outcome of bariatric surgery, and that patients
with predicted deleterious variants to genes correlated to obesity could respond less to
bariatric surgery.

The major limitation of this study is the low number of patients recruited for the
assessment of weight loss. Nevertheless, this is the first Italian study and one of the first
in Europe that evaluates the connection between genetic obesity and bariatric surgery
outcomes. Moreover, a variable that should be taken into account is the type of bariatric
surgery that was performed on each patient. In considering these limitations, our results
could spur newest studies with higher cohorts of patients, which will foster the role of
genetics in affecting the outcome of bariatric surgery.

5. Conclusions

We genetically screened 247 severe obese patients and we clinically followed 25 of them
to assess their weight loss after bariatric surgery, the most up-to-date treatment for severe
obesity. In the meantime, we performed in silico modelling studies of the likely pathogenic
variants, which supported their deleterious effect on the protein structure. It resulted that
patients carrying likely pathogenic variants had a reduced weight loss. Considering that
more research on a bigger cohort and with similar types of bariatric surgery is needed to
support our findings, we propose that testing the genetics of severe obesity patients before
performing bariatric surgery could be useful in the clinical management of patients with
severe obesity.
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